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Abstract

We use a continuum chain model and develop an analytical theory for the interaction between

two spheres immersed in a fluid of polydisperse polymers under theta conditions. The theory is

applied to both the cases where the spheres are either adsorbing or non-adsorbing spheres. Exact

results are derived for the asymptotic behaviour of the depletion interaction for the case where the

polymer fluid displays a Schulz-Flory molecular weight distribution. We show also that in the limit

of large spheres (and large surface to surface separation) the Derjaguin approximation is valid.

We compare our asymptotic expression with numerical solutions of an ideal equilibrium polymer

fluid, consisting of discrete chains. Our asymptotic approximation accurately predicts long-range

interactions between small spheres. For large spheres it predicts the interaction very well over most

of the separation range. We also consider a single sphere immersed in the polymer fluid and show

how our results can be generalized to treat polydisperse polymer fluids, where the polydispersity

is described by a Schulz-Flory distribution.

∗Electronic address: c.woodward@adfa.edu.au
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I. INTRODUCTION

Suspensions of spherical particles in polymer solutions are important systems to many

industries, such as food, cosmetics and pharmaceuticals [1, 2]. This has spawned a great

deal of experimental [3–7] and and theoretical research [8–20].

When polymers are mixed with a dispersion of particles, they will profoundly influence

particle interactions. In a classic experiment, Traube [21] added a water-soluble polymer

to latex spheres to bring about their aggregation. This phenomenon is now understood to

be due to depletion attractions [22, 23]. These forces occur when the density of polymer

molecules is reduced in the region proximal to particle surfaces. If, on the other hand,

polymer molecules are attracted to the particle surfaces they are able to bridge the space

between particles, giving rise to so-called bridging attraction.

There have been a number of theoretical studies on depletion forces. These fall into

two general classes: (i)effective potential models and (ii) mixture models. Effective potential

models treat the particles as a single component fluid whose interactions are mediated by

the underlying polymer solution. The latter is treated implicitly. For N particles at given

fixed positions, the ensemble-averaged polymer configurations generate a general N-body

free energy acting between the particles. This free energy can be formally partitioned into

1,2...N -body contributions. The 1-body term corresponds to the excess chemical potential

for insertion of a particle into the polymer solution at infinite dilution, while the 2-body in-

teraction is obtained as the potential of mean-force (POMF) between two particles immersed

in the polymer solution. Though it is conceptually appealing, any practical implementation

of the effective potential approach must generally truncate the many-body series at the 2-

body level, as the treatment of n-body interactions with n ≥ 3 is generally too demanding

numerically. Thus, pre-averaging over the polymer degrees of freedom is only useful when

truncation at the 2-body interactions is a reasonable approximation. This is the case, in

the so-called colloidal regime (large particle radius, Rs and small polymer radius of gyra-

tion Rg) as the occurrence of many-body collisions involving a polymer and more than two

particles will be rare. However, in the case of nanoparticles wherein the polymer molecules

are relatively larger than the particles, many-body forces are essential in order to obtain a

proper thermodynamic description. This is also known at the protein regime.

In the mixture models, the polymer is treated explicitly, while the solvent remains implicit.
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Unfortunately, the explicit treatment of all polymer degrees of freedom makes the problem

numerically very demanding and further simplifications are generally needed. For example,

Meijer et al [24] performed computer simulations wherein the polymer configurations were

constrained to lie on a simple space-filling lattice. However, even in this case, the numerical

generation of all polymer configurations is still extremely time consuming and very few

studies using such models have appeared in the literature.

The Asakura-Oosawa (A-O) model [25, 26] simplifies the problem further by neglecting

polymer configurations completely. In this case the particles and polymers are treated as

spheres with non-additive radii. Assuming a Θ solvent, the polymer molecules are modelled

as mutually penetrating spheres, with radius equal to Rg. On the other hand, the polymer

spheres are unable to penetrate the particles. According to the A-O model, the range of the

depletion interaction is determined by Rg and its strength depends on the osmotic pressure

of the polymers. The A-O model has been widely studied by researchers in the field. For

example, it is the basis of the free volume theory [27], which has been used to investigate

the phase behaviour of polymer colloid mixtures with good success, when compared with

simulations and experiment [7, 24, 28]. It has also been generalized to non-Θ solvents so as

to account for polymer interactions [29, 30].

