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Title: Fast and Robust Numerical Solutions to Minimal

Problems for Cameras with Radial Distortion,
Journal: Computer Vision and Image Understanding,

2008

DOI: 10.1016/j.cviu.2008.11.008
Access to the published version may require

subscription. Published with permission from:
Elsevier Inc.

http://www.lu.se
http://dx.doi.org/10.1016/j.cviu.2008.11.008




Fast and Robust Numerical Solutions to Minimal Problems for Cameras with
Radial Distortion

Zuzana Kukelovaa, Martin Byrödb, Klas Josephsonb, Tomas Pajdlaa, Kalle Åströmb

aCenter for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng., Czech Technical University Prague, Czech Republic
bCentre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

A number of minimal problems of structure from motion for cameras with radial distortion have recently been studied and solved in some
cases. These problems are known to be numerically very challenging and in several cases there were no practical algorithm yielding solutions
in floating point arithmetic. We make some crucial observations concerning the floating point implementation of Gröbner basis computations
and use these new insights to formulate fast and stable algorithms for two minimal problems with radial distortion previously solved in exact
rational arithmetic only: (i) simultaneous estimation of essential matrix and a common radial distortion parameter for two partially calibrated
views and six image point correspondences and (ii) estimation of fundamental matrix and two different radial distortion parameters for two
uncalibrated views and nine image point correspondences. We demonstrate on simulated and real experiments that these two problems can be
efficiently solved in floating point arithmetic. For comparison we have also invented a new non-minimal algorithm for estimating fundamental
matrix and two different radial distortion parameters for two uncalibratedviews and twelve image point correspondences based on a generalized
eigenvalue problem.

Key words: Radial distotion calibration; Minimal problems; Gröbner Basis

1. Introduction

Estimating camera motion and internal calibration parameters
from sequences of images is a challenging computer vision
problem with a broad range of applications [1]. One typically
starts with a noisy set of tentative image point correspondences.
The first step then is to make decisions about correct and in-
correct matches and get a good initial estimate to be able to
deploy a more sophisticated optimization algorithm on the set
of all correct matches.

Two robust and widely used techniques for this purpose are
RANSAC [2] and kernel voting [3], both relying on solving
a large number of instances of the underlying problem, each
with a small number of point correspondences. There is thus a
need to develop fast and stable algorithms for solving geometric
vision problems with a minimal number of points. Typically
this amounts to solving a system of polynomial equations in
several variables. These problems are known to be numerically
very challenging and in several cases there exist no practical
algorithm yielding solutions in floating point arithmetic.

Traditionally, minimal problems have been formulated as-
suming a linear pin-hole camera model with different restric-
tions on the internal calibration parameters etc. However,for

some cameras such fish-eye lenses this can be insufficient and
one might need to handle strong radial distortions already from
the outset.

The particularly interesting solution to the simultaneouses-
timation of the fundamental matrix and single radial distortion
parameter, based on the division model, has been introduced
by Fitzgibbon [4]. His formulation leads to solving a system
of algebraic equations. However, Fitzgibbon did not use the
algebraic constraints on the fundamental matrix. Thanks tone-
glecting the constraints, he worked with a very special system
of algebraic equations which can be solved numerically by us-
ing a quadratic eigenvalue solver. Micusik and Pajdla [5,6]also
neglected the constraints when formulating the estimationof a
paracatadioptric camera model from image matches as a quar-
tic eigenvalue problem.

Li and Hartley [7] treated the original Fitzgibbon’s problem
as a system of algebraic equations and used the hidden variable
technique [8] to solve them. The resulting technique solves
exactly the same problem as [4] but in a different way.

Solving for the fundamental matrix under different radial
distortions was first studied in [9], where anon-minimal algo-
rithm based on 15 point correspondences was given for a pair
of uncalibrated cameras.

Preprint submitted to Elsevier 8 January 2009



More recently, in [10,11], a number of differentminimal
problems with radial distortion have been studied and practical
solutions were given in some cases.

The state-of-the-art method for solving polynomial equations
is based on calculations with Gröbner bases [12] and has many
applications in computer vision, but also in other fields such
as cryptology [13] and robotics [14]. In [15,16] Gröbner bases
were used to derive a fast algorithm for globally optimal three
view triangulation under theL2-norm.

In this paper, we further develop the techniques of numerical
Gröbner basis computations. In particular we (i) note the impor-
tance of obtaining a single elimination step in the Gröbner basis
computation, (ii) give guidelines for how this can be achieved
and (iii) give a new simplified formulation of the Gröbner ba-
sis computation procedure based on LU factorization, which
reduces the computational burden of the elimination step.

Leveraging on these new insights, we formulate fast and nu-
merically stable algorithms for two minimal problems with ra-
dial distortion previously unsolved in floating point arithmetic:
(i) simultaneous estimation of essential matrix and a common
radial distortion parameter for two partially calibrated views
and six image point correspondences and (ii) estimation of fun-
damental matrix and two different radial distortion parameters
for two uncalibrated views and nine image point correspon-
dences.

We demonstrate the speed and intrinsic numerical stability
as well as robustness to noise of the proposed algorithms using
both synthetic data and real images.

We compare our minimal algorithms with the existing
Fitzgibbon’s non-minimal algorithm [4] for estimating funda-
mental matrixF and a single radial distortion from 9 point
correspondences based on QEP, the Gröbner basis minimal
algorithm [10] for a single radial distortion and 8 point corre-
spondences, which usesdet(F ) = 0, a linear 12 point algo-
rithm for estimatingF and two different radial distortions and
finally with the new non-minimal algorithm for two different
radial distortions based on the generalized eigenvalue problem
proposed in this paper.

