
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Variation Factors in the Design and Analysis of Replicated Controlled Experiments -
Three (Dis)similar Studies on Inspections versus Unit Testing

Runeson, Per; Stefik, Andreas; Andrews, Anneliese

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-013-9262-z

2014

Link to publication

Citation for published version (APA):
Runeson, P., Stefik, A., & Andrews, A. (2014). Variation Factors in the Design and Analysis of Replicated
Controlled Experiments - Three (Dis)similar Studies on Inspections versus Unit Testing. Empirical Software
Engineering, 19(6), 1781-1808. https://doi.org/10.1007/s10664-013-9262-z

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10664-013-9262-z
https://portal.research.lu.se/en/publications/036af2ac-bb18-43a6-a44c-700acb979def
https://doi.org/10.1007/s10664-013-9262-z

Variation Factors in the Design and
Analysis of Replicated Controlled

Experiments
– Three (Dis)similar Studies on Inspections

versus Unit Testing

Per Runeson, Andreas Stefik and Anneliese Andrews
Lund University, Sweden, per.runeson@cs.lth.se

University of Nevada, NV, USA, stefika@gmail.com
University of Denver, CO, USA, andrews@cs.du.edu

Empirical Software Engineering, DOI: 10.1007/s10664-013-9262-z
Self archiving version. The final publication is available at link.springer.com

August 13, 2013

Abstract

Background. In formal experiments on software engineering, the number of
factors that may impact an outcome is very high. Some factors are controlled
and change by design, while others are are either unforeseen or due to chance.
Aims. This paper aims to explore how context factors change in a series of for-
mal experiments and to identify implications for experimentation and replication
practices to enable learning from experimentation. Method. We analyze three
experiments on code inspections and structural unit testing. The first two ex-
periments use the same experimental design and instrumentation (replication),
while the third, conducted by different researchers, replaces the programs and
adapts defect detection methods accordingly (reproduction). Experimental pro-
cedures and location also differ between the experiments. Results. Contrary
to expectations, there are significant differences between the original experi-
ment and the replication, as well as compared to the reproduction. Some of
the differences are due to factors other than the ones designed to vary between
experiments, indicating the sensitivity to context factors in software engineering
experimentation. Conclusions. In aggregate, the analysis indicates that re-
ducing the complexity of software engineering experiments should be considered
by researchers who want to obtain reliable and repeatable empirical measures.

1 Introduction

Replications are a cornerstone of the empirical sciences, whether referring to the
general definition of testing the same hypothesis in different studies or the nar-
row meaning of repeating the same experimental procedures [44]. Cartwright
refers to replications as repeating an experiment, closely following the experi-
mental procedures of the original ones, and refers to reproductions when reex-
amining the results from a previous experiment, using a different experimental
protocol [5, 26]. Possible benefits of replication include an assessment of the con-
fidence level for the results of the original experiment, to improve the internal
validity and reliability of the conclusions, while their generalizability are studied
by reproductions, improving the external validity [37]. Replications conducted
by different researchers can also be used to study the effect of researcher bias or
other potentially confounding factors. While the need for and value of replica-
tions is increasingly accepted in the empirical software engineering community,
evidence on how similar or dissimilar experiments ideally and practically should
be is insufficiently covered in the literature, i.e. the borderlines between repli-
cations and reproductions and the expected contribution from the two types of
repeated experiments is unclear.

Consider that as it currently stands in the literature, an established and em-
pirically grounded taxonomy of types of replications does not exist, neither in
software engineering [12], nor in other fields of science [44]. Thus, several terms
are used to qualify replication types, like direct, exact, conceptual, independent
etc., or internal versus external, depending on whether the same or a different
group of researchers performed a replication. The terms replication or reproduc-
tion, as we use them in this paper, also exist, although the definition of each term
is not universally agreed upon. Second, there are diverging positions on whether
replications should be as exact as possible or vary factors, like experimenters,
instrumentations, location, instantiation and parametrization of techniques etc.
[46, 25]. Juristo and Vegas concluded that“After numerous attempts over the
years, apart from experiments replicated by the same researchers at the same
site, no exact replications have yet been achieved.” [25]; a position also sup-
ported by statisticians [33]. Third, in an attempt to control the variation factors,
Clarke and O’Connor developed a comprehensive framework for context factors,
comprising 44 factors and 170 sub-factors [6]. However, as insightfully noted by
Dyb̊a et al. [10], even if each factor had only two factor levels, that generates
2170 combinations, which is more than the number of atoms in the world! Ap-
parently, we have to proceed along other routes than exhaustive exploration of
factorial combinations of context factors in replications.

In order to explore these issues on similarity between replications and factors
varying between them on purpose, or by chance, this paper analyzes three ex-
periments comparing structural unit testing to code inspections. A large body
of experiments with various forms of code inspection and unit testing methods
exists, beginning with Hetzel’s work in the early 1970’s [14], continuing with
Basili et al.’s well cited “family of experiments” [3]. Despite attempts to syn-
thesize the findings from these studies [22, 23, 40], and to conduct meta-analyses

1

[35], there is still no unified understanding of the results. This may be due to
a number of potential factors, including at least: 1) variations between replica-
tions that confuse the synthesized results, 2) insufficient power of the individual
studies, and 3) inherent weaknesses of the experimental designs.

We analyze three experiments to explore these issues, two of which were de-
signed to be as similar as possible (replication), with one designed to be different
(reproduction). The first experiment [41] compared usage-based inspection and
branch testing. This experiment could not reject the null hypothesis related
to defect detection rate, but found a statistically significant difference between
techniques related to the number of defects detected. The second experiment,
run by the same researchers, in the same context, with the same instruments
(replication), investigated this issue further. However, this subject group was
smaller and the time spent by one of the groups was significantly higher; giving
rise to a new factor. In this case the defect detection rate was significantly
higher for the technique which spent the least time, while the total number of
defects found were not different between the techniques. The third experiment,
conducted by a different group of researchers, expands the investigation by using
software for embedded systems as the objects and consequently different instan-
tiations of the defect detection techniques (reproduction). The third experiment
provided significantly different results for the two techniques, reversing which
technique was best, compared to the original and replication experiments.

Neither of the follow-up experiments were published separately; instead, we
presented them in conjunction with a preliminary meta-analysis [43], which is
further extended in this paper. We use these experiments to analyze the impact
of factors on replications and reproductions and extend previous work to identify
the implications for experiment planning and reporting practices for replications
in general.

The paper starts with some background, relevant definitions and related
work in Section 2. Section 3 describes experiment planning and operations.
Section 4 analyzes and compares the results of the experiments in isolation, and
Section 5 analyzes across the experiments. Section 6 discusses implications for
the research community and Section 7 concludes the paper.

2 Background and Related Work

2.1 Replication types

Replications and analyses across several studies has been discussed for long, for
example, by Pickard et al. [38], Miller [35], Kitchenham [30], Shull et al. [45, 46].
Recently, da Silva et al. [8] systematically compiled replications in software en-
gineering. They found 96 papers, reporting 133 replications of 72 original stud-
ies, conducted between 1994 and 2010. Interestingly, they found that internal
replications tend to confirm results while external replications largely do not.
Internal replications confirmed the results from the original experiment in 82%
of the cases and confirmed them partly in 9%, while external replications only

2

confirmed the original results in 26% of the cases, and confirmed them partly
in 28% of the cases. da Silva et al. hypothesize the differences: 1) intentional
and unintentional variations are more likely to appear in external replications,
2) differences in experimental context between the original and the replication
site may have an impact, and 3) external researchers may lack tacit knowledge
about the original study design or analysis.

In regards to the reuse of experimental material, Miller [35] states, “al-
though from a simple replication point of view, this seems attractive, from a
meta-analysis point of view this is undesirable, as it creates strong correlations
between the two studies”. Pickard et al. comments on the other hand on the
outcome of the primary studies [38] “the greater the degree of similarity between
the studies the more confidence you can have in the results of a meta-analysis”.
Hence there is a conflict between what is desirable from a statistical point of
view and from a learning point of view.

Gomez et al. [12] surveyed several fields of research, including social science,
business and philosophy topics, and identified three major groups of replications.
For each of the groups, they collected 10–20 variations of terms for the type of
replication. They identified three major groups of replications:

1. Replications that vary little or not at all with respect to the reference
experiment.

2. Replications that do vary but still follow the same method as the reference
experiment.

3. Replications that use different methods to verify the reference experiment
results.

Shull et al. [46] distinguish between “exact replications, in which the pro-
cedures of an experiment are followed as closely as possible; and conceptual
replications, in which the same research question is evaluated by using a differ-
ent experimental procedure”, i.e., adhering to the same definition as Schmidt
[44]. Cartwright distinguishes between the same principal categories, referring
to replications as repeating an experiment, closely following the experimental
procedures of the original ones, and refers to reproductions when reexamining
the results from a previous experiment, using a different experimental protocol
[5, 26]. We adhere to Cartwright’s terminology and study one replication and
one reproduction in this paper.