The A-O model elies on the assumption that the average volume traced out by polymer

molecules within the particle matrix is approximately spherical and that the free energy cost

for distortion away from a spherical shape is large. These assumptions may become difficult

to justify in the nanoparticle regime. That is, the A-O model is expected to perform poorly

when the ratio Rg/Rs is large. Here, polymer molecules will be significantly distorted from

a spherical shape as they penetrate the particle matrix. By ignoring this effect, the A-O

model is expected to predict a too strong depletion attraction between small spheres.

In recent work, we revisited the effective potential approach for a model of hard sphere

particles and fully flexible ideal chains [31]. From the point of view of mathematical analy-

sis, it was an advantage to treat a system of polydisperse polymers with a molecular weight

dispersion described by the well-known Schulz-Flory distribution [32]. Serendipitously, a

model that incorporates polydispersity in the polymer molecular weight is also more rel-

evant to experimental conditions. Using this model, we are able to obtain an expression

for the POMF between a pair of particles as an infinite multi-pole expansion, wherein the

coefficients are conveniently obtained analytically. However, as described above, the POMF
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alone is not sufficient for the description of nanoparticle dispersions, as the truncation the

many-body series at the pair level becomes inaccurate. In order to overcome this problem,

we have suggested a so-called ”spherical approximation”. The consequence of this approxi-

mation is that only monopole terms are required to describe many-body forces, leading to an

enormous simplification of the resulting expression for the free energy [33, 34]. The spherical

approximation can be physically described as follows. If N (spherical) particles are fixed in

a typical configuration within the polymer solution, then the average density of monomers,

close to the surface of any chosen particle, is approximately spherically symmetric about

that particle’s center. It is based on the idea that the local environment experienced by

any one particle, in a sea of many, can reasonably be assumed to be spherically symmetric.

That is, when many particles are present, the monopole contribution dominates the free

energy, as the higher-order contributions will tend to cancel. This approximation is more

plausible at high or moderate particle densities, but is less so when the density is small. At

low density, particle configurations will likely be dominated by 2-particle clustering. Such

asymmetric configurations could then lead to failure of the spherical approximation.

In this paper we will calculate the POMF between two particles immersed in a polydis-

persed polymer solution under Θ conditions. This is useful for two reasons. Firstly, this

calculation has not been presented before, as our previous work reported only the asymp-

totic behaviour of the POMF. Hence, our results will provide an accurate representation of

the 2-body interaction, which will be useful for describing colloidal dispersions. Secondly,

the study of two particles allows us to explore the validity of the spherical approximation,

especially in the regime of nanoparticles, wherein it provides a crucial simplification for the

full many-body description. The 2-body system we describe here is expected to provide

the strongest test of the spherical approximation. Despite the fact that much of the above

discussion concerns depletion forces, our general derivations will consider both depleting and

adsorbing particle surfaces.

The paper is arranged as follows. In the next section we will describe the general theory for

two particles immersed in an an ideal polymer fluid with a bulk molecular weight dispersion

as given by the Schulz-Flory distribution. For completeness, we will also describe the many-

body generalization, as presented in earlier work. We shall then provide the solution of the

resultant equations for the POMF, using a multipole (or `-pole) expansion of the polymer

distribution. Analytical results are obtained for the cases ` = 0, 1. More accurate solutions
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are obtained for ` ≤ L, with large L and these are compared with the analytical results. We

conclude with a discussion and some final comments.