2. Review of Gr̈obner Basis Techniques for Polynomial
Equation Solving

Solving systems of polynomial equations is a challenging prob-
lem in many respects and there exist no practical numerically
stable algorithms for the general case. Instead, special purpose
algorithms need to be developed for specific applications. The
state-of-the-art tool for doing this is calculations with Gröbner
bases [8].

Our general goal is to find the complete set of solutions to a
system

f1(x) = 0, . . . , fm(x) = 0, (1)

of m polynomial equations inn variablesx = (x1, . . . , xn).
The polynomialsf1, . . . , fm generate anideal I in C[x], the
ring of multivariate polynomials inx over the field of complex
numbers defined as the set

I = {g(x) : g(x) = Σkhk(x)fk(x)}, (2)

where thehk(x) are any polynomials.
The Gr̈obner basis method for equation solving essentially

builds on a generalization of polynomial division to the multi-
variate case. A concept arising in multivariate polynomialdivi-
sion which does not exist in the univariate case is division by
a set of polynomials. See [8] for details. Division by an ideal
as given by (2) can then be defined as division by the set of
generatorsfk.

The starting point now is to consider the space of all pos-
sible remainders under division byI. This space is denoted
C[x]/I and referred to as thequotient space. It can be seen as
a generalization of the modulo ringsZn to polynomials. A fa-
mous result from algebraic geometry now states that if the set
of equations (1) has a finite set of zeros, thenC[x]/I will be
a finite-dimensional linear space with dimension equal to the
number of zeros of (1) [8].

With the spaceC[x]/I in hand an elegant trick now yields
the solutions to (1). Consider multiplication by one of the vari-
ablesxk. This generates a linear mapping fromC[x]/I to itself
and since we are in a finite-dimensional space, by selecting an
appropriate linear basis, this mapping can be represented as a
matrixmxk

. This matrix is known as theaction matrix and the
eigenvalues ofmxk

are exactly the values ofxk on the zeros
of (1) [8]. Furthermore, the eigenvectors ofmT

xk
correspond to

the vector of monomials evaluated at the zeros of (1).
The crucial step in the process is to compute the remain-

der arithmetic ofC[x]/I. Multivariate polynomial division by
I is complicated by the fact that it is not well defined for
most choices of generators. Consider the operatorP : C[x] →
C[x]/I representing division byI for some choice of gener-
ators. ForP to be well defined we require thatP(f1(x) +
f2(x)) = Pf1(x) + Pf2(x) for all f1(x), f2(x) ∈ C[x].

Fortunately there exist a canonical choice of generators for
which P is well defined. This set of generators ofI is known
as the Gr̈obner basis ofI and allows direct construction of the
action matrix, see [16] for details. Calculating the Gröbner ba-
sis of I is therefore our main concern. In general, this is ac-
complished by Buchberger’s algorithm which works well in
exact arithmetic. However, in floating point arithmetic it very
easily becomes unstable. There exist some attempts to remedy
this [17,18], but for more difficult cases the only reliable ap-
proach (so far) is to study a particular class of equations (e.g.
relative orientation for calibrated cameras [19], optimalthree
view triangulation [15], etc.) and use knowledge of what the
structure of the Gr̈obner basis should be to design a special
purpose Gr̈obner basis solver. This method has been developed
by Stewenius and others in a number of papers [12,10,20]. In
the following section we outline how this is done and provide
new insights enabling us to solve the two problems with radial
distortion treated in this paper.

3. A Matrix Version of Buchberger’s Algorithm

The reason why Buchberger’s algorithm breaks down in float-
ing point arithmetic is that eliminations of monomials are per-
formed successively and this causes round-off errors to accu-
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Fig. 1. (Left) Input images with different radial distortions (Top)66% cutout from omnidirectional image and (Bottom) image taken witha standard perspective
camera with very mild distortion. (Center) Corrected images. (Right) Distribution of real roots obtained by kernel voting. Estimatedλ1 = −0.925625 and
λ2 = 0.002500.

mulate to the point where it is completely impossible to tell
whether a certain coefficient should be zero or not. The idea
introduced by Faugere [17] is to write the list of equations in
a matrix form

C


xα1

...

xαn

 = 0, (3)

where
[
xα1 · · · xαn

]T

is a vector of monomials with the no-

tationxαk = xαk1
1 · · ·xαkp

p . Elimination of leading terms now
translates to matrix operations and we then have access to a
whole battery of techniques from numerical linear algebra al-
lowing us to perform many eliminations at the same time with
control on pivoting etc.

However, as mentioned above, the real power of this ap-
proach is brought out by combining it with knowledge about a
specific problem obtained in advance with a computer algebra
system such as Macaulay2 [21]. One can then get information
about exactly which monomials occur in Buchberger’s algo-
rithm and the dimension ofC[x]/I.

3.1. Obtaining a Single Elimination Step

With knowledge of the particular problem at hand, the ideal
situation is to obtain a single big elimination step. The reason
for this is that each elimination step can be ill conditionedand

with errors accumulating the situation soon becomes hopeless.
With a single elimination step we get maximal control over row
pivoting etc. Moreover, the basis selection method introduced
in [16] can further improve stability, but is only applicable when
a single elimination step is possible.

In Buchberger’s Algorithm, two polynomials are picked and
the least common multiple of their leading terms is eliminated
by multiplying them with the right monomials and then sub-
tracting them. This is done a large number of times until con-
vergence. We mimick this process but aim at completely sepa-
rating multiplication by monomials and elimination. The steps
are

(i) Multiply the original set of equations with a large number
of monomials yielding an expanded set of equations.

(ii) Stack the coefficients of these equations in an expanded
coefficient matrixCexp.

(iii) If enough new equations were generated in the previous
step, row operations onCexp yield the elements of the
Gröbner basis we need.