Despite clear definitions, there may still be room for interpretation of differ-
ences between experiments. For example, in human-oriented experiments[51],
the same subjects may not be used twice due to learning effects. However,
Miller [36] argues that the variation as such may be an opportunity for learn-
ing, for example, to assess the robustness of the findings, a position supported
by Lindsay and Ehrenberg from a statistical point of view [33]. Shull et al. [46]
on the other hand argue that conceptual replications are too risky to perform,
as the outcome is hard to predict. Kitchenham in turn, in a rebuttal to Shull

3

et al., warns about replications that are too close, as they are too dependent on
the instrumentation material [30].

Juristo et al. [24] present a series of exact–independent replications of an ex-
periment on testing and inspection, executed over four sites, which vary along
several factors: constrained vs. unconstrained time, computer availability, sub-
jects being familiar with the technique under study or not, sequential or inter-
leaved training, and length of the session. Unfortunately, they do not analyze
these factors’ influence on the outcome of the experiments. Basili et al. [3]
discuss the experiences of conducting a series (denoted family) of experiments,
which were gradually changed over replications. Differences were only analyzed
qualitatively in their analysis.

2.2 Reporting practices for replication

One key precondition for conducting replications is the transparent presentation
of experimental studies. The transparency should include both the experimen-
tal procedures, the data, and the statistical analyses. Miller [36] notes that
reporting guidelines have been available for decades, for example, by Hoaglin
and Andrews [15], as well as specific guidelines tailored to the field of software
engineering [17], which are even empirically evaluated [31]. Despite these guide-
lines, the reporting practices are not sufficient to allow replications and proper
analysis of differences between replications.

In order to replicate experiments, experiment packages [3] may help other
groups of researchers to gain the information needed. Such packages should
“collect information on an experiment such as the experimental design, the
artifacts and processes used in the experiment, the methods used during the
experimental analysis, and the motivation behind the key design decisions” [3].
While several examples of experiment packages are made available, it is still
an issue of how experimenters should be acknowledged for their contribution,
and how much effort they should spend explaining and answering questions on
their package. Sjøberg proposed a scheme for handling these issues [48], but
unfortunately it has not had any significant effect yet on research practices.

2.3 Experiment on Inspection vs. Testing

The technical field of study in this analysis are formal experiments, comparing
code inspections with unit testing. The first published experiment goes back to
1972 with an early experiment by Hetzel [14]. Another classic experiment was
performed by Basili and Shelby in 1987 [2]. More recent work includes a study
by So et al.[49] in 2002, a study by Runeson and Andrews [41] in 2003, and a
series of experiments presented by Juristo et al. [24], who also have synthesized
earlier experimental findings [22, 23]. The results of the various studies are
somewhat contradictory and show that this question does not yet have a clear
answer. An experiment by Laitenberger [32] studied the effects of a method
combining code inspection with structural testing. Laitenberger concluded that

4

Defect detection

Static Dynamic

Inspection

Usage-based
Inspection Branch Testing

Structural Testing

Informal Code
Inspection

Req Coverage
Testing

Experiment 3

Experiment 1,2

Functional Testing

Goal

Approach

Instance

Technique

Step-wise
abstraction

Equivalence
Partitioning

Juristo

Hetzel, Basili

Figure 1: Classification scheme for defect detection methods

the gains of combining both were limited. A summary of findings was presented
in a literature survey by Runeson et al. [40].

When comparing the outcomes of these experiments, it is not always clear
at which level of abstraction they are compared, on a conceptual level or at the
level of instances of defect detection techniques. Figure 1 presents a classifi-
cation scheme to aid the comparison. All methods have the goal of detecting
defects (the additional goal of peer-to-peer communication in inspections are
never mentioned in these experiments). Defect detection methods may take
a static approach (no execution) or a dynamic approach (test execution). In
several of the experiments listed above, the object of study is defined as (code)
inspection versus structural and functional (unit) testing [14, 2]. However, there
are many possible instantiations of each of the techniques, and it is an issue of
generalization across studies whether the differences observed in experiments
are valid for techniques or only for instances of techniques. Juristo, for exam-
ple, entitle their study a comparison between equivalence partitioning, branch
testing and code reading by stepwise abstraction [24]. In this paper, we compare
two different sets of instances of inspection and structural test techniques to ex-
plore the similarities and differences across these instances and thereby discuss
generalization across instances of techniques.

3 Experiment Planning

The experiment planning for all three experiments, used in this replication anal-
ysis, is based on Runeson and Andrews’ original experiment in 2003 [41], who
report the first experiment in detail. Runeson and Andrews conducted both the
original and the replicated experiment, while they handed over the experiment
package to Grönblom and Porres for adaptation to the reproduction of the ex-
periment. We summarize the experiment data and procedures here for all three

5

experiments.
Planning the experiment involves [51] definition of the experiment design, the

treatments, defining independent and dependent variables (and how to measure
them), formally stating the hypotheses, conducting a pilot study, selecting the
subjects, and creating the experiment materials. Both before and after the
study, threats to validity must be considered.

3.1 Goals

The goal of the study was defined as follows for experiments 1 and 2:

Analyze defect detection and localization using usage-based code inspection
and structural unit testing

for the purpose of evaluation with respect to their efficiency and effectiveness
for different types of defects

from the point of view of the researcher

in the context of the students at a testing course at Washington State Uni-
versity, verifying C programs from the personal software process (PSP)
course [16].

For the third experiment, the goal was modified; the experiment material,
the experimental context, as well as the instantiations of methods were changed,
resulting in a goal definition:

Analyze defect detection and localization using requirements-based code in-
spection and requirements-based structural testing

for the purpose of evaluation and obtaining baseline results

from the point of view of the researcher

in the context of undergraduate and graduate students interning as program-
mers, working in research projects at Åbo Akademi university, verifying
a C program and a Java Card program, which are related to embedded
systems.

3.2 Definition of terms

In both experiments, the following definitions were used:

• Defect – umbrella term for faults and failures

• Fault – wrong or missing logic in program code

• Failure – manifestation of a fault during the execution

• Detection – observation of a failure

6

• Localization – finding of the underlying fault causing a failure

• Effectiveness – fraction of the existing defects found

• Efficiency – rate at which defects are found

Further, we define a task to be the specific combination of technique (test or
inspection) and program given to a subject. We also refer to the experimental
materials, i.e. programs and data collection sheets used in the experiment, as
instruments.

3.3 Design

The experiment design involves two factors (the defect detection method and
the program to be inspected) with two treatments each. In experiments 1 and 2,
a two factor blocked design was used, in which subjects were randomly assigned
to either defect detection technique applied to one program (Counter), and later
applying the other technique to the other program (Correlation). In experiment
3, subjects first applied one randomly chosen defect detection technique to one
randomly chosen program (Acquisition or Channels) and in the later session
they applied the other method to the other program. All three experiments were
consequently cross-over experiments, where the subjects applied one method to
one program, and the other method to the other program. This can be an issue
in experimentation [28] but is not discussed in this context.

3.4 Treatments

These experiments focussed on code inspection and structural unit testing, i.e.
one static and one dynamic defect detection technique. However, there exist
several instantiations of each technique, as discussed in Section 2.3. This in-
volves a variation factor; however, it is not clear cut at which level of detail
a ‘technique’ should be defined and assessed. Table 1 summarizes the factors
in the three experiments, when defined at different levels of abstraction. On
the approach and technique levels, they are the same for all three experiments,
while the instantiation differs in experiment 3. Hence we refer to experiment 2
as a replication and experiment 3 as a reproduction.

All three experiments compare static and dynamic defect detection tech-
niques. In experiments 1 and 2, usage-based inspection and branch coverage
testing were used. Usage-based inspections are performed using usage scenarios
as a guide. A set of scenarios is provided in the specification of the program.
The reviewers specify the scenarios in terms of input data and expected out-
put data. Structural unit testing was performed with the aim to reach branch
coverage. The set of usage scenarios were available to the testers as well. They
specify test cases in terms of the data needed and the expected output and then
execute them on their assigned lab computers. Both tasks had been taught and
practiced via homework before (on different programs, of course) to ensure that
students follow the proper procedures.

