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Optimal Filter Designs for Separating and
Enhancing Periodic Signals

Mads Grasbgll Christensen, Member, IEEE, and Andreas Jakobsson, Senior Member, IEEE

Abstract—In this paper, we consider the problem of separating
and enhancing periodic signals from single-channel noisy mixtures.
More specifically, the problem of designing filters for such tasks is
treated. We propose a number of novel filter designs that 1) are
specifically aimed at periodic signals, 2) are optimal given the ob-
served signal and thus signal adaptive, 3) offer full parametriza-
tions of periodic signals, and 4) reduce to well-known designs in
special cases. The found filters can be used for a multitude of ap-
plications including processing of speech and audio signals. Some
illustrative signal examples demonstrating its superior properties
as compared to other related filters are given and the properties of
the various designs are analyzed using synthetic signals in Monte
Carlo simulations.

Index Terms—Harmonic filters, signal analysis, source separa-
tion, speech enhancement.

I. INTRODUCTION

ANY natural signals that are of interest to mankind are
M periodic by nature or approximately so. In mathematics
and engineering sciences, such periodic signals are often de-
scribed by Fourier series, i.e., a sum of sinusoids, each described
by an amplitude and a phase, having frequencies that are integer
multiples of a fundamental frequency. In mathematical descrip-
tions of periodic functions, the period which is inversely pro-
portional to the fundamental frequency is assumed to be known
and the function is observed over a single period over which
the sinusoids form an orthogonal basis. When periodic signals
are observed over arbitrary intervals, generally have unknown
fundamental frequencies, and are corrupted by some form of
observation noise, the problem of parametrizing the signals is
a different and much more difficult one. The problem of esti-
mating the fundamental frequency from such an observed signal
is referred to as fundamental frequency or pitch estimation. Ad-
ditionally, some signals contain many such periodic signals, in
which case the problem is referred to as multi-pitch estimation.
Strictly speaking, the word pitch originates in the perception of

Manuscript received December 15, 2009; accepted August 18, 2010. Date of
publication August 26, 2010; date of current version November 17, 2010. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Subhrakanti Dey. Part of this work was presented at the
Forty-Third Annual Asilomar Conference on Signals, Systems, and Computers,
Monterey, CA, November 2009.

M. G. Christensen is with the Department of Architecture, Design and
Media Technology, Aalborg University, DK-9220 Aalborg, Denmark (e-mail:
mgc@imi.aau).

A. Jakobsson is with the Department of Mathematical Statistics, Lund Uni-
versity, SE-221 00 Lund, Sweden (e-mail: andreas.jakobsson @ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2070497

acoustical signals and is defined as “that attribute of auditory
sensation in terms of which sounds may be ordered on a mu-
sical scale” [1], but since this attribute in most cases is the same
as the fundamental frequency of a Fourier series, these terms
are often used synonymously. Some pathological examples do
exist, however, where it is not quite that simple. The pitch es-
timation problem has received much attention in the fields of
speech and audio processing, not just because it is an inter-
esting and challenging problem, but also because it is the key,
or, perhaps more correctly, a key to many fundamental prob-
lems such as separation of periodic sources [2], enhancement,
and compression of periodic sources [3] as Fourier series con-
stitute naturally compact descriptions of such signals. A fun-
damental problem in signal processing is the source separation
problem, as many other problems are trivially, or at least more
easily, solved once a complicated mixture has been broken into
its basic parts (for examples of this, see [4] and [5]). We re-
mark that for periodic signals, this problem is different from
that of blind source separation, as assumptions have been made
as to the nature of the sources (for an overview of classical
methods for blind source separation, see, e.g., [6] and [7]). For
periodic signals, once the fundamental frequencies of the pe-
riodic sources have been found, it is comparably easy to esti-
mate either the individual periodic signals directly [8]-[11] or
their remaining unknown parameters, i.e., the amplitudes, using
methods like those in [12]. With amplitudes and the fundamental
frequency found, the signal parametrization is complete. Some
representative methodologies that have been employed in fun-
damental frequency estimators are: linear prediction [13], corre-
lation [14], subspace methods [15]-[17], harmonic fitting [18],
maximum likelihood [19], [20], cepstral methods [21], Bayesian
estimation [22]-[24], and comb filtering [8], [25], [26]. Several
of these methodologies can be interpreted in several ways and
one should therefore not read too much into this rather arbi-
trary grouping of methods. For an overview of pitch estimation
methods and their relation to source separation, we refer the in-
terested reader to [27]. It should also be noted that separation
based on parametric models of the sources is closely related to
source separation using sparse decompositions (for an example
of such an approach, see [28]).

The scope of this paper is filtering methods with application
to periodic signals in noise. We propose a number of novel filter
design methods, which are aimed specifically at the processing
of noisy observations of periodic signals or from single-channel
mixtures of periodic signals. These filter design methods result
in filters that are optimal given the observed signal, i.e., they are
signal-adaptive, and contain as special cases several well-known
designs. The proposed filter designs are inspired by the principle
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used in the Amplitude and Phase EStimation (APES) method
[29], [30], a method which is well known to have several ad-
vantages over the Capon-based estimators. The obtained filters
can be used for a number of tasks involving periodic signals, in-
cluding separation, enhancement, and parameter estimation. In
other words, the filtering approaches proposed herein provide
full parametrizations of periodic signals through the use of fil-
ters. We will, however, focus on the application of such filters
to extraction, separation, and enhancement of periodic signals.
A desirable feature of the filters is that they do not require prior
knowledge of the noise or interfering source but are able to au-
tomatically reject these.

The paper is organized as follows. In Section II, we intro-
duce the fundamentals and proceed to derive the initial design
methodology leading to single filter that is optimal given the ob-
served signal in Section III. We then derive an alternative design
using a filter bank in Section IV, after which, in Section V, we
first illustrate the properties of the proposed design and com-
pare the resulting filters to those obtained using previously pub-
lished methods. Moreover, we demonstrate its application for
the extraction of real quasi-periodic signals from mixtures of
interfering periodic signals and noise, i.e., for separation and
enhancement. Finally, we conclude on the work in Section VI.