An important observation made independently in [16] and [10]
is that not all elements of the Gröbner basis are needed. Let
B denote a selection of basis monomials forC[x]/I. Then
to construct the action matrixmxk

we only need to calculate
the elements of the idealI with leading monomials in the set
(xk · B) \ B.

Let M denote the complete set of monomials and letR =
(xk · B)\B denote the set of monomials that need to be reduced
to C[x]/I. Finally, letE (E for excessive) denote the remaining
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monomials. We then have a partitioning of the monomials as
M = E ⋃R⋃B.

Now, reorder the columns ofCexp and the vector of mono-
mialsX to reflect this

[
CE CR CB

] 
XE

XR

XB

 = 0. (4)

TheE-monomials are not in the basis and do not need to be
reduced so we eliminate them performing an LU factorization
of Cexp yielding the following schematic result:

UE1 CR1 CB1

0 UR2 CB2



XE

XR

XB

 = 0, (5)

whereUE1 andUR2 are upper triangular. We can now discard
the top rows of the coefficient matrix producing[

UR2 CB2

] XR

XB

 = 0. (6)

From this we see that if the submatrixUR2 is of full rank we get
precisely the polynomials from the idealI we need by forming[

I U−1
R2

CB2

] XR

XB

 = 0, (7)

or equivalently

XR = −U−1
R2

CB2XB, (8)

which means that theR-monomials can now be expressed
uniquely in terms of theB-monomials. This is precisely what
we need to compute the action matrixmxk

in C[x]/I. In other
words, the property ofUR2 as being of full rank is sufficient
to get the part of the remainder arithmetic ofC[x]/I that we
need to computemxk

.

4. Application to Minimal Problems with Radial Distortion

Based on the techniques described in the previous section, we
are now able to provide fast and stable algorithms for two
previously untractable minimal problems with radial distortion:

(i) The problem of estimating a one-parameter radial dis-
tortion model and epipolar geometry from image point
correspondences in two uncalibrated views with different
radial distortions in each image.

(ii) The problem of estimating a one-parameter radial dis-
tortion model and epipolar geometry from image point
correspondences in two partially calibrated views.

These two problems were previously studied in [11] and found
to be numerically very challenging. In [11] the authors pro-
vided solutions to these problems computed in exact rational
arithmetic only. This results in very long computational times
and is not usable in practical applications. Here we show that

these two problems can be efficiently solved in floating point
arithmetic.

4.1. Uncalibrated Case

In our solution we use the same formulation of the problem
as in [11]. This formulation assumes a one-parameter division
model [4] given by the formula

pu ∼ pd/(1 + λr2
d) (9)

wherepu = (xu, yu, 1)T andpd = (xd, yd, 1)T are the cor-
responding undistorted, resp. distorted, image points, and rd is
the radius ofpd w.r.t. the distortion center.

It is known that to get solutions to this minimal problem for
uncalibrated cameras with different radial distortionsλ1 and
λ2 in each image, we have to use the epipolar constraint for 9
point correspondences

p⊤ui
(λ1) Fp′ui

(λ2) = 0, i = 1, . . . , 9 (10)

and the singularity of the fundamental matrixF

det (F) = 0. (11)

Assumingf3,3 6= 0 we can setf3,3 = 1 and obtain 10 equations
in 10 unknowns.

4.1.1. Eliminating variables
The epipolar constraint gives 9 equations with 16 monomials
(f3,1λ1, f3,2λ1, f1,3λ2, f2,3λ2, λ1λ2, f1,1, f1,2, f1,3, f2,1, f2,2,
f2,3, f3,1, f3,2, λ1, λ2, 1) and 10 variables(f1,1, f1,2, f1,3, f2,1,
f2,2, f2,3, f3,1, f3,2, λ1, λ2).

Among them, we have again four variables which appear
in one monomial only(f1,1, f1,2, f2,1, f2,2) and four variables
which appear in two monomials(f1,3, f2,3, f3,1, f3,2). Since
we have 9 equations from the epipolar constraint we can use
these equations to eliminate 6 variables, four variables which
appear in one monomial only and two of the variables which
appear in two monomials. In this solution we have selectedf1,3

andf2,3.
We reorder the monomials contained in the 9 equations and

put the monomials containingf1,1, f1,2, f2,1, f2,2, f1,3 and
f2,3 at the beginning. The reordered monomial vector becomes
X = [f1,1, f1,2, f2,1, f2,2, f1,3λ2, f1,3, f2,3λ2, f2,3, f3,1λ1,
f3,2λ1, λ1λ2, f3,1, f3,2, λ1, λ2, 1]T .

We rewrite the 9 equations from the epipolar constraint on
matrix formCX = 0, whereC is the coefficient matrix. After
performing Gauss-Jordan (G-J) elimination on the matrixC,
we obtain 9 equations on the form

fi = LT (fi) + gi(f3,1, f3,2, λ1, λ2) = 0, (12)

where LT (fi) = f1,1, f1,2, f2,1, f2,2, f1,3λ2, f1,3, f2,3λ2,
f2,3 resp. f3,1λ1 for i = 1, 2, 3, 4, 5, 6, 7, 8 resp. 9 and
gi(f3,1, f3,2, λ1, λ2) are 2ndorder polynomials in four vari-
ablesf3,1, f3,2, λ1, λ2. This means that we can express the
6 variables,f1,1, f1,2, f1,3, f2,1, f2,2, f2,3 as functions of the
other four variablesf3,1, f3,2, λ1, λ2.