7

Table 1: Experimental defect detection methods and their instantiations in the
three experiments

Factor Experiments 1 and 2 Experiment 3

Approach Static and dynamic defect detection techniques
Technique Code inspection and structural unit testing

Instantiation
Usage-based inspection

and branch testing

Informal code inspection
and requirements
coverage testing

Coverage criterion
Usage scenarios and

branch coverage
Requirements coverage

In experiment 3, defect detection techniques are structural unit testing and
an informal variant of manual code inspection. The inspection procedure was
informal, and therefore closer to a code review. The reviewers were not assisted
by inspection aids, like checklists or lists of use cases, as suggested for some
types of formal inspections, but had access to a detailed specification for the
programs.

The coverage criterion used for both inspections and testing in experiment
3 was an informal requirements coverage criterion. Subjects were instructed
to check that the programs conformed to the requirements, which were rather
detailed and close to the code level. By contrast, experiments 1 and 2 used
usage-based inspection and branch coverage as the unit testing criterion.

In summary, on the approach and technique levels, all experiments use the
same methods, while the instantiation and coverage criterion used differ. The
consequences of these differences are analyzed in Section 5 and discussed in
Section 6.

3.5 Instrumentation

The instrumentation in the three experiments consists of task instructions, pro-
grams with a controlled set of faults, a defect log template for recording de-
tected defects, makefiles to compile and run tests, test source files, offline and
online documentation describing the behavior of the programs and forms for
recording detected defects. The data collection forms are the same in the three
experiments, while the programs differ, as well as the task instructions, as a
consequence of the variation discussed in Section 3.4.

The first two experiments used two C programs providing solutions to pro-
gramming assignments 3A (Counter) and 7A (Correlation) from Humprey’s
personal software process (PSP) course [16]. The Counter program is a ba-
sic line counter for C programs, and the Correlation program calculates the
Pearson correlation between two sets of numerical data.

The first program in the third experiment, Acquisition, consists of three

8

Table 2: Defect and size data

Exp. 1 & 2 Counter Correlation

Faults 9 9
LOC 190 208
functions 7 10

Exp. 3 Acquisition Channels

Faults 9 9
LOC 254 251
functions 3 –
methods – 12

functions dealing with data acquisition functionality for spacecraft. It is imple-
mented in C. The second program is a sample program taken from version 2.2.1
of Sun’s Java Card Development Kit. Java Card is a minimized Java runtime
environment and virtual machine designed for the hardware of smart cards. The
Java Card system will be referred to as Channels. Data about the size of the
programs can be found in Table 2.

The faults in the programs used in experiments 1 and 2 were naturally occur-
ring during their construction by a programmer, while the faults in experiment 3
were seeded manually. The programs had no syntax errors as those could easily
be found by simply compiling the programs. The faults in the programs are
listed in Tables 16 and 17 in the Appendix with a classification of the type and
severity, performed by the experimenters. Due to the non-complex character
of the programs and faults, there is a one-to-one mapping between faults and
failures.

3.6 Variables

The experiments viewed separately have two independent variables, the defect
detection technique and the program in which to find defects, see Table 3, while
in the joint analysis, the experiment itself becomes a third variable. Experiments
1 and 2 used blocking variables to represent skills and experience, while exper-
iment 3 used no blocking, but random assignment. The dependent variables of
the experiment are time spent on the tasks and number of defects detected and
localized, as defined in Section 3.2. We also calculate the rate, i.e. number of
defects detected and localized per time unit.

3.7 Hypotheses

The hypotheses related to the dependent variables NR and RATE are listed in
Table 4. We analyze the experiments firstly in Section 4 as a view for what a
researcher might have done, if they had conducted each experiment in isolation.
Then we analyze the replication view separately in Section 5. The analysis

9

Table 3: Variables used in the experiment

Name Values Description

Independent variables
TECH {Inspection,

Testing}
Two techniques are applied by each subject:
Inspection and Testing, as defined in Section
3.4.

PROG {Counter,
Correlation,
Acquisition,
Channels}

Two PSP programs in C for experiments 1
and 2, and two embedded systems programs
for experiment 3: one in C and one in Java.

Blocking variables
EXP Ordinal Subjects’ experience with inspection and

testing, measured on a four-level ordinal
scale (experiments 1 and 2).

SKILL Ordinal Subjects’ skills in inspection and testing are
measured using the grading of two home-
work tasks (experiments 1 and 2).

Dependent variables
TIME Integer Minutes spent by each subject on the task.
NRD,
NRL

Integer Number of defects detected and localized by
each subject.

RATED,
RATEL

60 ∗
NRD/TIME,
60 ∗
NRL/TIME

Defect’s detection and localization rate (effi-
ciency). Measured in number of defects per
hour.

of the hypotheses regarding rate and number of defects are performed using
the Wilcoxon signed-rank test [47]. The test was used since the data was not
normally distributed, according to the Anderson-Darling test in the R nortest

package [1]. We use a significance level of 0.05 for considering a result significant.

3.8 Pilot Study

Experiment 1 had a pilot study to evaluate the experimental instruments (six
graduate students), and experiment 2 reused the same design and instruments.
Experiment 3 only conducted a very limited pilot study with two subjects for
inspection of the programs, but none for unit testing. Only minor changes to
the instruments were added for clarification, based on the pilot studies.

10

Table 4: Experimental hypotheses. D=Detected, L=Localized,
Insp=Inspection, Test=Testing

Null hypotheses Alternative hypotheses

HNR−D,0 : NRD,Insp = NRD,Test HNR−D,a : NRD,Insp 6= NRD,Test

HRATE−D,0 : RATED,Insp = RATED,Test HRATE−D,a : RATED,Insp 6= RATED,Test

HNR−L,0 : NRL,Insp = NRL,Test HNR−L,a : NRL,Insp 6= NRL,Test

HRATE−L,0 : RATEL,Insp = RATEL,Test HRATE−L,a : RATEL,Insp 6= RATEL,Test

Table 5: Subjects in the three experiments

Experiment 1 Experiment 2 Experiment 3

Number of subjects 33 18 12+12
After dropouts 30 16 22
After outlier removal 30 14 22
Type of subjects Undergraduate students Student interns
Place Washington State University Åbo Akademi
Time Spring 2003 Spring 2005 Summer 2008

3.9 Subjects

Experiment 1 had 33 undergraduate subjects, and experiment 2 had 18. These
subjects were taking a senior software testing course at Washington State Uni-
versity. The original experiment was conducted in the Spring 2003 course, and
the replication in the Spring 2005 course. The students were taught methods
for testing and inspection in general; the experiment was a voluntary part of the
course. Participation in the experiment was credited as 20% of the total credit
of the course. For those individuals not willing to participate in the experiment,
alternative assignments were available. In practice, all students volunteered for
the experiment, although two students dropped out before the first session of
experiment 1 and one before the second session, resulting in 30 subjects in ex-
periment 1. Two students dropped out after the first experimental occasion in
experiment 2, resulting in 16 subjects.

Experiment 3 initially included 12 subjects interning as programmers during
the summer months of 2008. When they had finished their work in the project,
12 more subjects were recruited by sending out an e-mail asking for volunteers.
This e-mail was sent mostly to students who were employed by the Faculty
of Technology at Åbo Akademi for various research projects. Two subjects
dropped out because of personal schedule changes, giving a total sample size of
22 subjects for experiment 3. The data are summarized in Table 5.

11

3.10 Threats to Validity

Below we summarize the key threats to each of conclusion, internal, construct
and external validity for the individual experiments.

Threats to conclusion validity include the self reporting of time and de-
fects data. Further, the interpretation of reported defects and removal of false
positives involves a subjective component. However, as the interpretation is
conducted by the same person for both treatments, there is no bias towards
one or the other techniques. A major threat is the reliability of the treatment
implementation, i.e. to what extent the subjects actually implemented the de-
fined technique, or some general instance of inspection versus testing. This is
an additional dimension to the approach/technique/instance issue discussed in
Section 2.3 and is particularly valid when conducting experiments with student
subjects. To avoid random heterogeneity between the experimental groups, ex-
periments 1 and 2 applied blocking based on homework assignments. There is
a risk that the homeworks do not properly reflect the skill levels, but this was
the best available measure. Statistical tests used are rather robust, although
the small number of subjects, especially in experiment 2, pose a validity threat
to the statistical power.