II. FUNDAMENTALS

We define a model of a signal containing a single periodic
component, termed a source, consisting of a weighted sum of
complex sinusoids having frequencies that are integer multi-
ples of a fundamental frequency! wy, and additive noise. Such

a signal can, forn = 0,..., N — 1, be written as
Ly
xk(n) = Z ak’legwkln + ek(n) (1)
=1
where ay; = Ay e/?* is the complex amplitude of the [th

harmonic of the source (indexed by k) and eg(n) is the noise
which is assumed to be zero-mean and complex. The complex
amplitude is composed of a real, non-zero amplitude A, ; > 0
and a phase ¢y, ; distributed uniformly on the interval {—m, 7].
The number of sinusoids, L., is referred to as the order of the
model and is often considered known in the literature. We note
that this assumption is generally not consistent with the behavior
of speech and audio signals, where the number of harmonics can
be observed to vary over time. In most recordings of music, the
observed signal consists of many periodic signals, in which case
the signal model is

K

z(n) = Zxk(n) = Z Z ap e’ e(n). ()

k=11=1

Note that all noise sources e, (n) are here modeled by a single
noise source e(n). We refer to signals of the form (2) as multi-
pitch signals and the model as the multi-pitch model. Even if
a recording is only of a single instrument, the signal may be

IFor many signals, the frequencies of the harmonics will not be exact integer
multiples of the fundamental. This can be handled in several ways by modifying
the signal model (see, e.g., [27] for more on this), but this is beyond the scope
of this paper and will not be discussed any further.
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multi-pitch as only some instruments are monophonic. Even in
that case, room reverberation may cause the observed signal to
consist of several different tones at a particular time, i.e., the
signal is effectively a multi-pitch signal.

The algorithms under consideration operate on vectors con-
sisting of M time-reversed samples of the observed signal, de-
fined as x(n) = [ z(n) x(n — 1) --- z(n — M + 1) |7,
where M < N and (-)T denotes the transpose, and similarly
for the sources x(n) and the noise e(n). Defining the filter
output yx(n) as

M-1

yr(n) = Z hi(m)z(n —m) 3)
m=0

and introducing hy, = [ ht(0) -+ hp(M — 1) ]#, we can
express the output of the filter as yj(n) = hix(n), with (- )?
being the Hermitian transpose operator. The expected output
power can thus be expressed as

E {[yx(n)]*} = E {bx(n)x" (n)hy } 4)
= h;'Rhy )

where E{-} denotes the statistical expectation. The above ex-
pression can be seen to involve the covariance matrix defined
as R = E{x(n)x"(n)}. We will now analyze the covariance
matrix a bit more in detail.

The signal model in (2) can now be written using the above
definitions as

K e—jwk 1n 0
x(n) = Z Zy ‘ a; +e(n) (6)
k=1 0 e—]kakn
K
£3N " Z,al(n) + e(n) )
k=1

or, alternatively, as x(n) 2 .5 Zi(n)a} + e(n).
Here, Z;, € CM*I* is a Vandermonde matrix, being
constructed from Lj; harmonically related complex si-
nusoidal vectors as Zr = [ z(wg) z(wip L) ],
with z(w) = [ 1 e ¥ ... — ¢ /@M=D T and
ap = [ a1 --- arr, |" is a vector containing the complex
amplitudes. Introducing z, = eI« _the structure of the matrix
Z;. can be seen to be

1 2 Ly,
2, 2 2z

Zy, = : : . : - ®
Z}(CMA) Z}(CMA)z Z]EMA)Lk

From this, it can be observed that either the complex amplitude
vector or the Vandermonde matrix can be thought of as time-
varying quantities, i.e., aj(n) = D"aj} and Zy(n) = Z;D"
with

efjwkln 0

D" = ©)

0 6—jw;\,Lkn
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meaning that the time index n can be seen as either changing
the sinusoidal basis or, equivalently, the phases of the sinusoids.
Depending on the context, one perspective may be more appro-
priate or convenient than the other.

For statistically independent sources, the covariance matrix
of the observed signal can be written as R = Zszl Ry =
Z,Ile E{xx(n)x (n)}, i.e., as a summation of the covariance
matrices of the individual sources. By inserting the single-pitch
signal model in this expression, we can express the covariance
matrix of the multi-pitch signal x(n) as

Z Z:E {a}(n)al (n)} Zf + E{er(n)ef (n)} (10)

ZPrZy + Q

I
M= T

Y

~
Il

1

where the matrix Py, is the covariance matrix of the ampli-
tudes, ie., P, = E{aj(n)al(n)}. For statistically inde-
pendent and uniformly distributed phases (on the interval
(=, 7]), this matrix reduces to a diagonal matrix having the
power of the sinusoidal components on the diagonal, i.e.,
Py, = diag([ 47, A7 1 1). We note, however, that one
can also arrive at the same result by considering the complex
amplitudes deterministic as in (6). Moreover, the matrix Q is
the covariance matrix of the combined noise source e(n), i.e.,
Q = E{e(n)ef(n)} = Zle Q. also referred to as the noise
covariance matrix.

In practice, the covariance matrix is unknown and is replaced
by an estlmate namely the sample covariance matrix defined as

= 1/Gzn 1 X(n)xH (n) where G = N — M + 1 is the
number of samples over which we average. For the sample co-
variance matrix R to be invertible, we require that M < N/2+1
so that the averaging consists of at least M rank 1 vectors (see,
e.g., [31] for details). In the rest of the paper, we will assume
that M is chosen proportionally to N such that when N grows,
so does M . This is important for the consistency of the methods
under consideration.

III. OPTIMAL SINGLE FILTER DESIGNS

A. Basic Principle

We will now proceed with the first design. We seek to find
an optimal set of coefficients, {hg(m)}, such that the mean
square error (MSE) between the filter output, y(n), and a de-
sired output, a signal model if you will, §x(n), is minimized in
the following sense:

N-1

Pez Y bl -l

n=M-1

12)

Since we are here concerned with periodic signals, this should
be reflected in the choice of the signal model §x(n). In fact,
this should be chosen as the sum of sinusoids having frequen-
cies that are integer multiples of a fundamental frequency wy,
weighted by their respective complex amplitudes ay;, i.e.,
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gr(n) = Y12, axie?s!". This leaves us with the following
expression for the MSE:

— M-1

r-l > 3 tulm

n=M-1

Ly 2
— Z akTIij"ln
=1
(13)

