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Fast and Robust Numerical Solutions to Minimal Problems for €&aswith
Radial Distortion

Zuzana Kukelova, Martin Byrod®, Klas Josephsdh Tomas Pajdla, Kalle Astrom®

aCenter for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng., Czech Technical University Prague, Czech Republic
bCentre for Mathematical Sciences, Lund University, Lund, Sveden

Abstract

A number of minimal problems of structure from motion for cameras watthial distortion have recently been studied and solved in some
cases. These problems are known to be numerically very challengihop @everal cases there were no practical algorithm yielding solutions
in floating point arithmetic. We make some crucial observations conagthin floating point implementation of Gioner basis computations
and use these new insights to formulate fast and stable algorithms for tvimathjoroblems with radial distortion previously solved in exact
rational arithmetic only: (i) simultaneous estimation of essential matrix areharon radial distortion parameter for two partially calibrated
views and six image point correspondences and (ii) estimation of fueiatmatrix and two different radial distortion parameters for two
uncalibrated views and nine image point correspondences. We deateran simulated and real experiments that these two problems can be
efficiently solved in floating point arithmetic. For comparison we have alenited a new non-minimal algorithm for estimating fundamental
matrix and two different radial distortion parameters for two uncalibrateds and twelve image point correspondences based on a generalized
eigenvalue problem.

Key words: Radial distotion calibration; Minimal problems; &@ner Basis

1. Introduction some cameras such fish-eye lenses this can be insufficient and
one might need to handle strong radial distortions alreeain f

Estimating camera motion and internal calibration paranset the outset.
from sequences of images is a challenging computer vision The particularly interesting solution to the simultaneess
problem with a broad range of applications [1]. One typicall timation of the fundamental matrix and single radial dittor
starts with a noisy set of tentative image point correspnodg.  Parameter, based on the division model, has been introduced
The first step then is to make decisions about correct and iy Fitzgibbon [4]. His formulation leads to solving a system
correct matches and get a good initial estimate to be able t8f algebraic equations. However, Fitzgibbon did not use the
deploy a more sophisticated optimization algorithm on tte s algebraic constraints on the fundamental matrix. Thanketo
of all correct matches. glecting the constraints, he worked with a very specialesyst
Two robust and widely used techniques for this purpose ar€f algebraic equations which can be solved numerically by us
RANSAC [2] and kernel voting [3], both relying on solving iNg a quadratic eigenvalue solver. Micusik and Pajdla [&|6)
a large number of instances of the underlying problem, eacheglected the constraints when formulating the estimatfcan
with a small number of point correspondences. There is thus Baracatadioptric camera model from image matches as a quar-
need to develop fast and stable algorithms for solving géene tic eigenvalue problem.
vision problems with a minimal number of points. Typically ~Li and Hartley [7] treated the original Fitzgibbon's profle
this amounts to solving a system of polynomial equations ir@s & system of algebraic equations and used the hiddenleariab
several variables. These problems are known to be numigricaltechnique [8] to solve them. The resulting technique solves
very challenging and in several cases there exist no pedctic €xactly the same problem as [4] but in a different way.
algorithm yielding solutions in floating point arithmetic. Solving for the fundamental matrix under different radial
Traditionally, minimal problems have been formulated as-distortions was first studied in [9], wherenan-minimal algo-
suming a linear pin-hole camera model with different restri ithm based on 15 point correspondences was given for a pair
tions on the internal calibration parameters etc. Howefger, Of uncalibrated cameras.
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More recently, in [10,11], a number of differentinimal where theh;(x) are any polynomials.
problems with radial distortion have been studied and falct The GiBbner basis method for equation solving essentially
solutions were given in some cases. builds on a generalization of polynomial division to the tirul

The state-of-the-art method for solving polynomial equiadi  variate case. A concept arising in multivariate polynordigi-
is based on calculations with &wner bases [12] and has many sion which does not exist in the univariate case is divisipn b
applications in computer vision, but also in other fieldshsuc a set of polynomials. See [8] for details. Division by an ideal
as cryptology [13] and robotics [14]. In [15,16] &@mer bases as given by (2) can then be defined as division by the set of
were used to derive a fast algorithm for globally optimak#r generatorsy.
view triangulation under thé.,-norm. The starting point now is to consider the space of all pos-

In this paper, we further develop the techniques of numkricasible remainders under division bl This space is denoted
Grobner basis computations. In particular we (i) note the impo C[x]/I and referred to as thguotient space. It can be seen as
tance of obtaining a single elimination step in thé&er basis  a generalization of the modulo rin@s, to polynomials. A fa-
computation, (ii) give guidelines for how this can be ackitv mous result from algebraic geometry now states that if the se
and (iii) give a new simplified formulation of the Glbner ba-  of equations (1) has a finite set of zeros, tiigx]/I will be
sis computation procedure based on LU factorization, whicla finite-dimensional linear space with dimension equal ® th
reduces the computational burden of the elimination step.  number of zeros of (1) [8].

Leveraging on these new insights, we formulate fast and nu- With the spaceC[x]/I in hand an elegant trick now yields
merically stable algorithms for two minimal problems wit r  the solutions to (1). Consider multiplication by one of tleiv
dial distortion previously unsolved in floating point aritetic: ~ ableszy,. This generates a linear mapping frdx]/I to itself
(i) simultaneous estimation of essential matrix and a commo and since we are in a finite-dimensional space, by selecting a
radial distortion parameter for two partially calibrategtws  appropriate linear basis, this mapping can be represested a
and six image point correspondences and (ii) estimationmf f matrixm,, . This matrix is known as thaction matrix and the
damental matrix and two different radial distortion paréene  eigenvalues oin,, are exactly the values af;. on the zeros
for two uncalibrated views and nine image point corresponof (1) [8]. Furthermore, the eigenvectorsmffk correspond to
dences. the vector of monomials evaluated at the zeros of (1).