Threats to internal validity include maturation and selection issues. Matu-
ration refers to impact from subjects learning during the experiment, and thus
performing better in the second round. Selection is related to how subjects are
elected to participate in the experiment, and how they are assigned to differ-
ent tasks. In experiments 1 and 2, one specific program (Counter) was used
first, and then the other (Correlation), while in experiment 3, the order of the
programs (Acquisition, Channels) was randomly assigned too. Randomization
reduces risk, but on the other hand adds one additional degree of freedom. In
all three experiments, the order of techniques was randomly assigned to subject
groups. The drop-out rate may be a threat to internal validity, but in these
cases it is reasonably low (see Table 5).

Threats to construct validity involves confounding factors that influence
what is manipulated and/or observed in the experiment, but are not related
to the underlying theory. There are several threats in the design of the experi-
ment, the programs, the faults, the instructions, etc. that may have influenced
the final outcome. Only differentiated replications may give an answer to the
size of the risk. Further, the time factor is possibly at play in a more complex
manner than assumed during experiment design.

Threats to external validity are primarily due to the small scale of the ex-
periment as well to the limited experience and skill of the student subjects.
Presumably, this should be a cost paid to achieve homogeneity in the subject
group to increase internal validity, although the variations within the student
groups were rather high as well.

12

3.11 Experiment Operation

The experiments were designed for time slots of two hours. The subjects were
told to report for a two-hour experiment. In experiment 1, they could start
any time between 11am and 1pm within the overall time frame from 11pm to
3pm. For experiment 2, the entry time was 6pm to 7pm within the overall
time frame of 6pm to 9pm. However, the experimenters did not monitor the
subjects’ time in detail, so subjects spent between two and three hours on their
task. The data collection sheet was designed to handle the situation, asking the
subjects to report the exact time when they found each defect. However, as this
data was entered manually by the subjects, the information may not have been
consistently provided.

All testing tasks were conducted using a computer in a lab. Testers in ex-
periments 1 and 2 were using Windows computers at Washington State Univer-
sity computer laboratories, and in experiment 3, Linux workstations in an Åbo
Akademi computer laboratory. Programs were available electronically as archive
files that contained the requirements, the source files to be checked, test source
files, makefiles (facilitating automatic running of tests), and pointers where to
find further information about the systems. The Channels program’s tests were
implemented using version 4 of the JUnit testing framework. The tests in C
were implemented using a very simple ad hoc testing framework constructed by
the experimenters.

The inspection tasks in experiments 1 and 2 were conducted on paper, while
subjects in experiment 3 could choose whether to print out the material or review
it on the screen. Defects, localized causes of defects, and time were reported by
the subjects on reporting sheets. The reported defects and localized causes were
then mapped by the experimenters to the list of existing defects, i.e. removing
false positives. This procedure ensured consistent treatment of all reported
defects.

4 Experimental Results

The analysis of the original experiment is reported by Runeson and Andrews [41],
while we here analyze the three experiments one by one. Analysis of the two
later experiments as replications and reproductions of the first one(s) is reported
in Section 5. The purpose of showing the statistical analysis from both an indi-
vidual experiment point of view and the replication point of view, is to give a
view of how an independent researcher might observe the data, as opposed to a
researcher with the raw data for all three experiments.

The data analysis was performed using version 2.7.2 of the open source R
statistics environment. Before the analysis, the data was checked for outliers,
see Section 4.1. Analyses regarding the effectiveness and efficiency of the defect
detection methods are presented in Section 4.2.

13

4.1 Data Purification

The defect data from each of the subjects were mapped to the list of known
defects in the code. Based on the description of the defect, we assessed whether
the subject detected it or also localized the underlying fault. When students
reported something as a defect that was not in fact a defect, we removed it
as a false positive. As the subjects had nothing to lose from reporting many
suspected defects, the number of false positives was in the same order of mag-
nitude as the true positives. However, these were to a large extent phrased as
vague guesses on something being a defect, rather than distinct localization of
something erroneous.

The data was checked for outliers regarding time consumption. Due to the
rolling scheduling of the experiment, it was not controlled that the subjects
actually quit after two hours, hence there are a few subjects who spent more
time. The three subjects in experiment 1 that spent 180, 141 and 138 minutes
on the tasks respectively were candidate outliers, but since the time was higher
for both techniques, we decided to keep the data. Five subjects spent 130
minutes, which was considered within the specified time range and since they
were evenly distributed over the two groups, it was not considered a big threat.
After drop-outs, we ended up with 30 subjects in experiment 1 as reported in
Table 5.

In experiment 2, a few subjects also spent over two hours, due to the rolling
scheduling scheme. We considered removing those spending 180 minutes as out-
liers, but as it concerned only two subjects, one in each group, we decided to
include these subjects, regardless of time spent. Two subjects in the exper-
iment 2 did not find a single defect in either testing nor inspection. It was
clear from their materials that they misunderstood the task; hence, they were
excluded from the analysis. After drop-outs and outlier removal, we ended up
with 14 subjects in experiment 2.

In experiment 3, there are no outliers when it comes to time spent on the
experiment which is not surprising given the enforced time limit of two hours.
The closest to being considered an outlier with regards to time was one subject
who according to his log template only spent 95 minutes on the task, but we
decided to be inclusive. Interestingly enough, this subject also localized the
largest number of faults. As there were no drop-outs, experiment 3 had 22
subjects.

4.2 Outcomes

The descriptive statistics for the efficiency (RATE) and effectiveness (NR) of
the subjects are shown in Tables 6 and 7. The data is grouped by technique
used in Table 6 and by program (number of defects only) in Table 7. Box plots
of the same data can be found in Figures 2 and 3. Both sets of programs have
a total of 9 seeded faults each and thus we can compare the number of defects
detected directly to each other. It is worth noting that the mean number of
defects found is around 30% of the total number of defects for experiments 1

14

Table 6: Descriptive statistics for number, rate of defects detected and localized,
and time, in experiments 1-3, grouped by technique

Mean Median Std. Deviation
Exp. Variable Insp Test Insp Test Insp Test

1 NRD 2.43 3.27 2.00 3.00 1.52 1.78
1 NRL 2.20 2.63 2.00 3.00 1.32 1.79
1 RATED 1.46 1.74 1.20 1.65 1.01 0.99
1 RATEL 1.33 1.38 1.09 1.5 0.91 0.98
1 Time 104.7 114.8 106.0 115.5 17.47 17.95

2 NRD 2.93 3.00 3.00 3.00 1.27 1.52
2 NRL 2.64 2.79 3.00 3.00 1.55 1.53
2 RATED 1.94 1.20 1.76 1.12 0.93 0.62
2 RATEL 1.75 1.12 1.72 1.06 1.12 0.64
2 Time 92.9 151.8 95.5 157.5 14.9 21.5

3 NRD 2.46 0.82 2.00 0.50 1.82 1.05
3 NRL 2.32 0.77 2.00 0.00 1.84 1.07
3 RATED 1.31 0.41 1.03 0.25 1.02 0.54
3 RATEL 1.24 0.39 1.00 0.00 1.03 0.54
3 Time 115.2 117.0 120.0 120.0 7.69 5.82

●

●

NRDI 1 NRDT 1 NRDI 2 NRDT 2 NRDI 3 NRDT 3

0
2

4
6

8

6

4

2

0

8

I,1 T,1 T,2I,2 I,3 T,3

6

4

2

0

8

I,1 T,1 T,2I,2 I,3 T,3

●

NRLI 1 NRLT 1 NRLI 2 NRLT 2 NRLI 3 NRLT 3

0
2

4
6

8

Figure 2: Boxplots of variable NR, i.e. number of detected (left) and localized
(right) defects per technique for the three experiments. T=Test, I=Inspection,
1, 2, 3=Experiment 1, 2, 3

15

3

2

1

0

4

I,1 T,1 T,2I,2 I,3 T,3

●

●

●

●

RATEDI 1 RATEDI 2 RATEDI 3

0
1

2
3

4
3

2

1

0

4

I,1 T,1 T,2I,2 I,3 T,3

●

●

●

RATELI 1 RATELT 1 RATELI 2 RATELT 2 RATELI 3 RATELT 3

0
1

2
3

4

Figure 3: Boxplots of variable RATE, i.e. rate of detected (left) and local-
ized (right) defects per hour per technique for the three experiments. T=Test,
I=Inspection, 1, 2, 3=Experiment 1, 2, 3

and 2, and 15-20% for experiment 3, i.e. a small share of the defects. Further,
the standard deviation is rather high, indicating large variations in performance
within each experiment.