II. THEORY

We consider two spherical particles (labelled A and B) immersed in a polymer solution

under Θ conditions. The radius of sphere α is Rα and their centers are fixed at a separation

R. We assume that the polymer molecules can be treated as ideal flexible chains which will

sample their full configuration space, as allowed by the excluding spheres. Those configura-

tions are described by the end-end segment distribution function, G(r, r′; s), which denotes

the joint probability that a chain segment of length s has ends at r and r′. This distribution

satisfies the following ”diffusion” equation,

∂G(r, r′; s)

∂s
=
σ2

6
∇2G(r, r′; s)− ψ(r)G(r, r′; s) (1)

with the initial boundary condition

G(r, r′; 0) = δ(r− r′) (2)

Here, σ, is the Kuhn length and ψ(r) is the external field acting on monomers. As we are

dealing with a Θ solvent, we ignore the interactions between monomers and express ψ(r)

as a sum of spherically symmetric potentials centerd on each particle. We assume these

are short-ranged on the length-scale of the polymers. The affect of the spheres can then be

described by applying the following homogeneous boundary condition at their surfaces,

1

G
∇rG(r, r′; s) · n̂ = −ε ∀r ∈ S (3)

where S = SA∪SB is the union of surfaces of the two non-overlapping spheres. The quantity

ε is a measure of the adsorption energy between polymers and the spheres and n̂ is a unit

vector pointing outward and acting normal to the surfaces of the spheres.

A. Polydisperse Polymers

Solving Eq.s(1)-(3) is facilitated by considereing the more general problem of a polydis-

perse polymer fluid where the molecular weight distribution can be described by the class
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of Schulz-Flory (S-F) polydispersities [31]. These are described by the following normalized

probability distributions,

F (n)(κ, s) =
κn+1

Γ(n+ 1)

sn

s̄n+1
exp(−κs/s̄) (4)

Here s is the degree of polymerization and, Γ(x), is the gamma function. In Eq.(4), we

have also introduced the independent variable, κ. When κ = n + 1, then s̄ is the average

polymer length. For the polydisperse fluid, G(r, r′; s) is averaged over the molecular weight

distribution to give Ĝ(r, r′;κ). For the case n=0, equilibrium polymers, we obtain

Ĝ(r, r′;κ) =

∫ ∞
0

ds
κ

s̄
exp(−κs/s̄)G(r, r′; s) (5)

Averaging both sides of Eq. (1) and using the boundary condition, Eq. (2), we get,

R2
g

κ
∇2

rĜ(r, r′)− Ĝ(r, r′) = −δ(r− r′) (6)

where R2
g = s̄σ2/6 is the average square radius of gyration. Integrating one polymer end

over the space external to the spheres (denoted as V ′) gives the following end-distribution

function,

ĝ(r) =

∫
V ′
dr′Ĝ(r, r′) (7)

where ĝ(r) is normalized to unity in the bulk (far from the spheres). The corresponding

differential equation for ĝ(r), (r ∈ V ′) is given by,

∇2ĝ(r)− λ2ĝ(r) + λ2 = 0 (8)

where λ2 = κ/R2
g. Note that the boundary conditions at the surfaces of the spheres are

easily obtained from Eq.(3),

1

ĝ
∇ĝ(r) · n̂ = −ε ∀r ∈ S (9)

Perfectly depleting spheres correspond to ε→ −∞ and is characterized by Dirichlet bound-

ary conditions,

ĝ(r) = 0, ∀r ∈ S (10)

Furthermore, we have that ĝ(r) → 1 far from the spheres. It is useful to introduce the

Green’s function for the associated Helmholtz equation in free space, [35]

∇2
rG0(|r− r′|)− λ2G0(|r− r′|) = −δ(r− r′) (11)
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Given the bulk boundary conditions for ĝ(r), we seek that G0(r) → 0 as r → ∞. The

required solution is given by,

G0(r) =
exp(−λr)

4πr
(12)

The solution to Eq.(8) can then be formally expressed as,

ĝ(r) = λ2
∫
V

dr′G0(|r− r′|) +

∮
S

dsG0(|r− s|)Λ(s) (13)

The function Λ(s) provides multipole source terms at each of the the surfaces and is de-

termined by the boundary condition Eq.(10). The first integral in Eq.(13) is over all space

and is equal to unity. The second integral is over the surfaces of the two spheres. Thus, we

obtain

ĝ(rA) = 1 +

∮
SA

dŝG0(|rA − s|)ΛA(ŝ) +

∮
SB

dŝG0(|rA − s|)ΛB(ŝj) (14)

where the origin is chosen to be at the center of sphere A. We expand ĝ(r) in spherical

harmonics,

ĝ(rA) ≈
L∑
l=0

l∑
m=−l

ĝlm(rA)Y l
m(r̂A) (15)

where r̂ denotes the angular coordinates (θ, φ) of the vector r with respect to the frame at

sphere A.