We demonstrate the speed and intrinsic numerical stability The crucial step in the process is to compute the remain-
as well as robustness to noise of the proposed algorithmg usi der arithmetic ofC[x]/I. Multivariate polynomial division by
both synthetic data and real images. I is complicated by the fact that it is not well defined for

We compare our minimal algorithms with the existing most choices of generators. Consider the ope®toC[x] —
Fitzgibbon’s non-minimal algorithm [4] for estimating fda-  C[x]/I representing division by for some choice of gener-
mental matrixF and a single radial distortion from 9 point ators. ForP to be well defined we require th&(f;(x) +
correspondences based on QEP, thébBer basis minimal f»(x)) = P fi(x) + P fo(x) for all f1(x), f2(x) € C[x].
algorithm [10] for a single radial distortion and 8 point @y Fortunately there exist a canonical choice of generatars fo
spondences, which us@st(F) = 0, a linear 12 point algo- which P is well defined. This set of generators bfs known
rithm for estimatingF' and two different radial distortions and as the Gobner basis of and allows direct construction of the
finally with the new non-minimal algorithm for two different action matrix, see [16] for details. Calculating thedBmer ba-
radial distortions based on the generalized eigenvaluelgmo  sis of I is therefore our main concern. In general, this is ac-

proposed in this paper. complished by Buchberger’s algorithm which works well in
exact arithmetic. However, in floating point arithmetic éry

2. Review of Gbner Basis Techniques for Polynomial easily becomes unstable. There exist some attempts to yemed

Equation Solving this [17,18], but for more difficult cases the only reliable- a

proach (so far) is to study a particular class of equatie@t (
relative orientation for calibrated cameras [19], optintake
|view triangulation [15], etc.) and use knowledge of what the
structure of the Gibner basis should be to design a special

algorithms need to be developed for specific applicatiohe. T purpose Gibner basis solver. This method has been developed

state-of-the-art tool for doing this is calculations withoGner ~ PY Stewenius and others in a number of papers [12,10,20]. In
bases [8]. the following section we outline how this is done and provide

Jew insights enabling us to solve the two problems with adia
distortion treated in this paper.

Solving systems of polynomial equations is a challengiradppr
lem in many respects and there exist no practical numeyical
stable algorithms for the general case. Instead, specipbpa

Our general goal is to find the complete set of solutions to
system
fl(X):07"'afm(X>:07 (1)
of m polynomial equations im variablesx = (z1,...,z,). 3. A Matrix Version of Buchberger’s Algorithm
The polynomialsfy, ..., f,, generate amdeal I in C[x], the
ring of multivariate polynomials ixx over the field of complex

numbers defined as the set The reason why Buchberger’s algorithm breaks down in float-

ing point arithmetic is that eliminations of monomials ae¥-p
I={g(x):g(x) =Zphi(x)fru(x)}, (2)  formed successively and this causes round-off errors ta-acc
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Fig. 1. (Left) Input images with different radial distorti®iiTop) 66% cutout from omnidirectional image and (Bottom) image taken wistandard perspective
camera with very mild distortion. (Center) Corrected imag&3glft) Distribution of real roots obtained by kernel votirfgstimated\; = —0.925625 and
A2 = 0.002500.

mulate to the point where it is completely impossible to tellwith errors accumulating the situation soon becomes hepele
whether a certain coefficient should be zero or not. The ide&Vith a single elimination step we get maximal control ovevro
introduced by Faugere [17] is to write the list of equatioms i pivoting etc. Moreover, the basis selection method intoedu
a matrix form in [16] can further improve stability, but is only applicabhen
a a single elimination step is possible.

In Buchberger’s Algorithm, two polynomials are picked and
Cl: =0 (3)  the least common multiple of their leading terms is eliméaat
by multiplying them with the right monomials and then sub-

x tracting them. This is done a large number of times until con-
N N ) ) vergence. We mimick this process but aim at completely sepa-
where {X e x "} is a vector of monomials with the no- rating multiplication by monomials and elimination. Thess

tationx = z{** ... z,**. Elimination of leading terms now are
translates to matrix operations and we then have access to a(i) Multiply the original set of equations with a large nunbe

whole battery of techniques from numerical linear algebira a of monomials yielding an expanded set of equations.
lowing us to perform many eliminations at the same time with (ii) Stack the coefficients of these equations in an expanded
control on pivoting etc. coefficient matrixCeyxp.

However, as mentioned above, the real power of this ap-(iii) If enough new equations were generated in the previous
proach is brought out by combining it with knowledge about a step, row operations o€, yield the elements of the

specific problem obtained in advance with a computer algebra Grobner basis we need.
system such as Macaulay2 [21]. One can then get informatioAn important observation made independently in [16] and [10
about exactly which monomials occur in Buchberger’s algo-s that not all elements of the Gloner basis are needed. Let
rithm and the dimension of[x]/1. B denote a selection of basis monomials fx]/I. Then
to construct the action matri,, we only need to calculate
3.1. Obtaining a Single Elimination Step t(r;e eg)nlegts of the idedl with leading monomials in the set
k- .