In the following derivations, we assume the fundamental fre-
quency wq and the number of harmonics Ly, to be known (with
Ly < M), although the so-obtained filters can later be used for
finding these quantities. Next, we proceed to find not only the
filter coefficients but also the complex amplitudes a, ;. We now
introduce a vector containing the complex sinusoids at time 7,
ie.,

wi(n) = [ efertn .. edonlan ]T (14)
With this, we can express (12) as
1 = 2
P=2 > |bix(n) - af wi(n)] (15)
n=M—1
which, in turn, can be expanded into
P = thth - akHGkhk hk Gk ay + aj, Wkak (16)
where the new quantities are defined as
=
G = el Z wi(n)x™ (n) (17)
n=M-1
and
=
Wi = el wi(n)wil (n) (18)
n=M-1

B. Solution

Solving for the complex amplitudes in (16) yields the fol-
lowing expression [31]:

ar = W;'Gyhy (19)

which depends on the yet unknown filter hy. For W, to be in-
vertible, we require that G > L, but to ensure that also the
covariance matrix is invertible (as already noted), we will fur-
ther assume that G > M. By substituting the expression above

back into (16), we get
P =hi’Rih;, — h GEW1Ghy. (20)

By some simple manipulation, we see that this can be simplified

somewhat as
P=nt (Rk - Ggfw,;lek) hy 207Qh, 21

where

Q. =Ry - GIIW, G, (22)
can be thought of as a modified covariance matrix estimate that

is formed by subtracting the contribution of the harmonics from
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the covariance matrix given the fundamental frequency. It must
be stressed, though, that for multi-pitch signals, this estimate
will differ from Qj in the sense that Q , Will then also contain
the contribution of the other sources. Therefore, Qk is only truly
an estimate of Q. for single-pitch signals. Note also that similar
observations apply to the usual use of APES [29], [30].
Solving for the unknown filter in (21) directly results in a
trivial and useless result, namely the zero vector. To fix this,
we will introduce some additional constraints. Not only should
the output of the filter be periodic, i.e., resemble a sum of har-
monically related sinusoids, the filter should also have unit gain
for all the harmonic frequencies of that particular source, i.e.,
Z%;ol hi(m)e™3@rt™ =1 forl = 1,..., Ly, or, equivalently,

as hfz(wy,l) = 1. We can now state the filter design problem
as the following constrained optimization problem:

n}llinthQkhk st. hiz(wil) =1,
k

for 1=1,...,L. 23)
The constraints for the Lj; harmonics can also be expressed as
hf7Z, = 1, where1 = [ 1 --- 1 ]T. The problem in (23)
is a quadratic optimization problem with equality constraints
that can be solved using the Lagrange multiplier method. In-
troducing the Lagrange multiplier vector

A=[X a )" (24)

the Lagrangian dual function of the problem stated above can
be expressed as
L(hy, ) =hf’Qihy, — (bfZ, —17) . (25)

By taking the derivative with respect to the unknown filter vector
and the Lagrange multiplier vector, we get

Q. -z ] [l 0
VL(hg,A) = [—Zf 0 A\ 11 (26)
Equaling this to zero, i.e., VL(hg,A) = 0, we obtain
R -1
A= (zfq;lzk) 1 27)
and
hy = Q. 'ZiA (28)
which combine to yield the following optimal filters:
% A—1 HA-1 -1
he = Q'Zs (zk Q; zk.) 1. (29)

We will refer to this filter as SF-APES (single filter APES-like
design). This filter is optimal in the sense that it has unit gain
at the harmonic frequencies and an output that resembles a sum
of harmonically related sinusoids while everything else is sup-
pressed maximally. It can readily be used for determining the
amplitudes of those sinusoids by inserting (29) into (19), which
yields the following estimate:

R R —1
&= Wi'GhQ 'z (27 Q'Z) 1 (30)

~ 1
=W 'G (R-GIW'GY) 7 31)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 12, DECEMBER 2010

-1
x <zf (R-GIWi'Gy) 1 Zk> 1L (32
The output power of the filter, when this is applied to the orig-
inal signal, can be expressed as hf Rhy,, which may be used
for determining the fundamental frequency by treating wj, in
Zy., Gy, W, as an unknown parameter and then pick as an es-
timate the value for which the output power is maximized, i.e.,
W) = arg max flkHﬂflk (33)
wr
In practice, this is done in the following manner: For a segment
of data, the optimal filters are found for each candidate funda-
mental frequency. The filters are then applied to the signal and
the output power is measured. This shows how much power is
passed by the filters as a function of the fundamental frequency,
and the fundamental frequency estimate is then picked as the
fundamental frequency for which the most power is passed.
One can also obtain an estimate of the number of harmonics L
by estimating the noise variance by filtering out the harmonics
and applying one of the many statistical model order estimation
tools, like, e.g., the MAP-rule of [32], as shown in [33]. From
the optimal filter, it is thus possible to obtain a full parametriza-
tion of periodic signals as was claimed in the introduction.

The proposed filter design leads to filters that are generally
also much well-behaved for high SNRs, where Capon-like fil-
ters are well-known to perform poorly and require that diag-
onal loading or similar techniques be applied [31]. The proposed
filter also holds several advantages over traditional methods, like
the comb filtering approach or sinusoidal filters (also known
as FFT filters), namely that it is 1) optimal given the observed
signal, and 2) optimized for periodic filter output. To quantify
further what exactly is meant by the filter being optimal, one has
to take a look back at (12). The found filter is optimal in the sense
that it minimizes the difference in (12), the exact time interval
being determined by the summation limits, under the constraint
that it should pass the content at specific frequencies undistorted
and the output should to the extent possible resemble a periodic
signal.

We will now discuss some simplified designs that are all spe-
cial cases of the optimal single filter design.

1) Simplification No. 1: We remark that it can be shown that
W, is asymptotically identical to the identity matrix. By re-
placing Wy, by Iin (21), one obtains the usual noise covariance
matrix estimate, used, for example, in [12]. As before, the op-
timal filters are

-1

he = Q% (2 Q'Zi) 1 (34)

but the modified covariance matrix estimate is now determined
as

Q=R -G{G; (35)

which is computationally simpler as it does not require the inver-

sion of the matrix Wy, for each candidate frequency. We refer

to this design as SF-APES (appx). It must be stressed that for

finite NV, this is only an approximation that, nonetheless, may

still be useful for practical reasons as it is much simpler. This
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approximation is actually equivalent to estimating the noise co-
variance matrix by subtracting from R, an estimate of the co-
variance matrix model (for a single source) in (11) based on
periodogram-like amplitude estimates.