f1,1 = −g1(f3,1, f3,2, λ1, λ2)
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f1,2 = −g2(f3,1, f3,2, λ1, λ2)

f1,3 = −g6(f3,1, f3,2, λ1, λ2) (13)

f2,1 = −g3(f3,1, f3,2, λ1, λ2)

f2,2 = −g4(f3,1, f3,2, λ1, λ2)

f2,3 = −g8(f3,1, f3,2, λ1, λ2),

Substituting these expressions into the other three equations
from the epipolar constraint and also into the singularity con-
straint forF gives 4 polynomial equations in 4 unknowns (one
of 2nd degree, two of3rd degree and one of5th degree)

λ2(−g6(f3,1, f3,2, λ1, λ2)) + g5(f3,1, f3,2, λ1, λ2) = 0

λ2(−g8(f3,1, f3,2, λ1, λ2)) + g7(f3,1, f3,2, λ1, λ2) = 0

f3,1λ1 + g9(f3,1, f3,2, λ1, λ2) = 0

det


−g1 −g2 −g6

−g3 −g4 −g8

f3,1 f3,2 1

 = 0. (14)

This problem has 24 solutions in general [11].

4.1.2. The Solver
The numerical solver is constructed starting with the four re-
maining equations (14) in the four unknownsf3,1, f3,2, λ1 and
λ2. The first step is to expand the number of equations, as out-
lined in Section 3, by multiplying them by a handcrafted set
of monomials in the four unknowns yielding 393 equations in
390 monomials. See Section 4.1.3 for details.

The coefficients of the equations are then stacked in a matrix
C as in (3). Following this, the monomials are ordered as in (4).
The setsE andR depend on which variable is used to create
the action matrix. For this problemf3,1 was used as the “ac-
tion” variable. The classical method is thereafter to choose the
linear basisB of C[x]/I to be the 24 lowest monomials (w.r.t.
some monomial order). This is enough to get a solution to the
problem, but as mentioned in Section 3 we can use the method
introduced in [16] to select a basis of linear combinations of
monomials from a larger set and thereby improve numerical
stability. Empirically, we have found that the linear basiscan
be selected from the set of all monomials up to degree four
excluding the monomialλ4

1. The setR then consists of mono-
mials of degree five that are reached when the monomials of
degree four are multiplied withf3,1. E is the remaining set of
285 monomials.

Putting the part ofC corresponding toE andR on triangular
form by means of an LU decomposition now produces (5). We
can then remove all equations that include excessive monomials
and still have enough information to construct the action matrix.

Finally, we make the choice of representatives forC[x]/I by
the method in [16] and do the last elimination to get the part
of the Gr̈obner basis we need to construct the action matrix.

4.1.3. Details on the Expansion Step for the Uncalibrated Case
We have found experimentally that to construct the necessary
elements of the Gröbner basis, we need to generate polynomials
up to a total degree of eight. Thus, the2nd degree polynomial

has to be multiplied with all monomials up to degree six and
monomials with the corresponding degrees for the3rd and5th

degree polynomials.
Further investigations has shown that not exactly all mono-

mials up to degree eight are needed, so in the implementation
the2nd degree polynomial was only multiplied with monomi-
als up to degree five and each variable not higher than four.
Moreoverλ1 was not multiplied with degrees higher than two.
For the other polynomials it was possible to limit the degreeof
each individual variable to one lower than the total degree.

These multiplications yield 393 equations in 390 monomi-
als. Without the last fine tuning of the degrees, the number of
equations and monomials will be larger but all extra monomi-
als will be in the setE and will make no real difference to the
solver except slightly longer computation times.

4.2. Calibrated Case

To solve the minimal problem for calibrated cameras, we make
use of the epipolar constraint for 6 point correspondences

p⊤ui
(λ) Ep′ui

(λ) = 0, i = 1, . . . , 6, (15)

the singularity of the essential matrixE

det (E) = 0 (16)

and the trace constraint, which says that two singular values of
the essential matrix are equal

2
(
EET

)
E− trace(EET )E = 0. (17)

Again assuminge3,3 6= 0, we can sete3,3 = 1 and obtain 16
equations in 9 unknowns.

4.2.1. Eliminating variables
The epipolar constraint gives 6 equations in 15 monomials

(λe1,3, λe2,3, λe3,1, λe3,2, λ
2, e1,1, e1,2, e1,3, e2,1, e2,2, e2,3,

e3,1, e3,2, λ, 1) and 9 variables(e1,1, e1,2, e1,3, e2,1, e2,2, e2,3,
e3,1, e3,2, λ).

Using similar a elimination method as in the uncalibrated
case we eliminate 5 of these 9 variables. All these variables
can be eliminated simultaneously.

We have four variables which appear in one monomial only
(e1,1, e1,2, e2,1, e2,2) and four variables which appear in two
monomials(e1,3, e2,3, e3,1, e3,2). Since we have six equations
of which each contains all 15 monomials we can eliminate
five of these nine variables. We select the first four variables
e1,1, e1,2, e2,1, e2,2 that appear in one monomial only (and can
be straightforwardly eliminated) and the fifth variable ase1,3

which appears in two monomials.
We reorder the monomials contained in the 6 equations

putting monomials containinge1,1, e1,2, e2,1, e2,2 and e1,3 at
the beginning. The reordered monomial vector will beX =
[e1,1, e1,2, e2,1, e2,2, e1,3λ, e1,3, e2,3λ, e3,1λ, e3,2λ, λ2, e2,3,
e3,1, e3,2, λ, 1]T .