] ] ) Let M denote the complete set of monomials andRet=

With knowledge of the particular problem at hand, the |deal(xk - B)\ B denote the set of monomials that need to be reduced

situation is to obtain a single big elimination step. Thest® o C[x]/1. Finally, let€ (£ for excessive) denote the remaining
for this is that each elimination step can be ill conditiored



monomials. We then have a partitioning of the monomials ashese two problems can be efficiently solved in floating point

M=EURUB. arithmetic.
Now, reorder the columns df.., and the vector of mono-
mials X to reflect this 4.1. Uncalibrated Case
Xe
In our solution we use the same formulation of the problem
[Cf Cr CB} Xz | =0 ) as in [11]. This formulation assumes a one-parameter divisi
Xz model [4] given by the formula
The £-monomials are not in the basis and do not need to be Pu ~ Pa/ (1 +Arg) 9)
reduced so we eliminate them performing an LU factorizationyherep,, = (2w, yu, 1)T andpg = (x4,y4,1)" are the cor-
of Cexp, Yielding the following schematic result: responding undistorted, resp. distorted, image point;aiis
the radius ofp, w.r.t. the distortion center.
Ue Cr. Cg Xe It is known that to get solutions to this minimal problem for
! PO [ XR | =0, (5) uncalibrated cameras with different radial distortionsand
0 Ug, Cgp, A2 in each image, we have to use the epipolar constraint for 9
Xz point correspondences
whereUg, andUx, are upper triangular. We can now discard p; (AM)Fpl, (A2) =0, i=1,....9 (10)

the top rows of the coefficient matrix producing ) ) )
and the singularity of the fundamental matfix

}(R -
[UR2 CBJ =0. (6) det (F) = 0. (11)
SsSumingys s we cansefs 3 = 1anao tain equatlons
B A ingfss # 0 f3,3 = 1 and obtain 10 i

From this we see that if the submatlikz, is of full rank we get ~ In 10 unknowns.
precisely the polynomials from the ideailve need by forming
4.1.1. Eliminating variables

[I U=1C } Xr| 0 ) The epipolar constraint gives 9 equations with 16 monomials
Rz B Xg| (f31A1, fa0M0, f13Aa, fa.302, Mda, fra, fr0, f13, 21, fa2,
_ J2.3, [3,15 f3,2, A1, A2, 1) and 10 variablesf; 1, f1.2, f1.3, f2.1,
or equivalently f2,25 2,35 f3,15 f3,2, A1, A2).
_ Among them, we have again four variables which appear
X'R = _U'RiCBQXBv (8) g 9 bp

in one monomial only( f1,1, f1,2, f2,1, f2,2) and four variables
which means that thé&k-monomials can now be expressed which appear in two monomialf; s, f2 3, f3.1, f3.2). Since
uniquely in terms of thé3-monomials. This is precisely what we have 9 equations from the epipolar constraint we can use
we need to compute the action matrix,, in C[x|/I. In other  these equations to eliminate 6 variables, four variableighvh
words, the property oz, as being of full rank is sufficient appear in one monomial only and two of the variables which
to get the part of the remainder arithmetic©fx]/I that we  appear in two monomials. In this solution we have sele¢ted
need to computen,, . and f 3.

We reorder the monomials contained in the 9 equations and

4. Application to Minimal Problems with Radial Distortion ~ Put the monomials containingi 1, f1,2, f2,1, f2,2, f1,3 and
f2,3 at the beginning. The reordered monomial vector becomes

Based on the techniques described in the previous sectien, we = L fie fors foo ishe, fss fashe, fas, faahs,

T
are now able to provide fast and stable algorithms for twof3v2/\1’>‘1/\_27f3h1’f372’/\1’>_‘271]f' h ol )
previously untractable minimal problems with radial dititm: We rfewrlte the 9 eqt;]atlons. rorll“n t ef(fa_p_lpo ar copstra]\c;nt on
(i) The problem of estimating a one-parameter radial disMatrix formCX =0, whereC is the coefficient matrix. After

tortion model and epipolar geometry from image pointperforming Gauss-Jordan (G-J) elimination on the maix

correspondences in two uncalibrated views with differentV® obtain 9 equations on the form

radial distortions in each image. fi=LT(f;)+ gi(fs1, f3,2,A1,A2) =0, (12)
(ii) The problem of estimating a one-parameter radial dis- N
tortion model and epipolar geometry from image pointWhere LT(fi) = fiufizfonfon, fushe, fis, fasho,
. . ; . fo3 resp. f31 A for i@ = 1,2,3,4,5,6,7,8 resp. 9 and
correspondences in two partially calibrated views. ’ ’ d . . .
) AN i(f3.1, f3.2, A1, A2) are 2"%order polynomials in four vari-
These two problems were previously studied in [11] and found\/3: ' .
: : ables f5 1, f3.2, A1, A2. This means that we can express the
to be numerically very challenging. In [11] the authors pro- A ; .
X : . .~ 6 variables,f1 1, f1.2, f1.3, f2.1, f2.2, f2.3 @s functions of the
vided solutions to these problems computed in exact raitlonabther four varfableé” 7f SN ’
arithmetic only. This results in very long computationahéis 31 /3,2 AL, A2
and is not usable in practical applications. Here we show tha fi1=—g1(fs,1, f3,2, A1, A2)

4



—g2(f3.1, f3.2, A1, A2) has to be multiplied with all monomials up to degree six and
Fra=—06(fa1s f320 A1y Ao (13)  monomials with the corresponding degrees for3reandst"

(

( Ae) degree polynomials
93(f3,1, f3,2, A1, A2) gree poly '

( A

a1 = Further investigations has shown that not exactly all mono-
fa2=—g4(f31, f3.2, A1, A2) mials up to degree eight are needed, so in the implementation
f23 = —9s(f31, f3.2, A1, A2), the 2" degree polynomial was only multiplied with monomi-

als up to degree five and each variable not higher than four.