2) Simplification No. 2: Interestingly, the Capon-like filters
of [34], [19] can be obtained as a special case of the solution
presented here by setting the modified covariance matrix equal
to the sample covariance matrix of the observed signal, i..,
Q » = R. More specifically, the optimal filter is then

-1

he =R 17 (ZFR1Z0) 1 (36)
which is the design that we will refer to as Capon in the exper-
iments. The main difference between the design proposed here
and the Capon-like designs previously proposed is that the mod-
ified covariance matrix Q  is used in (23) in place of R i.e., the
difference is essentially in terms of the output of the filter being
periodic.

3) Simplification No. 3: A simpler set of filters yet are ob-
tained from (36) by assuming that the input signal is white, i.e.,
R = 02I. These filters are then no longer signal adaptive, but
they also only have to be calculated once. The optimal filters are
then given by

he =2, (207:) "1

(37)
which is thus fully specified by the pseudo-inverse of Zj.

4) Simplification No. 4: Curiously, the filters defined in (37)
can be further simplified as follows: complex sinusoids are
asymptotically orthogonal for any set of distinct frequencies,
which means that the pseudo-inverse of Zj; can be approxi-
mated as

-1

1 -1
. H _ : _~ gH
i 212, (220 =2 (20 ) 69

= Zy. (39)

This means that the filter becomes particularly simple. In fact,
it is just

N 1

h, = Mzkl (40)

i.e., the normalized sum over a set of filters defined by Fourier
vectors.

IV. OPTIMAL FILTER BANK DESIGNS

A. Basic Principle

We will now consider a different approach to designing
optimal filters for periodic signals. Suppose that we design
a filter not for the entire periodic signal, but one for each of
the harmonics of the signal. In that case, we seek to find a
set of filter coefficients that depend on the harmonic number
I, ie., {hki(m)}. The corresponding output of such a filter,
we denote yy, ;(n). The output of each filter should resemble
a signal model 7 (n) exhibiting certain characteristics. As
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was the case with the single filter, we propose a cost function
defined as

N-1

Z lyki(n) = Gra(n)]?

n=M-1

1

P=Z (1)

which measures the extent to which the filter output y; ;(n) re-
sembles . ;(n). Adding this cost up across all harmonics of the
kth source, we obtain an estimate of the discrepancy as

Ly,
P = ZPI GZ Z [yr,1(n

=1 n=M-1

—gra(n)’. (42)

For the single filter design, the output of each filter should re-
semble a periodic function having possibly a number of har-
monics. In the present case, however, the output of the filter

should be just a single sinusoid, i.e., Jxi(n) = aj e/ ",
Defining
M—1
Yk, 1 Z hk l m) = hglx(n) (43)
m=0

we can express (42) as

L, _
G Z Z |hk lX — ak7l€jwkln|2 )

=1 n=M-1

(44)

To form an estimate of the kth source from the output of the
filter bank, we simply sum over all the outputs of the individual
filters, as each output is an estimate of the /th harmonic, i.e.,

Ly M—1 Ly
n) =Y yra(m)= > > hiix(n) @5
=1 m=0 [=1

which shows that the filters of the filter bank can be combined
to yield the single filter needed to extract the source. As before,
we proceed in our derivation of the optimal filters by expanding
this expression

Lk Lk
H Hi.H 2
P =3 i Rh{l; + ) |ar,]
=1 =1

Ly Ly
- thH’lg(wkl)az’, - Z arg™ (wil)hy,  (47)

1=1 =1

(46)

where the R is defined as before and the only new quantity is

N-1
2. x(n)
M—

1

7jwn

(48)

G‘JIH

n=

B. Solution

With all the basic definitions in place, we can now derive
the optimal filter bank. First, however, we must solve for the
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amplitudes. Differentiating (47) by aj,; and setting the result
equal to zero, we obtain

agy = hig(wel) for 1=1,..., L. (49)

Inserting this back into (47), we are left with an expression that
depends only on the filters {hy, ; }:

Ly Ly
P =3 h{Rhy, - > hifg(wd)g” (wibbes (50)
=1 =1

Ly
=Y bl (R - g(wid)g™ (@) i
=1

Ly

A H A

= E hi Q. ihyy
=1

(G
(52)

where Qk,l is a modified covariance matrix estimate as before,
only it now depends on the individual harmonics. We can now
move on to the problem of solving for the filters. As before, we
must introduce some constraints to solve this problem. It is nat-
ural to impose that each filter h;, ; should have unit gains for the
[th harmonic. However, one can take additional knowledge into
account in the design by also requiring that the other harmonics
are canceled by the filter. Mathematically, we can state this as

hi,Z), = b, (53)
where
by=[0---010---0]. 54
N—— ~——
-1 L—1

We can now state the design problem for the [th filter of the filter
bank as

I}lllin th’leJth s.t. hlek = bl. (55)
kL ’
For this problem, the Lagrangian dual function is

L(hg1,A) =hf! | Qpihiy — (b Z), — b]) A, (56)

By taking the derivative with respect to the unknown filter vector
and the Lagrange multiplier vector, we get

V(s A) = [_szé —gk] [h;’] + [SJ RET)
By the usual method, we obtain
. -1
A= (zfQrize) b (58)
and
hy, = Q,;}Zk,\. (59)

This, finally, results in the following optimal filters for [ =
1,..., Lg

R . . —1
hy; = Q;;}Zk (ZkHQ;,}Zk> b;. (60)
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We will refer to this design as FB-APES (filter bank APES-
like design). The individual filters can now be applied to obtain
amplitude estimates as

g, = flkH,lg(wkl) (61)

=b/ (ZfQ;}Zk)

1 A
ZyQ; g(wil).  (62)

Organizing all the filters for the kth source in a matrix, we get

Hy,=[hy; --- hpz, |- (63)

The optimal filters in (60) can also be rewritten using the matrix
inversion lemma to obtain an expression that does not require
direct inversion of Qy; of each [:

Q1 = (R —g(wel)g" (wil)™ (64)
_ 1, Rs(wl)g" (iR 65)
1-— gH(wkl)Rflg(wkl)

which can then be inserted into (60). As with the single filter
approach, this design can also be used for estimating the funda-
mental frequency by summing over the output powers of all the
filters, i.e.,

Ly
@, = arg max Z h Rhy (66)
Wi ’
=1
Ly
= arg max Z Tr {HERHk} . (67)
We
=1

Note that the filters can also be applied in a different way, or,
rather, the output power can be measured differently. In (66),
the output power is determined as the sum of output power of
the individual filters. If, instead, the output power is measured
on the estimated source obtained as in (45), one obtains

E{lye(m)*} = (i ﬁf,z) R (i: flk,l) - (68)

However, assuming that the output of the individual filters is
uncorrelated, the two estimates will be identical (see [34] for
more details about this).