We rewrite 6 equations from the epipolar constraint on ma-
trix form CX = 0. After performing Gauss-Jordan (G-J) elim-
ination on the matrixC, we obtain 6 equations of the form

fi = LT (fi) + gi(e2,3, e3,1, e3,2, λ) = 0, (18)
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whereLT (fi) = e1,1, e1,2, e2,1, e2,2, e1,3λ, resp.e1,3 for i =
1, 2, 3, 4, 5 resp.6 andgi(e2,3, e3,1, e3,2, λ) are2ndorder poly-
nomials in 4 variablese2,3, e3,1, e3,2, λ. So, the five variables
e1,1, e1,2, e1,3, e2,1, e2,2 can be expressed as functions of the
other four variablese2,3, e3,1, e3,2, λ.

e1,1 = −g1(e2,3, e3,1, e3,2, λ)

e1,2 = −g2(e2,3, e3,1, e3,2, λ)

e1,3 = −g6(e2,3, e3,1, e3,2, λ) (19)

e2,1 = −g3(e2,3, e3,1, e3,2, λ)

e2,2 = −g4(e2,3, e3,1, e3,2, λ).

We substitute these expressions into the remaining equation
from the epipolar constraint and into the singularity and trace
constraints forE. In this way we obtain 11 polynomial equations
in 4 unknowns (one of degree3, four of degree5 and six of
degree6):

One equation from the epipolar constraint

λ(−g6(e2,3, e3,1, e3,2, λ)) + g5(e2,3, e3,1, e3,2, λ) = 0, (20)

one equation from the singularity constraint

det (E) = 0, (21)

and 9 equations from the trace constraint

2
(
EET

)
E− trace(EET )E = 0, (22)

with

E =


−g1 −g2 −g6

−g3 −g4 e2,3

e3,1 e3,2 1

 . (23)

In [11] it was shown that this problem has 52 solutions.

4.2.2. The Solver
The numerical solution of this problem largely follows thatof
the uncalibrated version. In the first expansion, all equations
are multiplied with monomials to reach degree eight. This gives
356 equations in 378 monomials. As in the uncalibrated case it
is possible to reduce the number of monomials by fine tuning
the degrees we need to use, in this case yielding 320 equations
in 363 monomials.

The next step is to reorder the monomials as in equation (4).
Once again, the linear basis ofC[x]/I can be constructed from
the monomials of degree four and lower.R will then consist
of those monomials of degree five that are reached when the
degree four monomials are multiplied with the variablee3,1,
which is used as the “action” variable.

As before,C is transformed to triangular form by LU de-
composition and after that we only consider those equations
that do not include any of the monomials inE . Now C holds
all necessary information to choose representatives inC[x]/I
by the method of [16] and create the action matrix with respect
to multiplication bye3,1.

5. Non-minimal solution to the uncalibrated case with
different distortions.

For comparison we have also created a new non-minimal algo-
rithm for estimating fundamental matrix and two different radial
distortion parameters for two uncalibrated views and twelve im-
age point correspondences based on the generalized eigenvalue
problem. This algorithm is similar to the well-known algorithm
for estimatingF and a single distortion parameter from nine
point correspondences proposed by Fitzgibbon [4] which was
formulated as a quadratic eigenvalue problem.

We also formulate the problem with different distortions as
a generalized eigenvalue problem. We use equations from the
epipolar constraint for 12 point correspondences

p⊤ui
(λ1) Fp′ui

(λ2) = 0, i = 1, . . . , 12. (24)

Assumingf3,3 6= 0 we can setf3,3 = 1 and obtain 12 equations
with 16 monomials(f3,1λ1, f3,2λ1, f1,3λ2, f2,3λ2, λ1λ2, f1,1,
f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, λ1, λ2, 1) and 10 variables
(f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, λ1, λ2).

Using the standard notation for the division model

pu [λ) ∼ (
xd, yd, 1 + λr2

d

]T
, (25)

we can rewrite the equations from the epipolar constraint as

(D1 + λ2D2)v = 0, (26)

whereD1 ≡ [xdi
x′di

xdi
y′di

xdi
ydi

x′di
ydi

y′di
ydi

x′di
y′di

r2
di

x′di

r2
di

y′di
r2
di

1] andD2 ≡ [0 0 xdi
r′

2

di
0 0 ydi

r′
2

di
0 0 0 0 r2

di
r′

2

di
r′

2

di
],

i = 1, . . . 12, are12× 12 matrices containing only known dis-
torted coordinates andv is the12×1 vector of unknown mono-
mials v = [f11, f12, f13, f21, f22, f23, f31, f32, f3,1λ1, f3,2λ1,
λ1, 1].

The formulation (26) is a generalized eigenvalue problem
which can be easily solved using standard efficient algorithms.
For example MATLAB provides the function polyeig.

Because D3 has eight zero columns, this generalized eigen-
value problem leads to eight “infinite” eigenvalues. Thus, there
are at most four finite real solutions to this problem.

6. Experiments

We have tested the algorithms for the uncalibrated and cali-
brated minimal problems on synthetic images with various lev-
els of noise, outliers and radial distortions as well as on real
images. For comparison we have also tested non-minimal algo-
rithms on synthetic images. The time of computation has been
measured for both minimal algorithms.

The minimal algorithms proposed in this paper are signifi-
cantly more stable than the algorithms presented in [11] which
ran in exact rational arithmetic only. Since doing the computa-
tions in exact arithmetic is extremely slow (minutes instead of
milliseconds), a comparison with the floating point algorithm
presented in this paper is not meaningful and has therefore been
omitted.

The problems presented in this paper are solved by finding
the roots of a system of polynomial equations which means
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Fig. 2. (Left) The number of real solutions for the uncalibrated case. (Right)
The number of real solutions for the calibrated case.

that we obtain several potentially correct answers, 52 in the
calibrated case, 24 in the uncalibrated minimal case and 4 in
the uncalibrated non-minimal case. In general we obtain more
than one real root (Figure 2), in which case we need to select
the best one,i.e. the root which is consistent with most mea-
surements. To do so, we treat the real roots obtained by solving
the equations for one input as real roots from different inputs
and use kernel voting [3] for several inputs to select the best
root among all generated roots. The kernel voting is done us-
ing a Gaussian kernel with fixed variance and the estimates of
λ1 andλ2 in the uncalibrated case andλ in the calibrated case
are found as the positions of the largest peaks [3,10].