Moreover)\; was not multiplied with degrees higher than two.

For the other polynomials it was possible to limit the degrke

each individual variable to one lower than the total degree.
These multiplications yield 393 equations in 390 monomi-

A2(=96(f3,1, f3,2, A1, A2)) + 95(f3.1, f3,2, A1, A2) = 0 als. Without the last fine tuning of the degrees, the number of

Ao(—gs(f3.1 F3.2: Ay A2)) + g7(F3.1, F.2: A1y Az) = 0 equat_ions gnd monomials will be larger but gll extra monomi-

als will be in the set and will make no real difference to the
Fsadi +go(fan, fa.2, A1, A2) =0 solver except slightly longer computation times.

Substituting these expressions into the other three emsati
from the epipolar constraint and also into the singularidp-c
straint for ' gives 4 polynomial equations in 4 unknowns (one
of 27 degree, two of"? degree and one &f" degree)

—91 —92 —Ye » Calibrated C
4.2. ibrat ase
det | —g3 —gs —gs | =0. (14)
fa1 faz 1 To solve the minimal problem for calibrated cameras, we make
This problem has 24 solutions in general [11]. use of the epipolar constraint for 6 point correspondences
p., (MVEP, (\) =0, i=1,...,6, (15)
4.1.2. The Solver _ _ _ the singularity of the essential matix
The numerical solver is constructed starting with the faasr r
det (E) =0 (16)

maining equations (14) in the four unknowyis;, f3 2, A and
Xo. The first step is to expand the number of equations, as ougnd the trace constraint, which says that two singular gatdie
lined in Section 3, by multiplying them by a handcrafted setthe essential matrix are equal
of monomial_s in the four u_nknowns yielding 393 equations in 9 (EET) E — trace(EET)E = 0. (17)
390 monomials. See Section 4.1.3 for details. . . )
The coefficients of the equations are then stacked in a matriR9@iN assumingz; 3 # 0, we can set; 3 = 1 and obtain 16
C asin (3). Following this, the monomials are ordered as in (4)€duations in 9 unknowns.
The sets€ andR depend on which variable is used to create
the action matrix. For this problenf ; was used as the “ac- 4.2.1. Eliminating variables
tion” variable. The classical method is thereafter to clecbe The epipolar constraint gives 6 equations in 15 monomials
linear basisB of C[x]/I to be the 24 lowest monomialsif.t.  (Ae13, Aez3, Aes 1, Aes 2, A% €11, €19,€1.3,€2.1, €22, €233,
some monomial order). This is enough to get a solution to thes,1, 3,2, A, 1) and 9 variablege; 1,12, €13, €21,€22, €23,
problem, but as mentioned in Section 3 we can use the method.1, €32, A)-
introduced in [16] to select a basis of linear combinatiohs o Using similar a elimination method as in the uncalibrated
monomials from a larger set and thereby improve numerica¢ase we eliminate 5 of these 9 variables. All these variables
stability. Empirically, we have found that the linear basism  can be eliminated simultaneously.
be selected from the set of all monomials up to degree four We have four variables which appear in one monomial only
excluding the monomial?. The setR then consists of mono- (€1,1,€1,2,€2,1,€2,2) and four variables which appear in two
mials of degree five that are reached when the monomials ghonomials(e; 3,e2 3, €3 1, €3 2). Since we have six equations
degree four are multiplied witlfs ;. £ is the remaining set of of which each contains all 15 monomials we can eliminate
285 monomials. five of these nine variables. We select the first four varmble
Putting the part of corresponding t& andR on triangular ~ €1,1,€1,2, €2,1, €22 that appear in one monomial only (and can
form by means of an LU decomposition now produces (5). Webe straightforwardly eliminated) and the fifth variablecag
can then remove all equations that include excessive maemi Which appears in two monomials.
and still have enough information to construct the actiotrixa We reorder the monomials contained in the 6 equations
Finally, we make the choice of representatives@fx]|/7 by ~ putting monomials containing: i, ei 2, €2,1,€2,2 ande; 3 at
the method in [16] and do the last elimination to get the parthe beginning. The reordered monomial vector will Xe=
of the Gibbner basis we need to construct the action matrix. [€1,1,€1,2,€2,1,€2.2, €13\, €13, €23), €317, €327, A, 2.3,
€3,1,€3,2, /\, l]T.
4.1.3. Details on the Expansion Step for the Uncalibrated Case _We rewrite 6 equations from _the epipolar constraint on ma-
We have found experimentally that to construct the necgssaf’x form CX = 0. After performing Gauss-Jordan (G-J) elim-
elements of the Gibner basis, we need to generate polynomialdnation on the matrixC, we obtain 6 equations of the form
up to a total degree of eight. Thus, th&! degree polynomial fi=LT(f;)+ gi(eas,es1,e32,A) =0, (18)

5



WheI'ELT(fi) = €1,1,€1,2,€2,1,€2,2, 6173)\, resp.ei s for i =
1,2,3,4,5 resp.6 andg;(ea 3, €31, €32, A) are2"order poly-

nomials in 4 variables, 3, e3 1,32, A. S0, the five variables

5. Non-minimal solution to the uncalibrated case with
different distortions.

€1,1,€1,2,€1,3,€2,1,€2,2 Can be expressed as functions of theFor comparison we have also created a new non-minimal algo-

other four variabless s, e3 1, €32, A.
e1,1 = —gi(ez3,€e31,€32,A)
e12 = —g2(e2,3,€31,€32,\)
e1,3 = —gs(ea3,€31,€32,A) (19)
A)

€21 = —93(62,3763,1763,2,

€22 = —94(62,3, €3.1,€3,2, >\)-

We substitute these expressions into the remaining equatio

from the epipolar constraint and into the singularity arstér

constraints foE. In this way we obtain 11 polynomial equations

in 4 unknowns (one of degrek four of degrees and six of
degrees):
One equation from the epipolar constraint

)\(*96(62,3, €3,1,€3,2;, )\)) + 95(62,37 €3,1,€3,2, >\) =0, (20)

one equation from the singularity constraint

det (E) = 0, (21)
and 9 equations from the trace constraint
2 (EE") E — trace(EET )E = 0, (22)
with
—91 —92 —UJe
E=1 —g3 —g1 e23 (23)

e31 ez 1

In [11] it was shown that this problem has 52 solutions.