The experiment has two factors, paired measurements, a sample size less
than 30 and data which is not normally distributed. The Wilcoxon signed-
rank test is an appropriate test to compare the observed medians, both between
the two programs and the two defect detection methods. In experiment 1,
the testing detected more defects than inspection (p = 0.040), while the other
differences were not significant. In experiment 2, the inspection rate was signif-
icantly higher than the testing rate for detected defects (p = 0.031). Note that
testers spent significantly more time than inspectors in this experiment (Table 8
and Figure4). In experiment 3, p-values indicate all null hypotheses should be
rejected, i.e., there is a statistically significant difference between testing and
inspection, for number of defects detected, detection rate, number of defects
localized, and localization rate; inspection is the better technique in experiment
3.

Analyzing the stated hypotheses only, one might conclude that experiment 1
shows significantly different effectiveness in detection of defects, experiment 2
shows significantly different efficiency in detection, and experiment 3 shows
significantly higher values for inspection over testing. However, when studying
the time component, notice that in experiment 1, inspectors used significantly
less time than testers (104.7 vs. 114.8 minutes), p = 0.040. In experiment 2, the
difference was even larger (92.9 vs. 151.8 minutes), p < 0.001. In experiment 3,
the time difference is negligible (115.2 vs. 117.0 minutes), p = 0.513. This
situation is also clearly evident from box plots of the time data, see Figure 4.
We will analyze the time issue specifically in the next section.

16

Table 7: Descriptive statistics for number of defects detected and localized
grouped by program, in addition to time. In this Table, CN = Counter, CO =
Correlation, AC = Acquisition, and CH = Channels

Mean Median Std. Deviation
Exp. Variable CN CO CN CO CN CO

1 NRD 2.70 3.00 2.50 3.00 1.72 1.69
1 NRL 2.07 2.76 2.00 3.00 1.60 1.49
1 Time 109.23 110.17 115.00 108.5 18.24 18.61

2 NRD 3.14 2.79 3.00 3.00 1.41 1.37
2 NRL 2.78 2.64 3.00 3.00 1.63 1.45
2 Time 126.86 117.79 137.00 108.5 37.83 32.83

Exp. Variable AC CH AC CH AC CH

3 NRD 1.87 1.41 1.00 1.00 1.67 1.71
3 NRL 1.73 1.36 1.00 1.00 1.67 1.71
3 Time 116.27 115.95 120.00 120.00 7.23 6.51

60
I,1 T,1 T,2I,2 I,3 T,3

●

●

●

●
●

●

●

TIMEI 1 TIMET 1 TIMEI 2 TIMET 2 TIMEI 3 TIMET 3

60
80

10
0

12
0

14
0

16
0

18
0180

160

140

120

100

80

Figure 4: Boxplots over time spent per technique for the three experiments.
T=Test, I=Inspection, 1,2,3=Experiment 1, 2, 3

17

Table 8: Summary of p-values for the null hypotheses defined in Table 4, using
the two-sided Wilcoxon signed-rank test for experiments 1–3 ∗ = p < 0.05, ∗∗ =
p < 0.01, ∗ ∗ ∗ = p < 0.001

Exp. HNR−D,0 HRATE−D,0 HNR−L,0 HRATE−L,0 Time

1 0.040* 0.167 0.271 0.604 0.040*
2 0.850 0.031* 0.815 0.129 <0.001***
3 0.001** <0.001*** 0.003** 0.001** 0.513

5 Replication Analysis Results

In order to better analyze the way in which our results did or did not replicate
across experiments, we conducted a separate, cross-experiment analysis. Recall
that from the design of the replication (experiment 2) and the reproduction
(experiment 3) we expect experiments 1 and 2 to give similar results, while
experiment 3 is more likely to differ. However, as shown in Section 4.2, there
are differences across all the three experiments. Here we study them in more
detail.

5.1 Variables and Tests

In order to conduct these analyses, we coded our study with two independent
variables: i) experiment (1, 2, or 3), and ii) technique (testing vs. inspection),
and five dependent variables: i) NRD, ii) NRL, iii) RATED, iv) RATEL, and
v) TIME. In order to determine whether to use parametric or nonparametric
statistical techniques to conduct the analysis, we first conducted Shapiro–Wilk
tests to test for normality of the data, all of which were significant. This implies
that the data deviated somewhat from normality. However, histograms revealed
that the data was simply skewed, but otherwise looked like a typical bell curve.
As a cautionary measure, we conducted tests both with parametric (see Table 9)
and non-parametric tests (see Table 10), noticing that they returned basically
the same answer. Since typical parametric ANOVA tests are widely known to be
robust to changes in normality similar to that in the data analyzed, and provided
approximately the same answer as the non-parametric tests, we primarily refer
to the analyses with two-factor ANOVAs. An advantage with ANOVA is that
it provides analyses of the effects one by one, as well as interactions between
them, i.e. it detects if there is a pairwise effect of two factors which is not the
same as the sum of the effect of them taken one by one. The Tukey test is then
used to identify which factors and interactions are different.

5.2 Outcomes

Table 9 shows the overall two-factor ANOVA results for the three experiments,
including the five dependent variables. Before we begin, we remind the reader
that in inferential statistics using two-factor ANOVAs, it is important to recall

18

Table 9: Summary table of the two-factor ANOVA analysis of factors Experi-
ment and Technique, and their Interaction

Experiment Technique Interaction

F df p η2p F df p η2p F df p η2p

NRD 9.585 2 <0.001 0.132 0.315 1 0.576 0.002 8.143 2 <0.001 0.114
NRL 6.103 2 0.003 0.088 1.149 1 0.286 0.009 5.565 2 0.005 0.081
RATED 9.567 2 <0.001 0.132 4.356 1 0.039 0.033 6.299 2 0.002 0.091
RATEL 5.976 2 0.003 0.087 6.283 1 0.013 0.048 3.505 2 0.033 0.053
TIME 6.904 2 0.001 0.099 44.632 1 <0.001 0.262 33.794 2 <0.001 0.349

Table 10: Summary table of the analysis using separate Kruskall-Wallis rank
sum tests. Note that Kruskall-Wallis is a one-way non-parametric test, so no
interactions or effect size values are provided

Experiment Technique

χ2 df p χ2 df p

NRD 17.710 2 <0.001 0.386 1 0.5344
NRL 12.435 2 0.002 1.343 1 0.2464
RATED 19.693 2 <0.001 3.536 1 0.060
RATEL 13.480 2 0.001 5.557 1 0.018
TIME 7.3541 2 0.0253 20.189 1 <0.001

that interaction effects must be considered before main effects. The reason is
that strong interactions between levels of factors can strongly influence whether
an ANOVA detects a significant main effect (even if spurious). As such, we
consider the interactions first.

In addition to the ANOVA results, we also report a variance–accounted–for
measure known as partial–eta squared (η2p). Partial–eta scores represent the
variance accounted for by the samples and can be interpreted, if multiplied by
100, as a reasonable estimate of the percentage of the variance in the sample that
is accounted for by a particular main effect or interaction. Partial–eta values
are called partial because, for any particular effect, other main and interaction
effects are factored out of the score. For example, a partial–eta score for a
specific interaction effect represents the variance accounted for by only that
specific interaction, with the variance from the main effects removed.

As can be seen from Table 9, the interactions for all five dependent variables
were statistically significant, meaning that the influence of the technique variable
was not entirely uniform across the experiments. This means that the techniques
had different effects in at least one of the experiments. In all measures except
time, the partial–eta scores (η2p) are generally rather low (η2p = .132 or less),
which means that the interaction effects between experiment and technique are
small. For TIME, however, the interaction effect accounted for nearly 35% of

19

the variance in the sample. This means that the time varied across experiment
(1, 2, or 3) and technique (testing or inspection). While the instructions on time
behavior in experiments 1 and 2 were the same, the subjects basically chose to
spend different amounts of time between the first two studies. For experiment
3, participants generally stopped after the 2 hour limit, which was not the case
in experiments 1 and 2.

When we analyze the main effects of the factors, we find that:

1. the main effects for experiment were statistically significant for all five
independent variables,

2. two of the metrics for technique used (NRD and NRL) were not statisti-
cally significant, and that

3. RATED, RATEL, and TIME were all significant.

The NR variables measure the number of defects, while the RATE variable
also includes the TIME component in the denominator. As for observation 2,
consider that even the NR variables are not completely independent of time,
since it actually takes time to find defects. While the RATE variables tie
this idea directly to the equation (i. e. defects over time), humans cannot
find n defects in 0 seconds. Consequently, we must acknowledge that these
variables are not completely independent. In the case of all three significant
measures for technique, the partial–eta values indicate that, if such main effects
are legitimate, the variance they account for is smaller or comparable to that
of the interaction. Specifically, the main effects for RATED accounted for only
36.2 % of what the interaction reportedly accounts for (dividing the partial-eta
values .033 / .091), whereas for RATEL it was close (90.6%), as it generally
was for TIME as well (75.1%). Altogether, this indicates that TIME is a key
factor in the variation between the experiments and between the techniques, for
at least one combination of experiment and technique.