6.1. Tests on Synthetic Images

For all problems treated in this paper, the same synthetic exper-
iments were carried out to evaluate the quality of the solvers.

In all our simulated experiments we generate our synthetic
data using the following procedure:

(i) Generate a 3D scene consisting of1000 points distributed
randomly within a cube. ProjectM% of the points on
image planes of the two displaced cameras, these are
matches. In both image planes, generate(100−M)% ran-
dom points distributed uniformly in the image, these are
mismatches. Altogether, they become undistorted corre-
spondences, true as well as false matches.

(ii) Apply different radial distortions to the undistortedcor-
respondences in each image and in this way generate
noiseless distorted points.

(iii) Add Gaussian noise of standard deviationσ to the dis-
torted points.

Uncalibrated case
In the first two experiments we study the robustness of our

minimal as well as non-minimal algorithm for the uncalibrated
case to Gaussian noise added to the distorted points.

The first experiment investigates the estimation error ofλ
as a function of noise. Results for the minimal algorithm are
presented in Figure 3 and for the non-minimal algorithm in
the Figure 4. The ground truth radial distortions parameters
were λ1 = −0.2, λ2 = −0.3 Figure 3 and Figure 4 (Top)
in the first case andλ1 = −0.01, λ2 = −0.7 Figure 3 and
Figure 4 (Bottom) in the second case. The noise varied from
0 to 2 pixels. For each noise level relative errors for 2000
λ’s (estimated as the closest values to the ground truth value

0 0.01 0.1 0.5 1 2

−15

−10

−5

0

Lo
g 10

 o
f r

el
at

iv
e 

er
ro

r 
in

 λ
1

Noise Standard Deviation (pixels)
0 0.01 0.1 0.5 1 2

−15

−10

−5

0

Lo
g 10

 o
f r

el
at

iv
e 

er
ro

r 
in

 λ
1

Noise Standard Deviation (pixels)

0 0.01 0.1 0.5 1 2
−15

−10

−5

0

Lo
g 10

 o
f r

el
at

iv
e 

er
ro

r 
in

 λ
1

Noise standard deviation (pixels)
0 0.01 0.1 0.5 1 2

−15

−10

−5

0

Lo
g 10

 o
f r

el
at

iv
e 

er
ro

r 
in

 λ
2

Noise standard deviation (pixels)

Fig. 3. Uncalibrated case: Relative errors of (Left)λ1 and (Right)λ2 as a
function of noise. Ground truth (Top)λ1 = −0.2, λ2 = −0.3 and (Bottom)
λ1 = −0.01, λ2 = −0.7. Blue boxes contain values from25% to 75%

quantile.
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Fig. 4. Non-minimal “12 point” algorithm for uncalibrated case: Relative
errors of (Left)λ1 and (Right)λ2 as a function of noise. Ground truth (Top)
λ1 = −0.2, λ2 = −0.3 and (Bottom)λ1 = −0.01, λ2 = −0.7. Blue
boxes contain values from25% to 75% quantile.

from all solutions) were computed. The results in Figure 3
and Figure 4 for the estimatedλ1 (Left) and λ2 (Right) are
presented by the Matlab functionboxplot which shows values
of the25% to 75% quantiles as a blue box with red horizontal
line at median. The red crosses show data beyond1.5 times the
interquartile range.

Both algorithms give similar results. For noiseless data we
obtain very accurate estimates of radial distortion parameters
even for very differentλ’s. For larger noises thelog10 rela-
tive errors are much higher (mostly around10−1). However
obtainedλ’s are still satisfactory and mostly differ from the
ground truth value in the second decimal place. The main point
though is not to use a one set of points to get a good estimate,
but to repeatedly draw configurations from a larger set of po-
tential matches and then usee.g. kernel voting to get a more
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as a function of noise, (Top) ground truthλ1 = −0.2, λ2 = −0.3 (green
lines),90% of inliers and 100 samples in kernel voting and (Bottom) ground
truth λ1 = −0.01, λ2 = −0.7, 100% of inliers and 50 samples in kernel
voting.
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Fig. 6. Non-minimal “12 point” algorithm for uncalibrated case, kernel voting:
Estimated (Left)λ1 and (Right)λ2 as a function of noise, (Top) ground
truth λ1 = −0.2, λ2 = −0.3 (green lines),90% of inliers and 100 samples
in kernel voting and (Bottom) ground truthλ1 = −0.01, λ2 = −0.7, 100%

of inliers and 50 samples in kernel voting.

reliable estimate. Finally, the result can be further enhanced
using the obtained estimate as a good starting guess in a large
scale bundle adjustment. The effect of kernel voting is studied
in the second experiment.

In this experiment we did not select the root closest to the
ground truth value for each run of the algorithm, instead we used
kernel voting to select the bestλ’s among all generated roots
from several runs. The ground truth radial distortion parameters
were as in the previous experiment (λ1 = −0.2, λ2 = −0.3 in
the first case andλ1 = −0.01, λ2 = −0.7 in the second case)
and the level of noise varied from 0 to 2 pixels. Moreover, in
the first case there were10% of outliers in the image (M=90).

The testing procedure was as follows:
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Fig. 7. Calibrated case: (Left) relative errors ofλ as a function of noise,
ground truthλ = −0.3. (Right) kernel voting: Estimatedλ using kernel
voting for roots computed from 200 6-tuples of correspondences randomly
drawn for each noise level. Ground truthλ = −0.3 (green line).