4.2.2. The Solver

The numerical solution of this problem largely follows thudit
the uncalibrated version. In the first expansion, all eaquati
are multiplied with monomials to reach degree eight. Thiegi

rithm for estimating fundamental matrix and two differesdial
distortion parameters for two uncalibrated views and te@iv-
age point correspondences based on the generalized digeenva
problem. This algorithm is similar to the well-known algbrn
for estimatingF’ and a single distortion parameter from nine
point correspondences proposed by Fitzgibbon [4] which was
formulated as a quadratic eigenvalue problem.

We also formulate the problem with different distortions as
a generalized eigenvalue problem. We use equations from the
epipolar constraint for 12 point correspondences

Py, (M)FP, (X)) =0, i=1,... 12 (24)

Assumingfs 3 # 0 we can seff3 3 = 1 and obtain 12 equations
with 16 monomials(f3 1 A1, f32A1, f1,3A2, f2,302, A1 A2, f1,1,
f1,2, f1.3, f2.15 fo.2, f2.3, f3,15 f3,2: A1, A2, 1) and 10 variables
(fi,1, f1.2: J1,3 fo,1, fa.20 f2.3, f3,1, f3.2, A1, A2).

Using the standard notation for the division model

T
Pu [)‘) ~ (xd7 Yd, 1+ )\7,.(21] ) (25)
we can rewrite the equations from the epipolar constraint as
(Dl =+ )\2D2) VvV = 0, (26)

whereD; = [xd,il‘éli Ld; yéh Ld; ydimldi Yd, yéli Yd; x;ll ytliZ 7“3156:11
ri Ya, Ti 1JandDs =00 xdir('ii_ 00 ya, TZ 0000 ri ri ’I“Z],
i=1,...12, are12 x 12 matrices containing only known dis-
torted coordinates andis the12 x 1 vector of unknown mono-
mia|TV = [f11, fi2, f13, f21, fo2, fo3, f31, f32, f3,1 1, 3,21,
A1, 1.

The formulation (26) is a generalized eigenvalue problem
which can be easily solved using standard efficient algmsth
For example MATLAB provides the function polyeig.

Because D3 has eight zero columns, this generalized eigen-
value problem leads to eight “infinite” eigenvalues. Thagrée
are at most four finite real solutions to this problem.

6. Experiments

356 equations in 378 monomials. As in the uncalibrated dase i
is possible to reduce the number of monomials by fine tuningVe have tested the algorithms for the uncalibrated and cali-
the degrees we need to use, in this case yielding 320 egeatiobrated minimal problems on synthetic images with various le

in 363 monomials.

els of noise, outliers and radial distortions as well as @i re

The next step is to reorder the monomials as in equation (4)mages. For comparison we have also tested non-minimal algo
Once again, the linear basis©fx]/I can be constructed from rithms on synthetic images. The time of computation has been

the monomials of degree four and low&. will then consist

measured for both minimal algorithms.

of those monomials of degree five that are reached when the The minimal algorithms proposed in this paper are signifi-

degree four monomials are multiplied with the variable,
which is used as the “action” variable.

cantly more stable than the algorithms presented in [11¢lwhi
ran in exact rational arithmetic only. Since doing the cotapu

As before,C is transformed to triangular form by LU de- tions in exact arithmetic is extremely slow (minutes indte&
composition and after that we only consider those equationsiilliseconds), a comparison with the floating point aldumit

that do not include any of the monomials§n Now C holds
all necessary information to choose representativeS[i]/ I

presented in this paper is not meaningful and has thereéae b
omitted.

by the method of [16] and create the action matrix with respec The problems presented in this paper are solved by finding

to multiplication byes ;.

the roots of a system of polynomial equations which means
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Fig. 2. (Left) The number of real solutions for the uncalibrhtase. (Right)
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that we obtain several potentially correct answers, 52 @ th
calibrated case, 24 in the uncalibrated minimal case and 4 i
the uncalibrated non-minimal case. In general we obtairemor
than one real root (Figure 2), in which case we need to selec
the best onei.e. the root which is consistent with most mea-
surements. To do so, we treat the real roots obtained byngplvi
the equations for one input as real roots from different ispu
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Fig. 3. Uncalibrated case: Relative errors of (Left) and (Right) X2 as a

function of noise. Ground truth (Top); = —0.2, Ao = —0.3 and (Bottom)

and use kernel voting [3] for several inputs to select the besy, — _¢01, A, = —0.7. Blue boxes contain values fro6% to 75%
root among all generated roots. The kernel voting is done usguantile.
ing a Gaussian kernel with fixed variance and the estimates of

A1 and ), in the uncalibrated case andn the calibrated case
are found as the positions of the largest peaks [3,10].