At this point some remarks are in order. For the Capon-like
filters of [19], [34], the single filter and the filter bank ap-
proaches are closely related. This is, however, not the case for
the designs considered here in that they operate on different
covariance matrix estimates, Q r and Q k1> respectively. While
it is more complicated to compute the former than the latter,
the latter must be computed a number of times, once for each
harmonic [. This suggests that, in fact, the single filter should
be preferable from a complexity point of view if the number of
harmonics is high.

As with the single filter design, it is possible to obtain some
simplified versions of the optimal design. Next, we will look
more into some of these.

1) Simplification No. 1: By posing the optimization problem
in (55) in a slightly different way, we obtain an important special
case. More specifically, by changing the constraints of (55) such
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that each filter only has to have unit gain for the corresponding
harmonic, we obtain the following problem:

gnnhg,Qk,lth st. b z(wpl) =1 (69)
k.1 ’

where, as before, Qk,l = R — g(wil)g(wil)H . The solution
to this problem is, in fact, the usual single sinusoid APES filter
[29], [30], which is

Q. 1z(wil)

ZH(wkl)QIZ}Z(wkl).

by, = (70)

This design takes only the individual harmonics into account in
the design of the individual filters. Essentially, the filter that is
obtained from (55) takes the presence of all the harmonics of
the kth source into account, while the present one does not.

2) Simplification No. 2: Taking this one step further and re-
placing Qk,l by R, one obtains the well-known single sinusoid
Capon filter [35]

D —1
hy; = R %(wkl) ) (71)
i zH(wkl)R—lz(wkl)

As with the prior simplification, this design leaves it for the al-
gorithm to automatically cancel out the contribution of the other
harmonics. . .
3) Simplification No. 3: Similarly, replacing Q; by R in
(60) results in the filters
. . R -1
hy, =R'Z, (ZfR_lzk) by (72)
which are identical to the filters of the optimal Capon-like filter

bank of [19]. Interestingly, when summed, it result in the op-
timal single Capon-like filter as

Ly
E hk,l = hy,.
1=1

4) Simplification No. 4: The previous design can, of course,
be simplified further by assuming that the covariance matrix is
white, i.e., R = 21, which results in static filters that have to
be calculated only once. The filters are then given by

(73)

hiy = Zs (Zfzk)_l by (74)

which when organized in a filter bank matrix can be written as

Hy =7, (Z207) (75)
Source estimates obtained using this filter bank, as described
in (45), will be exactly the same estimates as one would get
using (37)—this can easily be verified by inserting the right-
hand side of (74) in (45). The resulting fundamental frequency
estimators are, however, generally different, but are equivalent
under certain conditions. In the experimental part of this paper,
we will refer to this method as the FB-WNC design (filter bank
white noise Capon-like design).
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5) Simplification No. 5: Applying the asymptotic approxi-
mation in (39) to the filters in (74), we obtain even simpler fil-
ters. More specifically, (74) reduces to

A 1
hy; = —Z;b;

76
i (76)
and the filter bank matrix is then simply given by

- 1

H;, = Mzk. (77)

When applied to the problem of fundamental frequency estima-
tion, as in (66), this leads to the familiar approximate non-linear
least squares (NLS) method—it is nonlinear in the fundamental
frequency, hence the name; it is also sometimes referred to as the
harmonic summation method [27]. Note that when source esti-
mates are obtain using this filter bank as described in (45), one
will obtain exactly the same estimate as with (40). We will refer
to this method as FB-WNC (appx) in the experiments, where
it will serve as a method representative of the usual way filters
are designed. A large class of methods exist for enhancement
and separation of signals that operate on the coefficients of the
short-time Fourier transform (STFT) (see, e.g., [36] and [37]).
The individual bases of the STFT are the same as the individual
filters of the filter bank (76), in fact, this will be the case for all
methods that operate directly on the coefficients of the STFT,
including mask-based methods like [38] and non-negative ma-
trix factorization-based methods like [39].

6) Simplification No. 6: We will close this section by intro-
ducing one final simplification. If in lieu of Qk,l we use Qk as
obtained for the single filter approach in (22) in (60), the optimal
filters of the filter bank are then given by

. A R 1
heo = Q' Zi (2£Q7'2:) b (78)
It can be seen that the only difference between the different fil-
ters of the filter bank is then the vector b;, which serves to ex-
tract the filter for the individual harmonics. The filter bank ma-
trix containing these filters can then be expressed as
N . R -1
. = Q'Z: (2Q;'2) (79)
It is then also easy to see that these filters are related to the
optimal single filter in (29) in a trivial way as
hy, = H,1. (80)
A similar relationship exists for the corresponding Capon-like
filters [34]. Curiously, one would also obtain these filters by
modifying (42) by moving the summation over the harmonics
inside the absolute value, which would also be consistent with
the formation of the source estimates according to (45).

V. RESULTS

A. Practical Considerations

Before moving on to the experimental parts of the present
paper, we will now go a bit more into details of how to apply the
proposed filters and what issues one has to consider in doing so.
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Given a segment of new data {«(n)}, the procedure is as fol-
lows.
1) Estimate the fundamental frequencies {wy } of all sources
of interest for the data {z(n)}.

2) Determine or update recursively the sample covariance ma-
trix R.

3) Compute a noise covariance matrix estimate Qj for each
source (or for its harmonics Q) and the inverse.

4) Compute the optimal single filter hy, or filter bank Hy, for
each source of interest &k using one of the proposed designs.

5) Perform block filtering on the data {2 (n)} to obtain source
estimates yy(n) for each source of interest k (using the
observed signal from the previous segment as filter states
as appropriate).