The spherical harmonic functions are defined for m ≥ 0 [36],

Y l
m(θ, φ) = (−1)m

√(
2l + 1

4π

)√(
l −m
l +m

)
P l
m(cosθ)eimφ (16)

where P l
m(cosθ) is an associated Legendre polynomial, and i =

√
−1. For m < 0, we use

the complex conjugate form,

Y l
m(θ, φ) = (−1)mY l

m(θ, φ)∗ (17)

where we have used the notation m = −m. The expansion, Eq.(15), becomes exact in the

limit, lm → ∞, but in any practical calculation lm will be finite. It is convenient to place

the z-axis along the line joining the sphere centers. The problem becomes cylindrically

symmetric, which allows us to set m = 0 in Eq.(15). A similar expansion can be made

about the sphere B. The surface multipoles can also be expanded as,

ΛA(s) ≈
L∑
l=0

Λl
0(A)Y l

0 (ŝ)

ΛB(s) ≈
L′∑
l=0

Λl
0(B)Y l

0 (ŝ) (18)
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where s is a vector from the center to the surface of the sphere (A or B) and we note that

in general the upper limit in the sums may be different for sphere A and B. For indentical

spheres we have reflection symmetry, Λ(B)l0 = (−1)lΛ(A)l0 and, in this case, we would choose

L = L′. In order to obtain an expression for the first integral on the RHS of Eq.(14) we use

the well-known 1-center expansion of the Green’s function, G0 about the sphere A.

G0(|r− r′|) = λ

∞∑
l=0

kl(λr>)il(λr<)
l∑

m=−l

Y l
m(r̂>)Y l

m(r̂<)∗ (19)

where r< and r> are the lesser and greater repectively of r and r′. The modified spherical

Bessel functions are defined as [37],

il(x) =

√
π

2x
Il+1/2(x)

kl(x) =

√
π

2x
Kl+1/2(x) (20)

where Iν(x) and Kν(x) are the modified Bessel functions of the first and second kind respec-

tively. Evaluation of the second integral on the RHS of Eq.(14) uses a 2-center expansion

for G0 about both spheres, which we recently derived [31]

B. Two-center expansion for G0(|r− r′|)

The 2-center expansion for the free space Green’s function G0(|r− r′|), around the centers

of the two spheres is obtained using the following decomposition,

r− r′ = r− r′′ −R (21)

where R is the vector from sphere A to sphere B and r′′, is the vector between the center of

sphere B and the vector r′. Assuming |R| ≥ |r− r′′|, which will be true in our application,

we obtain

G0(|r− r′′ −R|) = λ
∑
l1,m1

∑
l2,m2

∑
l,m

kl(λR)il1(λr)il2(λr
′′)

×Ql1l2lC(l1l2l; 000)C(l1l2l;m1m2m)

×Y l
m(R̂)Y l1

m1
(r̂)∗Y l2

m2
(r̂′′)∗

(22)
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where C(l1l2l;m1m2m) is a Clebsch-Gordan coefficient and

Ql1l2l = (−1)l2(4π)
1
2

[
(2l1 + 1)(2l2 + 1)

(2l + 1)

] 1
2

(23)

We note that ∑
m1,m2,m

C(l1l2l;m1m2m)Y l
m(R̂)Y l1

m1
(r̂)∗Y l2

m2
(r̂′′)∗ (24)

are rotational invariants. The appearance of these combinations are a consequence of rota-

tional symmetry of G0(r). As before, we choose the z-axis to coincide with the R̂ direction

to obtain the following simplification,

G0(|r− r′′ −R|) = λ
∑
l1,l2,l

∑
m

kl(λR)il1(λr)il2(λr
′′)

×(−1)l2Al1l2C(l1l2l; 000)C(l1l2l;mm0)Y l1
m (r̂)Y l2

m (r̂′′)

(25)

where, Al1l2 = [(2l1 + 1)(2l2 + 1)]
1
2 and we have taken the complex conjugate of the RHS of

Eq.(25).