The ANOVA test reveals if there exist significant differences, whereas an-
other test is needed to point out which factors are significantly different, for
which we applied the post-hoc Tukey HSD test. Tables 11–15 show the re-
sults for each metric. While Tukey is often used for more balanced data sets
than the one presented in these replications, direct pairwise comparisons using
a Bonferroni correction reveals approximately the same results.

The Tukey tests for NR (Tables 11 and 12) and RATE (Tables 13 and 14)
show that the test technique in experiment 3 behaves significantly different com-
pared to most of the other combinations of experiment and treatment. However,
compared to testing in experiment 2, the difference is not significant.

The Tukey test for TIME shows that the time metric varied across treat-
ments and experiments, which also was evident from the box plots in Table 4.
Note, for example, that the inspection group in experiment 2 differed signifi-
cantly from all other conditions: (experiment 3, inspection), (experiment 1, test-
ing), (experiment 2, testing), and (experiment 3, testing), with the exception
of the combination (experiment 1, inspection). Experiment 1 with inspection,

20

Table 11: Summary of the Tukey HSD test for NRD

Mean Std. Dev. Tukey HSD
Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Insp Insp Test Test Test

Exp. 1 – Insp 2.433 1.524 0.921 >0.999 0.304 0.868 0.004
Exp. 2 – Insp 2.929 1.269 0.947 0.985 >0.999 0.002
Exp. 3 – Insp 2.455 1.819 0.428 0.907 0.008
Exp. 1 – Test 3.267 1.780 0.995 <0.001
Exp. 2 – Test 3.000 1.519 <0.001
Exp. 3 – Test 0.818 1.053

Table 12: Summary of the Tukey HSD test forNRL

Mean Std. Dev. Tukey HSD
Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Insp Insp Test Test Test

Exp. 1 – Insp 2.200 1.324 0.949 >0.999 0.885 0.849 0.016
Exp. 2 – Insp 2.643 1.550 0.990 >0.999 >0.999 0.007
Exp. 3 – Insp 2.318 1.836 0.978 0.949 0.015
Exp. 1 – Test 2.633 1.790 >0.999 <0.001
Exp. 2 – Test 2.786 1.528 0.003
Exp. 3 – Test 0.773 1.066

Table 13: Summary of the Tukey HSD test for RATED

Mean Std. Dev. Tukey HSD
Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Insp Insp Test Test Test

Exp. 1 – Insp 1.457 1.010 0.569 0.992 0.836 0.953 <0.001
Exp. 2 – Insp 1.939 0.929 0.326 0.983 0.267 <0.001
Exp. 3 – Insp 1.309 1.025 0.541 0.999 0.016
Exp. 1 – Test 1.737 0.994 0.453 <0.001
Exp. 2 – Test 1.204 0.622 0.113
Exp. 3 – Test 0.412 0.536

Table 14: Summary of the Tukey HSD test for RATEL

Mean Std. Dev. Tukey HSD
Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Insp Insp Test Test Test

Exp. 1 – Insp 1.331 0.905 0.706 0.999 >0.999 0.979 0.004
Exp. 2 – Insp 1.747 1.119 0.557 0.810 0.440 <0.001
Exp. 3 – Insp 1.237 1.026 0.992 0.999 0.025
Exp. 1 – Test 1.384 0.977 0.945 0.002
Exp. 2 – Test 1.122 0.638 0.168
Exp. 3 – Test 0.389 0.543

21

however, appears to have been right below the threshold of statistical signifi-
cance. Similarly, the testing group for experiment 2 took significantly longer to
complete the tasks than every other group. In summary, the time behavior in
experiment 2 was different: less time was spent on inspection and more time
spent on testing.

6 Discussion

This series of three experiments gives rise to two major issues related to repli-
cated or reproduced experiments and to factors that may differ between them;
1) variation between replications, and 2) internal versus external validity.

6.1 Variation between replications

The first replication (experiment 2) was designed to be as exact as possible. The
same experimental procedures and instruments as in the original experiment
were used, the same experimenters led the study, it was conducted at the same
university, as part of the same university course, two years later, i.e. an internal
replication. Despite an attempt at an exact replication, the outcomes were
not the same; the differences between the two treatments were smaller in the
replication. The only observable difference between the two experiments is
the total time spent, which is clearly visible in Section 5.1 and is explained
in Section 3.11. The third experiment was conducted by a different team of
researchers (i.e. external), using different instruments, and different instances
of the defect detection methods. Thus it was designed to be different, although
applying the same basic principles.

There is the question of different skill levels for testing vs. inspection in-
fluencing the outcomes. For experiments 1 and 2 the specific unit testing and
inspection techniques were taught in the same course and subjects were as-
signed to treatments to balance skill levels between groups as demonstrated
in homework on these specific testing and inspection techniques. We do not
know how this was handled in experiment 3. Moreover, experiment 3 used
internship students—prior background and skill levels with testing and inspec-
tion techniques may have been less controlled. Unfortunately, there is no chain
of evidence that would allow us to conclude that higher skills in the specific
testing techniques than the inspection techniques caused the different results in
experiment 3.

This problem of unintentional differences between replications is addressed
by Shull et al. [45]. They discuss the differences that appear due to tacit
knowledge involved in the original experiment and propose that the same ex-
perimenters conduct experiments at different locations to reduce variation. Our
replication analysis indicates that it is not always enough; in our case, an auto-
mated time data collection procedure would be a better solution. Juristo and
Vegas discuss the value of non-exact replications [25] and argue that we may
learn about relations between variables. Similarly, Mäntylä et al. argue for

22

letting a wider range of studies being considered replications [34]. One could
also discuss whether the results are robust enough if they need exactly the same
procedures, researchers etc. to replicate the results. Perhaps this implies the
community needs a greater understanding of other sources of variation besides
how a defect detection method impacts fault finding tasks (e.g., experience, type
of tasks). The systematic mapping study by da Silva et al. [8] clearly indicates
this being a systematic issue, i.e. internal replications tend to confirm results
to a much larger degree than external replications.

Another perspective would be to not consider unintentional differences a
problem but an opportunity. Significant breakthroughs in the history of science
has significant components of “mistakes”, like Fleming’s discovery of penicillin1.
If we apply this principle to our experiments, the observations on time behavior
should set our focus on the importance of varying time for a task properly to be
efficient rather than considering time a fixed factor; an observation supported
by previous studies [4]. Note that the increased time for testers in experiment
2 did not imply more faults being found, but resulted in a lower detection rate
compared to inspection.

The reproduction study (experiment 3) was intentionally different; con-
ducted by a separate set of researchers, using other artifacts and different in-
stances of the inspection and test methods; primarily the design of the study is
the same, and in contrast to the first two experiments, a time limit was strictly
adhered to. Referring to Figure 1, this experiment compared other instances
of the defect detection techniques. Not surprisingly, the outcome of the experi-
ment is different; actually, the tendency to favor the test method in experiments
1 and 2 is turned into its clear opposite. Most probably, time is a factor here
too, but the influence of artifacts, methods, experimenters, and context etc. is
impossible to conclude from the experiment. In fact, in order to analyze these
four factors, we would need 24 = 16 experiments for a full factorial design [37],
which is both impractical and should be considered only when answering a re-
search question that is of extreme importance. If all these factors must be set
to specific values for an experimental result to be valid, the external validity of
software engineering experiments is very limited. Further, if the performance of
two principally different detection methods turn into their opposite when using
another instantiation of the methods, this also indicates the methods being very
sensitive to several factors.

6.2 Internal versus external validity

There is a conflict between different types of validity to be handled when de-
signing formal experiments [51]. When aiming for high internal and conclusion
validity, populations should be as homogeneous as possible, tasks small and
experiment duration short, to reduce the noise from unintentional variation.
However, for external validity, practitioners with varying background and skill,
real-world and non-trivial tasks should be used. This is a conflict by design in

1http://www.nobelprize.org/nobel prizes/medicine/laureates/1945/fleming-faq.html

23

software engineering experimentation.
The type of experiment under study, two or three hour tasks on a toy size

program of a few hundred lines of code, are small as they stand and can be
criticized as unrealistic (lacking external validity). Even under these limited
conditions, however, we have documented inherent and unintentional variations
that hide effects from being statistically observable. Increasing sample sizes will
eventually help sort out contributing factors, but doing so can be expensive
or time consuming. Instead of increasing the sample size, we may alternatively
consider running a sequence of experiments, from short, easily replicable studies
with high internal validity, to increasingly longer studies with higher external
validity, which are inevitably harder to replicate.