In performing the above, there are a number of user parame-
ters that must be chosen. The following may serve as a basis for
choosing these. Generally speaking, the higher the filter length
M, the better the filter will be in attenuating noise and canceling
interference from other sources as the filter has more degrees of
freedom. This also means that the higher the model order, the
more interfering sources the filter can deal with. However, there
are several concerns that limit the filter length. First of all, the
validity of the signal model. If the signal is not approximately
stationary over the duration of the segment, the filters cannot
possibly capture the signal of interest, neither can it deal with
noise and other sources. On a related issue, the filter length M
must be chosen, as mentioned, with M < N/2 + 1 to yield a
well-conditioned problem. This means that the signal should be
stationary over NV and not just M. It should of course also be
taken into account that the higher the filter order, the more com-
putationally complex the design will also be. Regarding how
often one should compute the optimal filters, i.e., how high the
update-rate should be relative to M and [V, it should be noted
that for the filter outputs to be well-behaved, the filters must not
change abruptly. Consequently, it is advantageous to update the
filters as often as possible by computing a new covariance ma-
trix and subsequently new filters at the cost of increased com-
putational complexity. In this process, one may also just as well
update the fundamental frequency. In fact, it may also be ad-
vantageous to estimate a new fundamental frequency frequently
relative to M and N to track changes in the signal of interest.
This all suggests that it should be preferable in most situations
to update the fundamental frequency, the covariance matrix and
filters frequently.

Regarding numerical issues, as we have seen, the Capon-de-
sign suffers from bad conditioning of the covariance matrix for
high SNRs, and it may thus be reasonable to use a regularized
estimate of the covariance matrix, like R =R + 61, where
60 is a small positive constant, before computing inverses. It is
also possible that the APES-like designs may benefit from such
modified estimates under extreme conditions.

B. Tested Designs

In the tests to follow, we will compare the proposed design
methods to a number of existing FIR design methods. More
specifically, we will compare the following:

* SF-APES, which is the optimal single filter design given

by (29);
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e SF-Capon, i.e., the single filter design proposed in [19],
[34], which is based on a generalization of the Capon prin-
ciple; the optimal filter is given by (36);

* SF-APES (appx) is an approximation of SF-APES based
on the simpler modified covariance matrix estimate in
(35); it is thus a computationally simpler approximation
to SF-APES;

» FB-APES is the optimal filter bank design given by (60);

* FB-WNC is a static single filter design based on Fourier
vectors; the filter is given by (74); it serves as reference
method as such filters are often used for processing of pe-
riodic signals;

* FB-WNC (appx) is an approximation of the FB-WNC fil-
ters with the filters being defined in (76). It is based on the
asymptotic orthogonality of complex sinusoids. It is per-
haps the most commonly used filter design method for pro-
cessing periodic signals and is sometimes also referred to
as the frequency sampling design method or the resulting
filters as FFT filters.

Note that we do not include all the simplifications of Sections III
and IV as some of them are trivially related.

C. Frequency Response

We will start out the experimental part of this paper by
showing an example of the optimal filters obtained using some
of the proposed methods and their various simplifications and
the Capon-like filters of [19], [34]. More specifically, we will
show the frequency response of the filters obtained using some
of the various designs for a synthetic signal. In Fig. 1, these
are shown for a synthetic signal having wyg = 0.6283,L = 5,
Rayleigh distributed amplitudes and uniformly distributed
phases with white Gaussian noise added at a —20-dB SNR
(top panels) and 20 dB (bottom panels). The filters all have
length 50 in these examples and were estimated from 200
samples. All the filters can be seen to exhibit the expected
response for —20-dB SNR following the harmonic structure of
the signal having 0-dB gain for the harmonic frequencies, and
several of them are also quite similar. For an SNR of 20 dB,
however, it can clearly be seen that the proposed filters still
exhibit the desired response emphasizing the harmonics of the
signal. The Capon-like design, SF-Capon, however, behaves
erratically for 20-dB SNR, and this is typical of the Capon-like
filters. Comparing the response of this method to the proposed
ones, namely SF-APES, and FB-APES, it can be seen that this
problem is overcome by the new design methodology. The
erratic behavior of the Capon-like filter can be understood by
noting that for high SNR, the Capon method will generally
suffer from poor conditioning of the sample covariance ma-
trix (as the eigenvalues only due to the noise tending toward
zero), explaining the low accuracy of the resulting filter, and
as the SNR increases, the filters obtained using the SF-Capon
design will get progressively worse. We also remark that for
the example considered here, SF-APES (appx) will be quite
similar to SF-APES and FB-WNC (appx) to FB-WNC, for
which reason these designs are not shown. This is because
the asymptotic approximations that these derivative methods
are based on are quite accurate in this case. This is also the
likely explanation for the frequency responses of SF-APES and
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Fig. 1. Frequency responses of the various filters for a set of harmonically re-
lated sinusoids in white Gaussian noise at an SNR of —20 dB (top panels) and
20 dB (bottom panels). The designs shown here are (a) SF-APES, (b) SF-Capon,
(c) FB-APES, and (d) FB-WNC.

FB-APES looking extremely similar for both SNRs. We remark
that while the adaptive designs will change with the observed
signal, FB-WNC and its simplification will remain the same.

D. Computational Complexity and Computation Times

In comparing the performance of the various methods, it is
of course also important to keep the computational complexity
of the various methods in mind. All the tested methods, ex-
cept the FB-WNC (appx) design, have cubic complexities in-
volving operations of complexity O(M?3), O(L3), O(M?Ly,),
and O(ML?), as they involve matrix inversions and matrix-ma-
trix multiplications. Some of the designs avoid some matrix
inversions, like the SF-APES (appx) design, but such details
cannot be differentiated with these asymptotic complexities. We
therefore have measured average computation times of the var-
ious designs in MATLAB. More specifically, we have computed
the average computation times over 1000 trials as a function
of Ly and N as M is assumed to be chosen proportionally to
N. The measurements were obtained on an Intel(R) Core(TM)2
CPU 6300 @ 1.86 GHz with 2 GB of RAM running MATLAB
7.6.0 (R2008a) and Linux 2.6.31-17 (Ubuntu). Note that the
current implementations do not take into account the structure
of the various matrices like, e.g., Toeplitz structure of the co-
variance matrix. The obtained results are shown in Fig. 2(a)
as a function of N with M = N/4 and L;, = 5 and as a
function of L; with N = 100 and M = 25 in Fig. 2(b)
for typical ranges of these quantities. From Fig. 2(a), it can
be observed that the computational complexity of the designs
SF-APES, SF-APES (appx), FB-APES, and SF-Capon indeed
are cubic in M (and thus N), the difference essentially being
a scaling. It can be observed that the FB-APES design is the
most complex, owing to the different noisy covariance matrix
estimates that must be determined for each harmonic. Note that
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for a very low number of harmonics, this design is less complex
than SF-APES and SF-APES (appx). It can also be seen that, as
expected, the SF-Capon design is the least complex of the adap-
tive designs, as it does not require the computation of a noise
covariance matrix estimate. The general picture is the same in
Fig. 2(b), although it can be observed that the difference in com-
putation time between the FB-APES method and the others ap-
pear to increase on the logarithmic scale as the number of har-
monics is increased, the reason again being that the higher the
number of harmonics, the more noise covariance matrices (and
their inverses) must be determined.