Substituting these expansions for G0(|r− r′|) into the RHS of Eq.(14) and using the

spherical harmonic expansions for the surface multipoles, gives the following expansion co-

efficients for the function ĝ(r), about sphere A.

ĝl0(r) =
√

4πδl0 + Γl(A)kl(λr) + il(λr)
∑
l′

Gl,l′(λR)Γ∗l′(B) (26)

where we have defined renormalized multipole field strengths,

Γl(X) = λΛl
0(X)il(λRs) (27)

with Γ∗l (X) = (−1)lΓl(X), and

Gl1l2(λR) = Al1l2Σlkl(λR)C2
l1l2l;000

(28)

Using Eq.(26) and the logarithmic boundary conditions at each surface,

εĝ +∇ĝ(r) · n̂ = 0 ∀r ∈ S (29)

we are able to solve for for the surface multipoles, Γl(X). For example, we have at the

surface of sphere A,

Γl(A)Kl(λRA) + Il(λRA)
∑
l′

Gl,l′(λR)Γ∗l′(B) = −ε
√

4πδl0 (30)
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Kl(x) = εkl(x) + λk′l(x) (31)

and

Il(x) = εil(x) + λi′l(x) (32)

The general equation is most conveniently written in matrix form as,

JA G

G
T

JB


×



Γ0(A)
...

ΓL(A)

Γ∗0(B)
...

Γ∗L′(B)


= −ε

√
4π



1/I0(λRA)

0
...

1/I0(λRB)

0
...


(33)

where the (L+ 1)× (L+ 1) submatrix JA is diagonal, with elements

JA =


K0(λRA)
I0(λRA)

0 . . . 0

0 K1(λRA)
I1(λRA)

. . . 0
...

...
. . .

...

0 0 . . . KL(λRA)
IL(λRA)

 (34)

with a similar expression for the (L′+1)×(L′+1) submatrix JB. Furthermore, the expresssion

for the for the (L+ 1)× (L′ + 1) submatrix G is given by,

G =


G00 . . . G0L′

...
. . .

...

GL0 . . . GLL′

 (35)

where the elements are given by Eq.(28). We shall denote the matrix on the LHS of Eq.(33)

as M = J + G, where J is the diagonal matrix made up of the submatrices JA and JB,

and G is the residual component consisting of the G submatrices. It is useful to note that

the element of G approach zero, as the distance between the spheres becomes large.

C. Polymer Free Energy

The expansion coefficient Γ0 is (to within a constant), proportional to the polymer free

energy. To see this, we note that the excess free energy of the polymer fluid in the presence
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of the spheres (beyond the bulk value), is given by,

β∆ωtot = −Φp

∫
V

dr{ĝ(r)− 1} (36)

where β = 1/kBT . Using the second order differential equation for ĝ(r), Eq.(8), we can

rewrite the free energy as,

β∆ωtot = −Φp

λ2

∫
V ′
dr∇2ĝ(r) + Φp

∑
i=A,B

4πR3
s/3 (37)

Gauss’s Theorem allows us to reexpress the volume integrals in Eq.(37) in terms of surface

integrals of ∇ĝ(r) at each sphere,∫
V ′
dr∇2ĝ(r) = −

∑
i=A,B

R2
i

∫
Si

dσ · ∇ĝ (38)

where Si represents the surface of sphere i and σ is the unit surface vector, which points

outward from the spherical center. From the boundary condition, Eq.(29), we finally obtain,∫
Si

dσ · ∇ĝ(r) = −
√

4πR2
i εĝ

0
0(Ri) (39)

where the spherically symmetric component of ĝ(r) has been selected, by the integration

over the spherical surface. This can be expressed as

β∆ωtot = −Φp

√
4πε

λ2

∑
i=A,B

R2
i ĝ
l
0(Ri) + Φp

Ns∑
i=1

4πR3
s/3 (40)