6.1. Tests on Synthetic Images

For all problems treated in this paper, the same synthegierex
iments were carried out to evaluate the quality of the selver

In all our simulated experiments we generate our synthetic

data using the following procedure:

(i) Generate a 3D scene consisting 660 points distributed
randomly within a cube. Projed/ % of the points on
image planes of the two displaced cameras, these ar-
matches. In both image planes, gene(&t®— A1) % ran-
dom points distributed uniformly in the image, these are
mismatches. Altogether, they become undistorted corre
spondences, true as well as false matches.

(i) Apply different radial distortions to the undistortexr-
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Fig. 4. Non-minimal “12 point” algorithm for uncalibrated @asRelative

respondences in each image and in this way generaférors of (Left)\; and (Right)\2 as a function of noise. Ground truth (Top)
= —0.2, A2 = —0.3 and (Bottom)X\; = —0.01, A2 = —0.7. Blue

noiseless distorted points.
(iii) Add Gaussian noise of standard deviatierto the dis-
torted points.

boxes contain values fror25% to 75% quantile.

from all solutions) were computed. The results in Figure 3

and Figure 4 for the estimatel), (Left) and X, (Right) are

Uncalibrated case

presented by the Matlab functidooxplot which shows values

In the first two experiments we study the robustness of ouof the 25% to 75% quantiles as a blue box with red horizontal

minimal as well as non-minimal algorithm for the uncalileet
case to Gaussian noise added to the distorted points.
The first experiment investigates the estimation erron of

were \;
in the first case and;

line at median. The red crosses show data beyontimes the
interquartile range.

Both algorithms give similar results. For noiseless data we
as a function of noise. Results for the minimal algorithm areobtain very accurate estimates of radial distortion patarse
presented in Figure 3 and for the non-minimal algorithm ineven for very different\’s. For larger noises thég,, rela-

the Figure 4. The ground truth radial distortions paransetertive errors are much higher (mostly aroun@=1!). However

—0.2, A\» = —0.3 Figure 3 and Figure 4 (Top) obtained\’s are still satisfactory and mostly differ from the
—0.01, Ay = —0.7 Figure 3 and ground truth value in the second decimal place. The maintpoin

Figure 4 (Bottom) in the second case. The noise varied fronthough is not to use a one set of points to get a good estimate,
0 to 2 pixels. For each noise level relative errors for 2000but to repeatedly draw configurations from a larger set of po-
A's (estimated as the closest values to the ground truth valuential matches and then usg. kernel voting to get a more

7
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Fig. 5. Uncalibrated case, kernel voting: Estimated (L&ft)and (Right)\2 (@) Randomly choose 9 point correspondences from a
as a function of noise, (Top) ground truth = —0.2, A; = —0.3 (green set of N potential correspondences (6 point corre-

lines),90% of inliers and 100 samples in kernel voting and (Bottom) ground

truth A1 = —0.01, A2 = —0.7, 100% of inliers and 50 samples in kernel spondences for the calibrated Case)'

voting. (b) Normalize image point coordinates[tel, 1].
(c) Find 24 roots using our algorithm (4 roots for the
1 — 1 — non-minimal algorithm and 52 for the calibrated
A oy ! case).
o8 P o8 P (d) Select the real roots in the feasible interva,
<0 L[ D ﬂ S0 . lil U D ) -1< )\1,-)\2 < 1 and the correspondirgs.
o7 L e A= ] (i) Use kernel voting to select the best root.
s ol s LT Figure 5 shows\’s computed using our minimal algorithm
Al oi T Al (fl Oi_, E— for the uncalibrated case as a function of noise and Figure 6
Noise standard deviation (pixels) Noise standard deviation (pixels) shows\'s Computed using our non-minimal a|gorithm_ In the
1 - 1 first case with outliers Figure 5 and Figure 6 (Top) 108
o : were estimated using kernel voting for roots computed from
05 it 0% ! 100 (K = 100) 9-tuples of correspondences randomly drawn
<0 R E S0 - for each noise level. In the second case Figure 5 and Fig-
- R ure 6 (Bottom) 200\'s were estimated using kernel voting for
oS Cod 05 - = E roots computed from 50 = 50) 9-tuples of correspondences.
_1 4 o0 This means that for each noise level our algorithm ran 10,000
N(gse stg#dardodseviatign (pixgls) Nc?ise stg'rildardodseviatién (pixgls) times il"l bOth cases.
_ . _ _ _ _ The results are again presented by the Matlab fundiaxa
Fig. 6. Non-minimal “12 point” algorithm for uncalibrated eakernel voting: plOt.

Estimated (Left)\; and (Right) 2 as a function of noise, (Top) ground . . . — _—
truth Ay = —0.2, A2 = —0.3 (green lines)90% of inliers and 100 samples For the minimal algorlthm the median values for and A,

in kernel voting and (Bottom) ground trutky = —0.01, A = —0.7, 100% are very close to the ground truth value for all noise levelmf

of inliers and 50 samples in kernel voting. 0 to 2 pixels and also for very different radial distortiorrgna-
eters Figure 5 (Bottom) anth% of outliers Figure 5 (Top).

reliable estimate. Finally, the result can be further eckdn The median values for the non-minimal “12 point” algo-

using the obtained estimate as a good starting guess ina largthm are also close to the ground truth values for all noise

scale bundle adjustment. The effect of kernel voting isistlild levels and also for very different radial distortion paraeng

in the second experiment. Figure 6 (Bottom) and 0% of outliers Figure 6 (Top). How-

In this experiment we did not select the root closest to theever, the variances of this “12 point” algorithm are considiéy
ground truth value for each run of the algorithm, instead seglu  larger, especially for higher noise levels, than the vagsnof
kernel voting to select the beats among all generated roots the minimal algorithm Figure 5. It is significant especidiy
from several runs. The ground truth radial distortion pagters  data with outliers Figure 6 (Top). This is because for 12 {®0in
were as in the previous experimeni (= —0.2, Ao = —0.3in we have higher probability of choosing contaminated sample
the first case and; = —0.01, A\, = —0.7 in the second case) (sample containing outliers) than for 9 points. The minimal
and the level of noise varied from 0 to 2 pixels. Moreover, ingorithm thus produces higher number of good estimates éor th
the first case there weid% of outliers in the image (M=90). fixed number of samples. This is good both for RANSAC as

The testing procedure was as follows: well as for kernel voting.