E. Enhancement and Separation

Next, we will consider the application of the various filter de-
signs to extracting periodic signals from noisy mixtures con-
taining other periodic signals and noise or just noise. We will test
the performance under various conditions by generating syn-
thetic signals and then use the filters for extracting the desired
signal. More specifically, the signals are generated in the fol-
lowing manner: A desired signal s;(n) that we seek to extract
from an observed signal x(n) is buried in a stochastic signal,
i.e., noise e(n); in addition, an interfering source so(n) is also
present, here in the form of a single sinusoid. The observed
signal is thus constructed as

x(n) = s1(n) + s2(n) + e(n). (81)

We will measure the extent to which the various filter designs
are able to extract s1(n) from x(n) using the signal-to-distortion
ratio (SDR) defined as

[Is1(m)]l2

l[s1(n) = y1(n)ll2

SDR = 20log;, [dB] (82)
where y1 (n) is the signal extracted by applying the obtained fil-
ters to x(n). The ultimate goal is of course to reconstruct s (n)
as closely as possible and, therefore, to maximize the SDR.

As a measure of the power of the interfering signal so(n) rel-
ative to the desired signal sq(n), we use the following measure:

SIR = 20log,, 152

lsamll; B!

(83)
which we refer to as the signal-to-interference ratio (SIR) (for a
discussion of performance measures for assessment of separa-
tion algorithms see, e.g., [38] and [40]). It is expected that the
higher the SIR, the worse the SDR will be. Finally, we measure
how noisy the signal is using the signal-to-noise ratio (SNR) de-
fined as

[Is1(n)l]2

SNR = 20 loglo m

[dB]. (84)
The reader should be aware that our definitions of SDR and
SIR are consistent with those of [40], but also that our defi-
nition of SNR differs but is consistent with its use in estima-
tion theory. In the experiments reported next, unless otherwise
stated, the conditions were as follows; the above quantities were
calculated by applying the found filters to the observed signal
and the SDR was then measured. This was then repeated 100
times for each test condition, i.e., the quantities are determined
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Fig.2. Estimated computation times for the various filters designs (a) as a func-
tion of the number of observations N with M = N/4 and L;, = 5,and (b) as a
function of the number of harmonics L, with N = 100 and M = 25. For each
data point, each filter was computed 1000 times and the average was computed.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 12, DECEMBER 2010

using Monte Carlo simulations. In doing this, the zero-state re-
sponses of the filters were ignored. Segments of length N = 200
were used with filter lengths of M = N/4 (for all designs) and
an SNR of 20 dB was used. The desired signal was generated
with a fundamental frequency of 0.5498 and five harmonics.
The real and imaginary values of the complex amplitudes were
generated as realizations of i.i.d. Gaussian random variables,
leading to Rayleigh distributed amplitudes and uniformly dis-
tributed phases. The interfering source was a periodic signal
having a fundamental frequency of 0.5890, five harmonics and
with Rayleigh distributed amplitudes and uniformly distributed
phases. Its amplitudes were then scaled to match the desired SIR
in each realization. In these experiments, we will assume that
the fundamental frequency of the desired signal is known while
the fundamental frequency of the interference is unknown. As
has already been mentioned, it is possible to estimate the funda-
mental frequency using the proposed filters, but this is beyond
the scope of this paper, and we will just assume that the funda-
mental frequency has been estimated a priori using one of the
methods of [27].

In the first experiment, only the desired signal and the noise
are present, i.e., no interfering source was added, and the per-
formance of the filters is observed as a function of the SNR. The
resulting measurements are plotted in Fig. 3(a). It can be seen
that the Capon-like filter design, SF-Capon, that was the starting
point of this work, performs poorly in this task. In fact, it is
worse than the static designs FB-WNC and FB-WNC (appx).
It can also be observed that the APES-like filters, SF-APES,
SF-APES (appx) and FS-APES, all perform well, achieving the
highest SDR. In [19], it was shown that the Capon-like filters
perform well in terms of multi-pitch estimation under adverse
conditions compared to the alternatives. This was especially true
when multiple periodic sources were present at the same time as
the signal-adaptive optimal designs were able to cancel out the
interference without prior knowledge of it. It appears that with
this particular setup, there is a 10-dB reduction in the noise re-
gardless of the SNR for the proposed filters, and, interestingly,
all the filter designs seem to tend perform similarly for low
SNRs. This means that there appears to be no reason to prefer
one method over the others for low SNRs, in which case the
simplest design then should be chosen.

The next experiment is, therefore, concerned with the perfor-
mance of the filters when interference is present. Here, the noise
level, i.e., the SNR, is kept constant at 20 dB while the SIR is
varied. The results are depicted in Fig. 3(b). This figure clearly
shows the advantage that the adaptive designs, SF-APES,
SF-APES (appx), FB-APES, and SF-Capon, hold over the
static ones, FB-WNC and FB-WNC (appx) in that the former
perform well even when the interference is very strong, while
the latter does not. The advantages of the designs proposed
herein are also evident as the APES-like filters, SF-APES,
SF-APES (appx), and FS-APES, outperform all others for the
entire tested range of SIR values. We remark that in several of
these figures, it may be hard to distinguish the performance of
SF-APES, SF-APES (appx), and FB-APES as the curves are
very close; indeed they appear to have similar performance in
terms of SDR.
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Fig. 3. Performance of the various filters in SDR (a) as a function of the SNR
and (b) the SIR with an interfering source present (with noise added at a fixed
SNR of 20 dB).

As some of the simpler designs are based on sinusoids
being asymptotically orthogonal, namely SF-APES (appx) and
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FB-WNC (appx), it is interesting to see how the various filters
perform when this is not the case. We do this by lowering the
fundamental frequency for a given IV, as for a given N, the
fundamental frequency has to be high, relatively speaking, for
the asymptotic approximation to hold. In this case, only noise is
added to the desired signal at an SNR of 10 dB. The results are
shown in Fig. 4(a). As could be expected, the aforementioned
approximate designs perform poorly (as does the Capon-like
filters SF-Capon), but, generally, the performance of all the
methods degrades as the fundamental frequency is lowered.
This is, however, to be expected. Note that the reason FB-WNC
(appx) performs well for certain fundamental frequencies is
that the harmonics may be close to (or exactly) orthogonal, but
this would merely be a coincidence in all practical situations.