Using Eq.(26) we obtain for the component of the gradient perpendicular to the surface of

sphere A,
∂ĝl0(r)

∂r
= Γl(A)λk′l(λr) + λi′l(λr)

∑
l′

Gl,l′(λR)Γ∗l′(B) (41)

Combining Eq.s (41) and (26) using the boundary condition Eq.(29), we obtain,

Kl(λRA)Γl(A) + Il(λRA)
∑
l′

Gl,l′(λR)Γ∗l′(B) = −ε
√

4πδl0 (42)

Using the following relationship, easily derived from the properties of the modified spherical

Bessel functions,

il(x)Kl(x) = kl(x)Il(x)− λ

x2
(43)

we multiply Eq.(42) by il(λRA) to obtain

Il(λRA)kl(λRA)Γl(A) + Il(λRA)
∑
l′

Gl,l′(λR)Γ∗l′(B)− Γl(A)

λR2
A

= −il(λRA)ε
√

4πδl0 (44)
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which we reexpress as,

Il(λRA){gl0(RA)−
√

4πδl0} −
Γl(A)

λR2
A

= −il(λRA)ε
√

4πδl0 (45)

and finally rearrange to obtain,

gl0(RA) =
√

4πδl0
λi′l(λRA))

Il(λRA)
+

Γl(A)

Il(λRA)λR2
A

(46)

Substituting back into Eq.(40), we obtain the following general expression for the free energy,

β∆ωtot
4πΦ∗p

= −κ−3/2
∑
i=A,B

{εσ
2
i i1(σi)

I0(σi)
+

εΓ0(i)√
4πI0(σi)

− σ3
i

3
} (47)

where we have used the fact that i′0(x) = i1(x) and defined σi = λRi and Φ∗p = ΦpR
3
g.

Γ0(A) = −
√

4πε

I0(σA)
M−1

00 (48)

and

Γ0(B) = −
√

4πε

I0(σB)
M−1

L+1L+1 (49)

III. RESULTS

A. Analytical results for identical spheres in the protein limit

From here on, we shall assume identical (A = B) spheres. This notwithstanding, the

analysis presented does not rely on this simplification. The problem simplifies, by noting

that, Γl(A) = Γ∗l (B) = Γl and hence we are able to write,

[
M

]
×


Γ0

...

ΓL

 = −
√

4πε


1/I0(σ)

0
...

 (50)

where the reduced matrix M(= J + G), has dimensions (L+ 1)× (L+ 1). σ = λRS, where

RS is the radius of both spheres and

J =


K0(σ)
I0(σ) 0 . . . 0

0 K1(σ)
I1(σ) . . . 0

...
...

. . .
...

0 0 . . . KL(σ)
IL(σ)

 (51)
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Hence the exact solution to Eq.(50) is given by

Γ0 = −
√

4πε

I0(σ)
M−1

00 (52)

Closed analytic expressions can be obtained for M−1
00 for finite L. However, they rapidly

become more complex as L increases. However, in the protein limit (RS/Rg → 0) the

solution is rather simple. Considering Eq.(30) and letting σi → 0 we see that only the

monopole (l = 0) term survives this process. Mathematically, this follows from the fact that

il(0) = 0 for l > 0, and i0(0) = 1. Physcially, this is because the influence due to sphere B

on the value of ĝ(r) on the surface of sphere A is essentially constant. This is due to the

relatively small size of the spheres compared with Rg and therefore, only monopole source

terms are required to ensure surface boundary conditions. Hence we obtain,

Γ0 =
−
√

4πε

K0(σ) + I0(σ)G00(λR)
(53)

where G00 is,

G00(x) =
e−x

x
(54)

Substituting this result into Eq.(47) and subtracting the 1-body contributions to the free

energy, we get the following interction free energy between the spheres,

β∆ω
(0)
2

4πΦ∗p
= −2κ−3/2

ε2G00(R)

K0(σ)(K0(σ) + I0(σ)G00(R))
(55)

Explicit expression for the modified spherical Bessel functions are: i0(x) = sinh(x)/x,

k0(x) = exp(−x)/x, i′0(x) = {xcosh(x) − sinh(x)}/x2 and k′0(x) = −exp(−x)(x + 1)/x2.