As an example, Teasley et al. conducted two experiments on people’s ten-
dency towards designing positive versus negative tests (published in the Journal
of Applied Psychology) [50]. In the first experiment, which was very short, they
asked the subjects to find the algorithm behind a sequence of numbers based
on ‘testing’, i.e. proposing which number is next in the sequence. In the second
experiment, they implemented similar choices in a computer program, asking
subjects to verify that the program specification was met. These experiments
aimed at understanding basic principles of human behavior in software engineer-
ing, rather than specific instances of methods. The first experiment was very
small, with high internal validity, while the second was more similar to common
software engineering experiments. The first experiment was very ‘basic’ and
corroborated the outcome of several similar studies in psychology, i.e. it was
highly replicable. The second experiment took its starting point in the general
theory and applied it to a more software-specific task. Thereby, they managed
to demonstrate the applicability of the general theory to the specific software
task.

In cost estimation, similar small scale experiments are conducted [21, 29].
Thanks to their simplicity, it is easier to get a large enough number of sub-
jects with relevant experiences and skills to participate in the experiments. Re-
searchers in the field, for example Jørgensen et al., have also isolated general
factors rather than assessed specific estimation techniques, such as the impact
of irrelevant and misleading information [18], the role of interdependence [19],
and the impact of feed-back [20] in the cost estimation. They also analyze and
discuss the role of deliberately artificial design elements in an experiment in
order to enable isolation of variation factors [13]. Artificiality may then become
a strength instead of a weakness.

Balancing the need for replication and real-world applicability is, however, a
difficult balance. On the one hand, tiny experiments might be highly unrealistic
(so, potentially, are two-hour experiments). On the other hand, if an experi-
ment never can be replicated, how can we be sure that a researcher is correct,
or even (potentially) honest? The experimental methodology is more feasible
for detailed studies in the small [51] while larger studies of contemporary phe-
nomena in its context may be more suited for case studies [42], especially “when
the boundaries between phenomenon and context are not clearly evident” [52].
The methods to analyze replications of case studies are analytical rather than

24

statistical [42], which also moves us towards qualitative research.

7 Conclusions

This paper reports three software engineering experiments, which taken in iso-
lation do not add very much to the knowledge base. However, the three exper-
iments analyzed together give us much more relevant knowledge. In particular,
we learn from the experiments about replication of software engineering exper-
iments, in general.

Some in the literature have argued that replications should be as exact as
possible [46], while others claim that dependent replications cause researchers
to “...have invested a lot of time and effort and demonstrated very little of
value” [30]. da Silva et al. [8] observed in their systematic mapping study that
internal replications confirmed original results in 86% of the cases, while external
replications did confirm original results only in 26% of the studied replications.
In this analysis, we have studied one internal replication experiment that re-
sembled the original one as much as possible and one external reproduction that
substituted objects, applied other instantiations of methods, and treated time
differently by imposing a time limit. We observe that even experiments de-
signed to be exact replications contain many inherent variations; in our case
the time factor, which was not designed to be a factor. The third experiment,
in which the studied defect detection techniques were differently instantiated
showed significant differences in the opposite direction compared to the original
experiment, but it is not clear which of the factors contributed to the outcome.

Specifically from the replication analysis, we have documented that the dif-
ferences, especially in regards to time, are a large contributor to the variance in
our samples. Further, the analysis indicates that, if there is a statistical differ-
ence between testing and inspection, for some metrics, this effect is relatively
small and was overshadowed by differences both in the experiments and in the
way they interacted with the tasks. This leads us to rethink the design of the
experiment. The time spent on the task seems to be a much more critical factor
than other experimental factors.

We also discuss whether having even smaller scale, more artificial design
elements in the experiment would be beneficial, in order to isolate the factors
we hypothesize are at play. Related experimentation in software cost estimation
indicates this being a feasible path forward [13].

We conclude from the replication analysis that there are variation factors be-
tween replications that may or may not be under control. We pointed out several
in sections 6 and 7. Finally, if relatively small changes in a design (like changing
objects and limiting time) cause basically reversals of outcomes, one needs to
question just how fragile and non-generalizable some experimental results re-
ally are. Basically we are still far away from making general recommendations
on specific unit testing vs. code inspection techniques. Further, reducing the
complexity of experimental designs, at the cost of their realism, may be a path
forward to achieve a solid empirical foundation in software engineering.

25

Acknowledgement

We thank Sam Grönblom and Ivan Porres, Åbo Akademi university, Finland,
for providing data from experiment 3. The first author conducted parts of the
work during a sabbatical at North Carolina State University, USA. We thank
the anonymous reviewers to help focus the manuscript and thereby significantly
improve it.

References

[1] T. Anderson and D. Darling. Asymptotic theory of certain “goodness of
fit” criteria based on stochastic processes. Ann. Math. Statist, 23(2), 1952.

[2] V. R. Basili and R. W. Selby. Comparing the effectiveness of software test-
ing strategies. IEEE Transactions on Software Engineering, 13(12):1278–
1296, 1987.

[3] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through families
of experiments. IEEE Transactions on Software Engineering, 25(4):456–
473, 1999.

[4] T. Berling and P. Runeson. Evaluation of a perspective based review
method applied in an industrial setting. IEE Proceedings – Software 150(3):
177-184, 2003.

[5] N. Cartwright. Replicability, Reproducibility, and Robustness: Comments
on Harry Collins. History of Political Economy, 23(1):143-155, 1991.

[6] P. Clarke and R. V. O’Connor. The situational factors that affect the soft-
ware development process: Towards a comprehensive reference framework.
Information and Software Technology, 54(5):433–447, 2012.

[7] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, Taylor & Francis Group, 1988.

[8] F. Q. B. da Silva, M. Suassuna, A. C. C. Frana, A. M. Grubb, T. B. Gou-
veia, C. V. F. Monteiro and I. E. dos Santos. Replication of empirical studies
in software engineering research: a systematic mapping study. Empirical
Software Engineering, online 2012, DOI: 10.1007/s10664-012-9227-7.

[9] T. Dyb̊a, V. B. Kampenes, and D. I. K. Sjøberg. A systematic review
of statistical power in software engineering experiments. Information and
Software Technology, 48:745–755, 2006.

[10] T. Dyb̊a, D. I. K. Sjøberg, and D. S. Cruzes. What works for whom, where,
when, and why?: on the role of context in empirical software engineering.
In Proceedings of the 11th International Symposium on Empirical Software
Engineering and Measurement, pages 19–28, 2012.

26

[11] P. D. Ellis. The Essential Guide to Effect Sizes. Cambridge University
Press, 2010.

[12] O. S. Gomez, N. Juristo, and S. Vegas. Replications types in experimen-
tal disciplines. In Proceedings of the Fourth International Symposium on
Empirical Software Engineering and Measurement, 2010.

[13] J. Hannay and M. Jørgensen. The role of deliberate artificial design ele-
ments in software engineering experiments. IEEE Transactions on Software
Engineering, 34(2):242–259, 2008.

[14] W. Hetzel. An Experimental Analysis of Program Verification Problem
Solving Capabilities as they Relate to Programmer Efficiency. Comput.
Personnel, 3(3):10–15, 1972.

[15] D. Hoaglin and D. Andrews. The reporting of computation-based results
in statistics. The American Statistician, 29(3):112–126, 1975.

[16] W. S. Humphrey. A discipline for software engineering. Addison Wesley,
1995.

[17] A. Jedlitschka and D. Pfahl. Reporting guidelines for controlled exper-
iments in software engineering. In Proceedings of the 4th International
Symposium on Empirical Software Engineering, pages 95–104, 2005.

[18] M. Jørgensen and S. Grimstad. The impact of irrelevant and mislead-
ing information on software development effort estimates: A randomized
controlled field experiment. IEEE Transactions on Software Engineering,
37(5):695–707, 2011.

[19] M. Jørgensen and S. Grimstad. Software development estimation biases:
The role of interdependence. IEEE Transactions on Software Engineering,
38(3):677–693, 2012.

[20] M. Jørgensen and T. Gruschke. The impact of lessons-learned sessions
on effort estimation and uncertainty assessments. IEEE Transactions on
Software Engineering, 35(3):368–383, 2009.

[21] M. Jørgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. IEEE Transactions on Software Engineering,
33:33–53, 2007.

[22] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25 years of testing
technique experiments. Empirical Software Engineering, 9(1-2):7–44, 2004.