Now we will investigate the influence of the filter length by
varying M while keeping [V fixed at 200, here in the presence
of an interfering source. In this case, noise is added at an SNR
of 10 dB while the SIR was 10 dB. In Fig. 4(b), the results
are shown. The conclusions are essentially the same as for the
other experiments; the proposed filter designs perform the best,
the SF-Capon filters behave erratically, and the static designs
FB-WNC and FB-WNC (appx) perform poorly when interfer-
ence is present. We note that for the respective matrices to be in-
vertible, the filter lengths cannot be too long. On the other hand,
one would expect that the longer the filters, the better the per-
formance as the filters have more degrees of freedom to capture
the desired signal while canceling noise and interference, and
this indeed seems to be the case.

These experiments generally show that the proposed filter de-
signs have a number of advantages over previous designs and
static designs alike when applied to the problem of separating
periodic signals. Among the proposed designs, SF-APES and
FB-APES appear to perform the best and equally well while
SF-APES (appx) is sometimes slightly worse.

FE. Some Speech and Audio Examples

We will now demonstrate the applicability of the proposed
methods to real signals. In the experiments to follow, we will
use the SF-APES design. In the first such experiment, we will
use the filters obtained using the said method to extract a real
trumpet signal, a single tone sampled at ~8 kHz using 50-ms
segments and a filter length of 100 and the filter is updated every
5 ms. Note that both the signal and the filters are complex by
mapping the input signal to its analytic counterpart using the
Hilbert transform. For each segment the fundamental frequency
and the model order was found using the approximate non-linear
least squares method of [27] and the optimal filter was updated
every 1 ms. The single tone has been buried in noise at an SNR of
0 dB and interfering tones, which were also trumpet tones (both
signals are from the SQAM database [41]), have been added
with an SIR of —10 dB. The spectrogram of the original signal
is shown in Fig. 5(a) and the same signal with noise and in-
terference added is depicted in Fig. 5(b). The spectrogram of
the extracted signal is shown in Fig. 5(c). These figures clearly
demonstrate the ability of the APES-like designs to extract the
signal while rejecting not only noise, but also strong periodic
interference even when these are fairly close to the harmonics
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Fig. 4. Performance of the various filters in SDR (a) as function of the funda-
mental frequency, (b) and the filter length with an interfering source present.

of the desired signal. Note that for this particular example, be-
cause the SIR and SNR are quite low, the FS-Capon method
would also perform quite well.
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Fig. 5. Shown are (a) the spectrogram of the original signal, (b) with noise and
interference added with SNR = 0 dB and SIR = —10 dB (c) and the signal
extracted using the FS-APES design.

Regarding the application of the proposed filters to speech
signals, an interesting question is whether the filters are suit-
able for such signals, as they exhibit non-stationarity. To ad-
dress this question, we apply the SF-APES method to a voiced
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Fig. 6. Shown are (a) the original voiced speech signal, (b) the extracted signal,
(c) the difference between the two signals, i.e., the part of the signal that was
not extracted, and (d) the estimated pitch used in the filters.

speech signal, this particular signal being from the SQAM data-
base [41] and sampled at 11025 Hz. As with the prior example,
we estimate the pitch for each segment, which are here of size 30
ms (corresponding to 165 complex samples), a size commonly
used in speech processing and coding. From these segments, the
optimal filter bank is then also determined using the estimated
pitch. In this example, the complex filters of length 40 are up-
dated every 2.5 ms. The signal is depicted in Fig. 6(a) and the
extracted signal is shown in Fig. 6(b). The difference between
the original signal and the extracted one is shown in Fig. 6(c),
and the estimated pitch is shown in Fig. 6(d). A number of ob-
servations can be made regarding the original signal. First, it is
non-stationary at the beginning and the end with a time-varying
envelope, and the pitch can be observed to vary as well. It can,
however, be observed from the extracted signal and the corre-
sponding error signal that the filters are indeed able to track this
signal, resulting in an SDR of 20 dB. This demonstrates that the
filters may be useful even if the signal is not completely sta-
tionary.

Our final example involves the separation of two speech sig-
nals, more specifically two quasi-stationary segments of voiced
speech mixed at an SIR of 0 dB. These signals are sampled at 8
kHz and are from the EUROM.1 corpus [42]. As before 30-ms
segments are used for determining the pitch and the optimal fil-
ters resulting in segments consisting of 120 complex samples
along with filters of length 30. We here update the filters every
2.5 ms. In Fig. 7(a) and (b), the two signals are shown along
with their mixture in Fig. 7(c). As before, the fundamental fre-
quencies of the two sources are estimated with the approximate
non-linear least squares method [27], and the resulting estimates
are shown in Fig. 7(d). It can be seen that one source has an av-
erage pitch of approximately 162 Hz while that of the other is
about 200 Hz. The two extracted signals are shown in Fig. 7(e)
and (f), respectively. As can be seen, the filters are able to sep-
arate the signals achieving SDRs of 14 and 12 dB, respectively.
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Fig. 7. Shown are the following signals: (a) voiced speech signal of source 1,
(b) voiced speech signal of source 2, (c) the mixture of the two signals, (d) the
estimated pitch tracks for source 1 (dashed) and 2 (solid), (e) the estimate of
source 1 obtained from the mixture, and (f) the estimate of source 2 extracted
from the mixture.

Of course, some errors occur, as can also clearly be seen, as parts
of the other interfering source will be passed by the filters.

VI. CONCLUSION

In this paper, new filter designs for extracting and separating
periodic signals have been proposed, a problem occurring fre-
quently in, for example, speech and audio processing. The pro-
posed filters are designed such that they have unit gain at the
frequencies of the harmonics of the desired signal and suppress
everything else. The novel part of the present designs is that
they are optimized for having an output that is approximately
periodic as well. In addition, the obtained filters are optimal for
a segment of the observed signal and are thus signal adaptive.
The filter designs can be used not only for the aforementioned
applications but also for estimating the parameters of periodic
signals. The designs have been demonstrated to overcome the
shortcomings of previous designs while retaining their desir-
able properties, like the ability to cancel out interfering signals.
We have shown how the new designs reduce to a number of
well-known designs under certain conditions and they can thus
be seen as generalizations of previous methods. In simulations,
we have demonstrated the superior performance of the obtained
filters in enhancement and separation applications.
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