Calibrated case Table 1 shows results of the first 3 algorithms (i-iii) forgie
The same synthetic experiments were carried out for theadial distortion\ = —0.3 and fixed threshold = 1 pixel on
calibrated solver. the distance of an image point to epipolar curves. The result
The results of the first experiment which shows relativersrro were obtain as a mean values from 100 runs of RANSAC for
of the estimated as a function of noise are shown in Figure 7. 10,100 and 1000 samples. Table 2 shows results of the last 3
The ground truth radial distortion was= —0.3. For noiseless algorithms (iv-vi) for different radial distortiond; = —0.2
data we again obtain very precise estimates of radial distor and\; = —0.3 and fixed threshola = 1 pixel.
parameten. For larger noise levels tHeg, , relative errors are The first row in both tables shows the number of matches
slightly larger than for the uncalibrated case. Howeveingis K1 within 7 threshold and the second row shows the number
kernel voting we can still obtain good estimates. This isngho  of correct matcheg(2 among them.
by our second experiment. The results show that the algorithms sampling fewer points
In this experimeni was estimated 50 times using kernel vot- faster hit a non-contaminated sample than the algorithmms sa
ing for roots computed from 200 6-tuples of correspondencepling more points. Therefore, our minimal algorithms givg-b
randomly drawn for each noise level, Figure 7. The mediarter results than non-minimal algorithms. This is significas-
values for are again very close to the ground truth valuepecially for higher number of mismatches.
A = —0.3 for all noise levels from 0 to 2 pixels. However the
variances of this for the calibrated case are larger, eafpeci g o Time Consumption
for higher noise levels, than the variances for the uncatiéat
case. This means that for good estimates\ @his algorithm . .
requires more samples in the kernel voting procedure than i-r|1-0. evaluate_: the speed of_the new algorlth_m a reasongbly opti-
the uncalibrated case. mized version of Fhe algonthm for the uncallprated caseimas
plemented. The implementation was done in Matlab so rewrit-
ing the algorithm in a compiled language such as C should
reduce the execution time further.
The algorithm was run 10,000 times and the time consump-

In the last experiment we compare our algorithms with other. : : ;
existing algorithms within the RANSAC paradigm by showing tion was measured using the Matlab profiler. The exper_lments
were performed on an Intel Core 2 CRPUL3 GHz machine

the number of correct matches recovered as a function of the. : T

. with 2 GB of memory. The estimated average execution time for
number of samples made from a set of tentative matches con-, . . X )

SPIvmg one instance of the uncalibrated problem was 16 mil-

YiSeconds. The corresponding time for the calibrated @bl
was 17 milliseconds. The time consuming parts of the algo-
rithms are the initial LU-factorization and the eigenvahie
composition and these are of comparable sizes.

These results are to be compared with the execution times
given for the same problem in [11], where solutions were com-
puted in exact rational arithmetic. There, the processimg t
for one problem instance was 30 seconds for the uncalibrated

case and 1700 seconds for the calibrated case.

6.1.1. RANSAC experiment

experiment wad0, 100 and 1000. We compare the following
algorithms

(i) Fitzgibbon’s non-minimal algorithm [4] for estimating
fundamental matrixt" and single radial distortion from
nine point correspondences based on QEP;

(ii) Grobner based minimal algorithm [10] for estimatihAg
and single radial distortion from eight point correspon-
dences, which use&t(F') = 0;

(iii) Our new minimal algorithm for estimating’ and single
radial distortion for calibrated cameras from 6 point cor-
respondences, which usést(E) = 0 and2EETE —  6.3. Testson Real Images
trace(EET)E = 0;

(iv) Linear algorithm for estimating’ and two differentradial We have tested our minimal algorithm for uncalibrated camer
distortions from 16 point correspondences; with different radial distortions on several differentsef im-

(v) Our new non-minimal algorithm for estimating and  ages. In the first experiment the input images with differeht
two different radial distortions from 12 point correspon- atively large distortions in each image, Figure 8 (Left)reveb-
dences based on generalized eigenvalue problem; tained a$50% cutouts from fish-eye images taken with two dif-

(vi) Our new minimal algorithm for estimating and two dif-  ferent cameras with different radial distortions. Ten&oint
ferent radial distortions from nine point correspondencesmatches were then found by the wide base-line matching algo-
which usesiet(F') = 0. rithm [22]. They contained correct as well as incorrect rhac

Two sets ofimages 11, 12 were generated using the proceduiistortion parameters; and\; were estimated using our algo-

described in Subsection 6.1, 11 fdr = \; and 12 for\; # As. rithm for uncalibrated cameras with different radial distms
Gaussian noise with standard deviation 1 pixel was added tand the kernel voting method for 100 samples. The input JLeft
the image coordinates. and corrected (Center) images are presented in Figure 8. Fig

The number of correct matched/% of correct matches) ure 8 (Right) shows the distribution of real roots for thewe i

among 1000 tentative matches was fixed and the image poingges, from which\; = —0.301250 and X, = —0.368125 were
were corrupted by100 — M)% of random mismatches. In our estimated as the argument of the maximum. The peaks from
caseM varies from100% to 80%. kernel voting are sharp and thés are estimated accurately.
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Fig. 8. Real datag0% cutouts from omnidirectional images. (Left) Input images wdifferent radial distortions for camera 1 (Top) and camera @tt(Bn).
(Center) Corrected images. (Right) Distribution of realtsoobtained by kernel voting. Estimated = —0.301250 and A2 = —0.368125.