[23] N. Juristo, A. M. Moreno, S. Vegas, and M. Solari. In search of what we
experimentally know about unit testing. IEEE Software, 23:72–80, 2006.

27

[24] N. Juristo, S. Vegas, M. Solari, S. Abrahao, and I. Ramos. Comparing the
effectiveness of equivalence partitioning, branch testing and code reading
be stepwise abstraction applied by subjects. In Proceedings Fifth IEEE
International Conference on Software Testing, Verification and Validation,
pages 330–339, Montreal, Canada, 2012.

[25] N. Juristo Juzgado and S. Vegas. The role of non-exact replications in soft-
ware engineering experiments. Empirical Software Engineering, 16(3):295–
324, 2011.

[26] N. Juristo and O. S. Gomez. Replication of Software Engineering Experi-
ments. In B. Meyer and M. Nordio, editors, Empirical Software Engineering
and Verification, volume 7007 of LNCS, pages 60–88. Springer-Verlag, 2012.

[27] V. B. Kampenes, T. Dyba, J. E. Hannay, and D. I. Sjøberg. A systematic
review of effect size in software engineering experiments. Information and
Software Technology, 49(11–12):1073–1086, 2007.

[28] B. A. Kitchenham, J. Fry and S. G. Linkman. The Case Against Cross-
Over Designs in Software Engineering. 11th International Workshop on
Software Technology and Engineering Practice (STEP 2003), Amsterdam,
The Netherlands, pages 65–67, Sep. 2003.

[29] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman. Systematic literature reviews in software engineering - a sys-
tematic literature review. Information and Software Technology, 51(1):7–
15, 2009.

[30] B. A. Kitchenham. The role of replications in empirical software
engineering—a word of warning. Empirical Software Engineering, 13:219–
221, 2008.

[31] B. A. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox, J. Ke-
ung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu. Evaluating guide-
lines for reporting empirical software engineering studies. Empirical Soft-
ware Engineering, 13(1):97–121, 2007.

[32] O. Laitenberger. Studying the effects of code inspection and structural
testing on software quality. In Proceedings 9th International Symposium
on Software Reliability Engineering, pages 237–246, 1998.

[33] R. M. Lindsay and A. S. C. Ehrenberg. The design of replicated studies.
The American Statistician, 47(3):217–227, 1993.

[34] M. V. Mäntylä, C. Lasseinus, and J. Vanhanen. Rethinking replication in
software engineering: Can we see the forest for the trees? In C. Knut-
son and J. Krein, editors, 1st International Workshop on Replication in
Empirical Software Engineering Research, Cape Town, South Africa, May
2010.

28

[35] J. Miller. Applying meta-analytical procedures to software engineering
experiments. Journal of Systems and Software, 54(1):29–39, 2000.

[36] J. Miller. Replicating software engineering experiments: a poisoned chalice
or the holy grail. Information and Software Technology, 47(4):233–244,
2005.

[37] D. C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, Inc., 5th edition, 2001.

[38] L. Pickard, B. A. Kitchenham, and P. Jones. Combining empirical results
in software engineering. Information and Software Technology, 40(14):811–
821, 1998.

[39] A. A. Porter, H. P. Siy, A. Mockus, and L. G. Votta. Understanding
the sources of variation in software inspections. ACM Trans. Softw. Eng.
Methodol., 7(1):41–79, 1998.

[40] P. Runeson, C. Anderson, T. Thelin, A. Andrews, and T. Berling. What
do we know about defect detection methods? IEEE Software, 23(3):82–90,
2006.

[41] P. Runeson and A. Andrews. Detection or isolation of defects? An experi-
mental comparison of unit testing and code inspection. 14th International
Symposium on Software Reliability Engineering, pages 3–13, 2003.

[42] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in
Software Engineering – Guidelines and Examples. Wiley, 2012.

[43] P. Runeson, A. Stefik, A. Andrews, S. Grönblom, I. Porres, and S. Siebert.
A comparative analysis of three replicated experiments comparing inspec-
tion and unit testing. In Proceedings 2nd International Workshop on Repli-
cation in Empirical Software Engineering Research, pages 35–42, Banff,
Canada, 2011.

[44] S. Schmidt. Shall we really do it again? the powerful concept of replication
is neglected in the social sciences. Review of General Psychology, 13(2):90–
100, 2009.

[45] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. Men-
donca, and S. Fabbri. Replicating software engineering experiments: ad-
dressing the tacit knowledge problem. In Proceedings of the 1st Interna-
tional Symposium Empirical Software Engineering, pages 7–16, 2002.

[46] F. J. Shull, J. Carver, S. Vegas, and N. Juristo. The role of replications in
empirical software engineering. Empirical Software Engineering, 13(2):211–
218, 2008.

[47] S. Siegel and N. Castellan. Nonparametric statistics for the behavioural
sciences. McGraw-Hill New York, 1956.

29

[48] D. I. K. Sjøberg. Knowledge acquisition in software engineering requires
sharing of data and artifacts. In V. Basili, H. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, and R. Selby, editors, Empirical Software Engi-
neering Issues: Critical Assessment and Future Directions, volume 4336 of
LNCS, pages 77–82. Springer-Verlag, 2007.

[49] S. So, S. Cha, T. Shimeall, and Y. Kwon. An empirical evaluation of
six methods to detect faults in software. Software Testing, Verification &
Reliability, 12(3):155–171, 2002.

[50] B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman. Why
software testing is sometimes ineffective: Two applied studies of positive
test strategy. Journal of Applied Psychology, 79(1):142–155, 1994.

[51] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Springer, 2012.

[52] R. K. Yin. Case Study Research Design and Methods. Sage Publications,
Beverly Hills, California, 4th edition, 2009.

Appendix

30

Table 15: Summary of the Tukey HSD test for Time
Mean Std. Dev. Tukey HSD

Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Insp Insp Test Test Test

Exp. 1 – Insp 104.733 17.473 0.158 0.143 0.115 <0.001 0.052
Exp. 2 – Insp 92.857 14.878 <0.001 <0.001 <0.001 <0.001
Exp. 3 – Insp 115.227 7.690 >0.999 <0.001 0.999
Exp. 1 – Test 114.767 17.946 <0.001 0.995
Exp. 2 – Test 151.786 21.488 <0.001
Exp. 3 – Test 117.000 5.823

Defect Typea Severityb Description

Count 1 3 A Missing negation in condition
Count2 3 A Or instead of and in condition
Count3 4 B Parameters switched in function call
Count4 3 A Function calls in comments counted
Count5 3 A Wrong identification of function
Count6 3 B Line with tab not considered blank
Count7 6 C Wrong printout
Count8 5 B String processing wrong
Count9 4 B Scanf compared to EOF

Corr1 1 A Missing initialization
Corr2 2 A Functions not called
Corr3 2 A n− 1 degrees of freedom instead of n− 2
Corr4 2 A 1− p probability instead of 2(1− p)
Corr5 5 C Constant used instead of parameter
Corr6 2 A Wrong sign in calculation
Corr7 6 C Misspelled printout
Corr8 6 C Wrong precision in printout
Corr9 5 B Wrong data type

a 1) Initialization, 2) Computation, 3) Control, 4) Interface, 5) Data and 6)
Cosmetic.
b A) Major misfunction, B) Minor misfunction, C) Cosmetic.

Table 16: Defects in the PSP programs; classifications based on Basili and
Shelby’s scheme [2]

31

Defect Typea Severityb Description

Acq1 5 A Possible out of bounds error in array
Acq2 3 A Missing proposition in logical expression
Acq3 3 A Incorrect logical operator in logical expression
Acq4 2 B Incorrect value stored in variable
Acq5 5 B Two values stored at swapped indexes of an array
Acq6 3 A Incorrect expression used in test in for-loop
Acq7 2 A Incorrect bitmask used in computation
Acq8 2 A Missing check for overflow when incrementing variable
Acq9 4 A Required function only called once, instead of twice

Chan1 4 A Removed necessary method call
Chan2 3 A Missing case in switch statement
Chan3 3 A Incorrect value used in logical expression
Chan4 3 A Incorrect operator in logical expression
Chan5 4 A Incorrect exception thrown
Chan6 1 A Incorrect initialization of constant
Chan7 2 A Index variable not incremented correctly in expression
Chan8 2 A Swapped return of true and false in method
Chan9 2 A Incorrect check for overflow when incrementing variable

a 1) Initialization, 2) Computation, 3) Control, 4) Interface, 5) Data and 6)
Cosmetic.
b A) Major misfunction, B) Minor misfunction, C) Cosmetic.

Table 17: Defects in the real-time programs; classifications based on Basili and
Shelby’s scheme [2]

32