(i) RepeatK times (We useK from 50 to 100 though for
more noisy dataK from 100 to 200 gives better results).
(a) Randomly choose 9 point correspondences from a

set ofN potential correspondences (6 point corre-
spondences for the calibrated case).

(b) Normalize image point coordinates to[−1, 1].
(c) Find 24 roots using our algorithm (4 roots for the

non-minimal algorithm and 52 for the calibrated
case).

(d) Select the real roots in the feasible interval,i.e.
−1 < λ1, λ2 < 1 and the correspondingF’s.

(ii) Use kernel voting to select the best root.
Figure 5 showsλ’s computed using our minimal algorithm

for the uncalibrated case as a function of noise and Figure 6
showsλ’s computed using our non-minimal algorithm. In the
first case with outliers Figure 5 and Figure 6 (Top) 100λ’s
were estimated using kernel voting for roots computed from
100 (K = 100) 9-tuples of correspondences randomly drawn
for each noise level. In the second case Figure 5 and Fig-
ure 6 (Bottom) 200λ’s were estimated using kernel voting for
roots computed from 50 (K = 50) 9-tuples of correspondences.
This means that for each noise level our algorithm ran 10,000
times in both cases.

The results are again presented by the Matlab functionbox-
plot.

For the minimal algorithm the median values forλ1 andλ2

are very close to the ground truth value for all noise levels from
0 to 2 pixels and also for very different radial distortion param-
eters Figure 5 (Bottom) and10% of outliers Figure 5 (Top).

The median values for the non-minimal “12 point” algo-
rithm are also close to the ground truth values for all noise
levels and also for very different radial distortion parameters
Figure 6 (Bottom) and10% of outliers Figure 6 (Top). How-
ever, the variances of this “12 point” algorithm are considerably
larger, especially for higher noise levels, than the variances of
the minimal algorithm Figure 5. It is significant especiallyfor
data with outliers Figure 6 (Top). This is because for 12 points
we have higher probability of choosing contaminated sample
(sample containing outliers) than for 9 points. The minimalal-
gorithm thus produces higher number of good estimates for the
fixed number of samples. This is good both for RANSAC as
well as for kernel voting.
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Calibrated case
The same synthetic experiments were carried out for the

calibrated solver.
The results of the first experiment which shows relative errors

of the estimatedλ as a function of noise are shown in Figure 7.
The ground truth radial distortion wasλ = −0.3. For noiseless
data we again obtain very precise estimates of radial distortion
parameterλ. For larger noise levels thelog10 relative errors are
slightly larger than for the uncalibrated case. However, using
kernel voting we can still obtain good estimates. This is shown
by our second experiment.

In this experimentλ was estimated 50 times using kernel vot-
ing for roots computed from 200 6-tuples of correspondences
randomly drawn for each noise level, Figure 7. The median
values forλ are again very close to the ground truth value
λ = −0.3 for all noise levels from 0 to 2 pixels. However the
variances of this for the calibrated case are larger, especially
for higher noise levels, than the variances for the uncalibrated
case. This means that for good estimates ofλ this algorithm
requires more samples in the kernel voting procedure than in
the uncalibrated case.

6.1.1. RANSAC experiment
In the last experiment we compare our algorithms with other
existing algorithms within the RANSAC paradigm by showing
the number of correct matches recovered as a function of the
number of samples made from a set of tentative matches con-
taminated by mismatches. The number of samples used for our
experiment was10, 100 and1000. We compare the following
algorithms

(i) Fitzgibbon’s non-minimal algorithm [4] for estimating
fundamental matrixF and single radial distortion from
nine point correspondences based on QEP;

(ii) Gröbner based minimal algorithm [10] for estimatingF
and single radial distortion from eight point correspon-
dences, which usesdet(F ) = 0;

(iii) Our new minimal algorithm for estimatingE and single
radial distortion for calibrated cameras from 6 point cor-
respondences, which usesdet(E) = 0 and 2EET E −
trace(EET )E = 0;

(iv) Linear algorithm for estimatingF and two different radial
distortions from 16 point correspondences;

(v) Our new non-minimal algorithm for estimatingF and
two different radial distortions from 12 point correspon-
dences based on generalized eigenvalue problem;

(vi) Our new minimal algorithm for estimatingF and two dif-
ferent radial distortions from nine point correspondences,
which usesdet(F ) = 0.

Two sets of images I1, I2 were generated using the procedure
described in Subsection 6.1, I1 forλ1 = λ2 and I2 forλ1 6= λ2.
Gaussian noise with standard deviation 1 pixel was added to
the image coordinates.

The number of correct matches (M% of correct matches)
among 1000 tentative matches was fixed and the image points
were corrupted by(100−M)% of random mismatches. In our
caseM varies from100% to 80%.

Table 1 shows results of the first 3 algorithms (i-iii) for single
radial distortionλ = −0.3 and fixed thresholdτ = 1 pixel on
the distance of an image point to epipolar curves. The results
were obtain as a mean values from 100 runs of RANSAC for
10,100 and 1000 samples. Table 2 shows results of the last 3
algorithms (iv-vi) for different radial distortionsλ1 = −0.2
andλ2 = −0.3 and fixed thresholdτ = 1 pixel.

The first row in both tables shows the number of matches
K1 within τ threshold and the second row shows the number
of correct matchesK2 among them.

The results show that the algorithms sampling fewer points
faster hit a non-contaminated sample than the algorithms sam-
pling more points. Therefore, our minimal algorithms give bet-
ter results than non-minimal algorithms. This is significant es-
pecially for higher number of mismatches.

6.2. Time Consumption

To evaluate the speed of the new algorithm a reasonably opti-
mized version of the algorithm for the uncalibrated case wasim-
plemented. The implementation was done in Matlab so rewrit-
ing the algorithm in a compiled language such as C should
reduce the execution time further.