RANSAC experiment for\; = A2 ‘

no mismatches 10% mismatches 20% mismatches

Algorithm 10 ‘ 100 | 1000 10 100 ‘1000 10 ‘ 100 ‘ 1000

K'1|631.44826.75873.35(479.11671.42| 772.4/|302.17532.04 632.1
K2(|631.44826.75873.35(479.08671.332772.36| 301.5| 531.9/632.06

Fitzgobbon 9pt

K'1{|695.62835.3§835.38/520.84 685.67(773.36|322.36574.65 660.5
K2|/695.62835.38835.38/520.73 685.6 |773.28(321.78574.54660.36
K'1|| 787.5898.55930.88|662.24 780.85/838.94/517.98675.49 719.2
K2|| 787.5|898.55930.88|662.07 780.6 |838.78/517.53675.22718.96

Kukelova 9pt

Our minimal 6p

Table 1

The comparison of our “single distortion” algorithm for dakted cameras with other existing algorithms within the RARSparadigm by showing the
number of matched<1 within 7 threshold and the number of correct matctié8 among them as a function of the number of samples made from a set of

tentative matches contaminated by mismatches. The number ofesampk10, 100 and 1000, noise level was 1 pixel and threshotd= 1 pixel. Number
of mismatches varied from% to 20%.

In the second experiment we tested our algorithm on imand X, = 0.002500 were estimated. As can be seen the peaks
ages with significantly different distortions. The left igeaFig-  obtained by kernel voting are not so sharp but still sufficten
ure 1 (Left), was obtained as6&% cutout from a fish-eye im- get good estimates of thes even from only 100 samples.
age and the right image was taken with a standard perspective
camera. Since these images had a rather large differenee in 7 ~qnclusions
dial distortion, the tentative point correspondences a@oet
a larger number of mismatches. Distortion parametgrand . . .

Ao were again estimated using our algorithm for uncalibratedn.ﬂ.'IS paper we have given fast and rol_aust algorlthms for_ two
cameras with different radial distortions and the kerndingp m|n|_mal problems pre"'°“5'y. e floatmg pomt_ it
method. The input (Left) and corrected (Center) images argqenc. The tWF’ pr.obler.ns of simultaneously splvmg for rigiat
presented in Figure 1. Figure 1 (Right) shows the distritsuti pose and radial distortion were, due to numerical problgnes,

. . viously solved in exact rational arithmetic only, yielditigem
of real roots for these images from wh = —0.92562 : : . . .
'mag which 0.925625 to time consuming to be of practical value. With the floating

10



RANSAC experiment for\; # Ao ‘

no mismatches 10% mismatches || 20% mismatches
Algorithm 10 ‘ 100 | 1000(| 10 | 100 ‘ 1000 10 ‘ 100 | 1000
. K1|316.34681.22748.03|232.55 415.7| 485.1|| 86.48|322.35328.06
Linear 16pt
K2||316.34681.22748.03(232.55415.69485.08|86.459322.31328.04
o K'1||1418.18697.93763.51| 242.4|546.27546.27|148.55 414.5|528.02
Our non-minimal 12pt
K2||418.18697.93763.51/242.33546.22575.56(148.51414.44527.85
o K'1||625.03801.98845.76(513.03671.77732.56|342.23538.85654.86
Our minimal 9pt
K2(1625.03801.98845.76(512.71671.61732.54|341.31 538.4/654.65

Table 2
The comparison of our minimal “different distortion” algonithand our non-minimal “different distortion” algorithm withe linear 16 point algorithm within
the RANSAC paradigm by showing the number of matchés within 7 threshold and the number of correct matctié2 among them as a function of the
number of samples made from a set of tentative matches contathimat@mismatches. The number of samples Wwas100 and 1000, noise level was 1 pixel

and thresholdr = 1 pixel. Number of mismatches varied fro6% to 20%.

point algorithm presented in this paper we have reduced thg] H. Li, R. Hartley., A non-iterative method for correctirigns distortion

computation time from minutes to milliseconds. Moreoveg, w
have verified that this is done without loss of numerical prec
sion by extensive experiments both on synthetic and real i
ages.

We have also proposed a non-minimal algorithm for estimat-

ing F' and two different radial distortions from 12 point corre-
spondences based on a generalized eigenvalue formulation.

In the experiments we have demonstrated that the radial dis-

m_

from nine-point correspondences, in: Proceedings of OnsioWD5,
ICCV-workshop, 2005.

D. Cox, J. Little, D. O’'Shea, Ideals, Varieties, and Afgoms, Springer
Verlag, 2007.

J. Barreto, K. Daniilidis, Fundamental matrix for cameraghwadial
distortion, in: IEEE International Conference on Computesidn,
Beijing, China, 2005.

[10] Z. Kukelova, T. Pajdla, A minimal solution to the autotadition of radial
distortion, in: Proceedings of Computer Vision and Patteecdgnition
Conference (CPVR), IEEE Press, 2007.

[8]
[9]

tortion estimation is robust both to outliers and noise wheni1] z. kukelova, T. Pajdla, Two minimal problems for camerashwiadial

kernel voting is used over several runs. Finally we have show

that large differences in distortion between two imageshman
handled.
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