Small σ expansion gives the following, I0(σ) ∼ ε + λσ/3, and K0(σ) ∼ ε/σ − λ/σ2 which

leads to,

β∆ω
(0)
2

4πΦ∗p
∼ −2κ−3/2

ε2σ4G00(R)

(εσ − λσ − λ)2
(56)

which, in explicit terms, is

β∆ω
(0)
2 ∼ −8πΦ∗p(RS/Rg)

2 ε∗2

(ε∗ − 1−
√
κRS/Rg)2

exp(−
√
κR/Rg)

κR/Rg

(57)

where we have defined the dimensionless adsorption strength ε∗ = εRS. For the case of

equilibrium (or living) polymers we substitute κ = 1. For attractive spheres, ε > 0, it

is possible that the denominator term in the prefactor of Eq.(61) can become zero. This

corresponds to a surface adsorption transition, which has been previously shown to occur
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on planar surfaces in the presence of a polymer solution with a Schulz-Flory distribution of

molecular weights [38]. The more monodispersed the solution becomes (κ→∞), the greater

the adsorption strength required to achieve this transition. For monodispersed solutions of

finite polymer length, an infinite adsorption is necessary. Interestingly, as the spheres become

smaller in size, a larger adsorption is also required to achieve a similar result.

As we have shown in previous work [31], it is possible to obtain the corresponding free

energies for higher-order Schulz-Flory distributions by using the following relation,

∆ω
(n)
2 (κ) =

n∑
m=0

(−κ)m

m!

∂m

∂κm
∆ω

(0)
2

= L̂(n)
κ ∆ω

(0)
2 (58)

where ∆ω
(n)
2 (κ) with κ = n + 1, is the interaction between two spheres in the presence of

a polymer fluid with a Schulz-Flory distribution given by F (n)(κ, s) in Eq.(4). As, n→∞,

the polymer becomes more monodisperse. Alternatively, from Eq.(5) it is straightforward

to see that the interaction in the case of monodispersed polymers is given by the inverse

Laplace transform of ∆ω
(0)
2 /κ. That is, substituting the interaction free energy into Eq.(5),

we have,

κ−1∆ω
(0)
2 =

∫ ∞
0

dte−κt∆ω
(∞)
2 (st) (59)

where ∆ω
(∞)
2 (s) is the interaction between two spheres in a monodisperse polymer solution

with polymer length s. Hence,

∆ω
(∞)
2 (s) = L−1{κ−1∆ω(0)

2 }(t = 1) (60)

where L−1 denotes the inverse Laplace transform. For the case of perfectly depleting spheres,

ε∗ → −∞, which gives,

β∆ω
(0)
2 ∼ −8πΦ∗p(RS/Rg)

2 exp(−
√
κR/Rg)

κR/Rg

(61)

which upon substitution into Eq.(60) gives the known expression for the depletion interaction

between small spheres (protein limit) in an ideal monodispersed polymer, first derived by

Eisenriegler and coworkers [39],

β∆ω
(∞)
2 ∼ −Φ∗p(RS/Rg)

2 32π

R/Rg

i2erfc(
R

2Rg

) (62)
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where i2erfc(x) is the twice-iterated complementary error function [37]. On the other hand,

for small spheres with finite ε, such that |ε∗|,
√
κRS/Rg << 1, we obtain

β∆ω
(0)
2 ∼ −8πΦ∗p(RS/Rg)

2ε∗2
exp(−

√
κR/Rg)

κR/Rg

(63)

When we consider the transition to more monodispersed polymer solutions, it is assumed

that the spheres are small enough so that the condition,
√
κRS/Rg << 1, applies as κ in-

creases. Thus, for finite ε, progression to the monodisperse case gives the following sequential

limit (in the protein limit),

β∆ω
(∞)
2 ∼ −Φ∗pε

∗2(RS/Rg)
2 32π

R/Rg

i2erfc(
R

2Rg

) (64)

This results shows that the pair interaction for small spheres is symmetric about the non-

adsorbing case (ε = 0). As far as we are aware, this is the first time that this result has been

reported.