The algorithm was run 10,000 times and the time consump-
tion was measured using the Matlab profiler. The experiments
were performed on an Intel Core 2 CPU2.13 GHz machine
with 2 GB of memory. The estimated average execution time for
solving one instance of the uncalibrated problem was 16 mil-
liseconds. The corresponding time for the calibrated problem
was 17 milliseconds. The time consuming parts of the algo-
rithms are the initial LU-factorization and the eigenvaluede-
composition and these are of comparable sizes.

These results are to be compared with the execution times
given for the same problem in [11], where solutions were com-
puted in exact rational arithmetic. There, the processing time
for one problem instance was 30 seconds for the uncalibrated
case and 1700 seconds for the calibrated case.

6.3. Tests on Real Images

We have tested our minimal algorithm for uncalibrated cameras
with different radial distortions on several different sets of im-
ages. In the first experiment the input images with differentrel-
atively large distortions in each image, Figure 8 (Left), were ob-
tained as60% cutouts from fish-eye images taken with two dif-
ferent cameras with different radial distortions. Tentative point
matches were then found by the wide base-line matching algo-
rithm [22]. They contained correct as well as incorrect matches.
Distortion parametersλ1 andλ2 were estimated using our algo-
rithm for uncalibrated cameras with different radial distortions
and the kernel voting method for 100 samples. The input (Left)
and corrected (Center) images are presented in Figure 8. Fig-
ure 8 (Right) shows the distribution of real roots for these im-
ages, from whichλ1 = −0.301250 andλ2 = −0.368125 were
estimated as the argument of the maximum. The peaks from
kernel voting are sharp and theλ’s are estimated accurately.
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RANSAC experiment forλ1 = λ2

no mismatches 10% mismatches 20% mismatches

Algorithm 10 100 1000 10 100 1000 10 100 1000

Fitzgobbon 9pt
K1 631.44826.75873.35 479.17 671.42 772.4 302.17532.04 632.1

K2 631.44826.75873.35 479.08671.332772.36 301.5 531.9 632.06

Kukelova 9pt
K1 695.62835.38835.38 520.84 685.67 773.36 322.36574.65 660.5

K2 695.62835.38835.38 520.73 685.6 773.28 321.78574.54660.36

Our minimal 6pt
K1 787.5 898.55930.88 662.24 780.85 838.94 517.98675.49 719.2

K2 787.5 898.55930.88 662.07 780.6 838.78 517.53675.22718.96

Table 1
The comparison of our “single distortion” algorithm for calibrated cameras with other existing algorithms within the RANSAC paradigm by showing the
number of matchesK1 within τ threshold and the number of correct matchesK2 among them as a function of the number of samples made from a set of
tentative matches contaminated by mismatches. The number of samples was10, 100 and 1000, noise level was 1 pixel and thresholdτ = 1 pixel. Number
of mismatches varied from0% to 20%.

In the second experiment we tested our algorithm on im-
ages with significantly different distortions. The left image Fig-
ure 1 (Left), was obtained as a66% cutout from a fish-eye im-
age and the right image was taken with a standard perspective
camera. Since these images had a rather large difference in ra-
dial distortion, the tentative point correspondences contained
a larger number of mismatches. Distortion parametersλ1 and
λ2 were again estimated using our algorithm for uncalibrated
cameras with different radial distortions and the kernel voting
method. The input (Left) and corrected (Center) images are
presented in Figure 1. Figure 1 (Right) shows the distribution
of real roots for these images from whichλ1 = −0.925625

andλ2 = 0.002500 were estimated. As can be seen the peaks
obtained by kernel voting are not so sharp but still sufficient to
get good estimates of theλ’s even from only 100 samples.

7. Conclusions

In this paper we have given fast and robust algorithms for two
minimal problems previously unsolved in floating point arith-
metic. The two problems of simultaneously solving for relative
pose and radial distortion were, due to numerical problems,pre-
viously solved in exact rational arithmetic only, yieldingthem
to time consuming to be of practical value. With the floating
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RANSAC experiment forλ1 6= λ2

no mismatches 10% mismatches 20% mismatches

Algorithm 10 100 1000 10 100 1000 10 100 1000

Linear 16pt
K1 316.34681.22748.03 232.55 415.7 485.1 86.48 322.35328.06

K2 316.34681.22748.03 232.55415.69485.08 86.459322.31328.04

Our non-minimal 12pt
K1 418.18697.93763.51 242.4 546.27546.27 148.55 414.5 528.02

K2 418.18697.93763.51 242.33546.22575.56 148.51414.44527.85

Our minimal 9pt
K1 625.03801.98845.76 513.03671.77732.56 342.23538.85654.86

K2 625.03801.98845.76 512.71671.67732.54 341.31 538.4 654.65

Table 2
The comparison of our minimal “different distortion” algorithm and our non-minimal “different distortion” algorithm with the linear 16 point algorithm within
the RANSAC paradigm by showing the number of matchesK1 within τ threshold and the number of correct matchesK2 among them as a function of the
number of samples made from a set of tentative matches contaminated by mismatches. The number of samples was10, 100 and1000, noise level was 1 pixel
and thresholdτ = 1 pixel. Number of mismatches varied from0% to 20%.

point algorithm presented in this paper we have reduced the
computation time from minutes to milliseconds. Moreover, we
have verified that this is done without loss of numerical preci-
sion by extensive experiments both on synthetic and real im-
ages.

We have also proposed a non-minimal algorithm for estimat-
ing F and two different radial distortions from 12 point corre-
spondences based on a generalized eigenvalue formulation.

In the experiments we have demonstrated that the radial dis-
tortion estimation is robust both to outliers and noise when
kernel voting is used over several runs. Finally we have shown
that large differences in distortion between two images canbe
handled.
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