Corrections to ∆ω
(0)
2 , for larger spheres can be obtained by analytically inverting the

matrix M, which is convenient for low L. This is illustrated here for L = 1. In that case we

obtain,

M =

 G00(R) +K0(σ)/I0(σ) G01(R)

G10(R) G11(λR) +K1(σ)/I1(σ)

 (65)

M−1 =
1

det(M)

 G11(R) +K1(σ)/I1(σ) −G01(R

−G10(R) G00(R) +K0(σ)/I0(σ)

 (66)

giving,

Γ0 = −
√

4πε
G11(R) +K1(σ)/I1(σ)

I0(σ)det(M)
(67)

Where det(M) is the determinant of M. Also we have,

G01(R) =
√

3
e−λR(λR + 1)

(λR)2
(68)

and G10(R) = G01(R).

G11(R) =
(λR)2e−λR + 2e−λR(λR2 + 3λR + 3)

(λR)3
(69)

The expression for Γ0 can be substituted back into Eq.(47) to obtain a higher order, analytic

expression for the potential for the free energy,

β∆ω
(0)
2

4πΦ∗p
= −2κ−3/2ε2

G00(R) + ∆G(R)

K0(σ){K0(σ) + I0(σ)(G00(R) + ∆G(R))}
(70)
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where

∆G(R) = − G01(R)2

G11(R) +K1(σ)/I1(σ)
(71)

While it is still possible to obtain analytic expressions for even larger L, they become cum-

bersome, so we chose to solve cases for L > 1 numerically.

B. Numerical Evaluations

Using c©Matlab 2007, we solved the case of two perfectly depleting spheres (ε → −∞)

with varying ratios q = Rg/RS. The upper angular momentum was varied from L = 2, ...9.

The quantity Γ0 was then obtained as a function of the separation between the spheres R.

The variation of Γ0 with respect to the number of spherical harmonics used was investigated

for different q. The results for Γ0 with varying L values are given in the figures below. As

expected, in the protein regime, the surface multipoles can be approximated with small L

values. In the colloidal regime, a larger L need to be used in order to get a reasonable

value for the interaction free energy. The reason for this is the polymers in the colloidal

regime explore more spatial variation around the two adjacent spheres than for the case of

the protein regime. In the latter case, the distribution function ĝ(r) is much less affected by

the spherical surfaces, and the spherical harmonic expansion of ĝ(r) can be truncated at a

small L.
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IV. CONCLUSION

The analysis carried out in earlier work on the interaction between spherical particles in

an ideal polymer solution with a Schulz-Flory polydispersity has been generalized to the case

of arbitrary adsorption strength. Analytical results have been obtained in the case of small

particles (protein limit), which are consistent with earlier analytical work by Eisenriegler

and coworkers. Furthermore, we have carried out a numerical evaluation of the POMF,

which takes into account a more extensive multipole expansion. The interesting result that

emerges is that a low order truncation of the multipole expansion becomes more accurate, as

the particles are made smaller, relative to the average polymer radius of gyration . Indeed,

for perfectly depleting spheres and Rg/Rs > 1 it appears that the monopole term is largely

sufficient to provide an accurate representation of the POMF, even when the spheres are at

contact. Furthermore, analytic corrections for the addition of dipolar terms (` = 0, 1) are

easily derived in the framework of our analysis.

The two particle system we describe herein provides a stringent test of the spherical

approximation that has been recently invoked by us to describe the many-body interaction

in N-particle dispersions of depleting particles. We have shown that the ` = 0 approximation

embodied in that assumption is justified in the protein limit, which is precisely when many-

body forces (beyond the POMF) are expected to be most important. Thus far the protein

limit has been considered the most difficult one to treat theoretically, due to the ability of

polymers to penetrate between particles, On the other hand, the colloidal limit can be easily

dealt with using the pair (2-particle) approximation. Our results show that the effective

potential approach for depletion forces can be significanty simplified in the protein regime.

The generall symmetry of repulsive and attractive particle surfaces also mean that this

effective many-body potential approach to bridging interactions should can also be possible.
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