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Abstract

The behavior of animals is commonly studied in medicine and biology. There is
a large variation in what animals are studied, in experimental paradigms and pur-
pose. However, many studies on animal behavior have at least one thing in com-
mon – it typically involves measuring or studying the kinematics of the animal.
To allow for verifiable and quantitative behavioral analysis, the experiments are
recorded and kinematic data is extracted from the videos using computer vision
methods. This thesis deals with the development of methods that takes recorded
videos as input and provides behavioral data as output. The system of methods
can be split into three parts – tracking of animal pose, extraction of kinematic
features and analysis of the features. This thesis focus mainly on the two first
parts. However, an important aspect in the design of the system is that all parts
should be compatible. Therefore, all method development has been conducted in
collaboration with medical/biological scientists.

This thesis contains computer vision methods for tracking rats, marmosets,
zebrafish, jellyfish and zooplankton. Most of the projects are represented by a
scientific paper that outlines the computer vision methods, and a paper that fo-
cus on the medical/biological application of the computer vision based system.
One of the methods is applied to study the correlation between fine-kinematic
behavior and neuronal activity in rats. Another method is used to characterize
the long term effects of the marmoset model of Parkinson’s disease. Thirdly, a
high-throughput system is developed to quantify drug-induced changes in zebra-
fish larvae behavior. Fourthly, steps are taken towards a system that allows for
studying the correlation between visual stimuli and movement output in the box
jellyfish. Lastly, nonlinear positioning methods are proposed for the purpose of
studying e.g. multiple threat response in zooplankton inside an aquarium.

Additionally, and seemingly an outlier, this thesis features a novel method for
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estimating relative camera motion in an underwater setting. The method is not
applied for analyzing animal behavior, but it is related to the geometrical problems
of refraction encountered while positioning the zooplankton. In this project, we
leverage the pseudo-depth information that is contained in underwater images to
design a three point relative pose algorithm.

iv



Populärvetenskaplig
sammanfattning

I medicinsk och biologisk forskning utförs ofta djurförsök. Vad för djur som stu-
deras, hur de studeras och med vilken frågeställning varierar kraftigt. Det kan till
exempel vara dafnior (vattenloppor) i ett akvarium som studeras för att se hur de
beter sig när det finns både rovdjur och farlig UV-strålning att skydda sig från.
Eller så kan det vara silkesapor med Parkinson-liknande sjukdom som studeras
för att undersöka hur s.k. deep brain stimulation (DBS: elektrisk stimulering djupt
in i hjärnan) kan lindra deras symptom. För att möjliggöra sådana studier behövs
data. När en människa undersöks i ett vetenskapligt experiment finns ofta mö-
jligheten att ställa frågor – till exempel om man upplevt obehag vid DBS. Men
när djur undersöks är det svårare att få direkta svar på sådana frågor. Därför ligger
fokus vanligtvis på att studera djurets rörelser, till exempel under tiden som djuret
lär sig att navigera i en labyrint eller lär sig ett finmotoriskt beteende (se figur 1).

Automatiserad bildanalys är ofta ett oumbärligt redskap för att möjliggöra
djurstudier. För det första så finns möjlighet att samla in bättre data än vad som
kunnat göras manuellt, till exempel att ta fram hur individuella fingrar rör sig
i 3D hos en råtta som plockar upp mat. Dessutom blir den insamlade datam-
ängden objektiv. Till exempel att manuellt undersöka hur en råtta rör sig i en
åtta timmar lång videoinspelning är inte bara koncentrationsmässigt utmanande
utan även subjektivt och opålitligt. Med automatiserad bildanalys kan exempelvis
position och riktning hos råttan beräknas och sedan studeras kvantitativt. För
det andra så möjliggör automatiseringen mycket större studier. Detta medför ett
större dataunderlag att analysera och därmed en ökad pålitlighet hos dessa.

Den här avhandlingen handlar i första hand om att utveckla bildanalytiska
metoder som kan tillämpas för medicinska och biologiska djurförsök, men också
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Figur 1: Vänster: tass-modellen. Höger: den fullständiga modellen ritad ovanpå en
bild

om hur data från dessa metoder kan användas för att analysera djurbeteende. Bil-
danalytiska lösningar och tillhörande medicinska eller biologiska studier på fem
olika djurarter presenteras. Även om djuren och frågeställningarna skiljer sig myc-
ket åt så är samtliga lösningar lika på ett sätt - en matematisk modell av djuret
används och parametrarna för dessa uppskattas över alla bilder i inspelningarna.

I det så kallade skilled reaching försöket studeras råttor som lär sig att plocka
upp mat med framtassarna. I detta fallet så är det tassens rörelser som ska analyse-
ras. Därför skapas en modell av den som anpassas efter videodata (se figur 1). Det
som senare faktiskt studeras är inte hur modellen ser ut, utan hur parametrarna
för den ser ut. Det vill säga det som analyseras är data som den i figur 2 som be-
står av bland annat position för tassen (den vänstra figuren) i 3D och hur mycket
fingrarna i tassen spretar (den högra figuren).

Ett annat djur som studeras är silkesapor. Målet med försöken är att se
hur aporna beter sig när de genom en speciell medicinsk metod försetts med
Parkinson-liknande symptom i ena hjärnhalvan. Två olika försöksuppställnin-
gar används för att karaktärisera beteeendet. I detta fallet så var det lämpligt att
modellera aporna som ellipser där parametrarna ges av position, rotation och stor-
lek. Därmed så samlas information om åt var apan befinner sig, vilket håll apan
är riktad, samt hur utsträckt den är.

Djurförsök är också vanligt förekommande vid utveckling av nya läkemedel.
Vanligtvis testas läkemedlen på gradvis större och större djurarter. En av de mindre
arterna är däggdjuret zebrafisk. Ett av syftena med projektet är att förbättra utvär-
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Figur 2: Delar av rörelsedata för en råtta som plockar upp mat. Vänster: position för
tassen. Höger: vinklar som anger hur mycket dess fyra fingrar spretar utåt.

deringen av droger på zebrafiskar för att på så sätt undvika studier på större djur.
Samtidigt som en högre kvalitet på data efterfrågas så är en stor kvantitet också av
intresse. Den valda kompromissen innebär att 48 fiskar filmas samtidigt i filmer
där fiskarna ser ut som böjda streck. I den bildanalytiska lösningen modelleras
därför fiskarna som kurvor. På så sätt fås data om var fiskarna befinner sig, hur de
är vinklade och hur deras kroppar böjer sig.

För biologer som är inriktade på syn är kubmaneten ett intressant djur att
studera. Den har nämligen ögon, samtidigt som den inte har någon riktig hjärna.
Därför så är (antagligen) kopplingen mellan synintryck och rörelse avsevärt en-
klare än hos högre stående organismer med syn. För att studera denna koppling
så fixeras en manet så att den inte kan röra sig. Sedan filmas den samtidigt som
den ges synintryck och försöker röra sig. Kroppen är transparent och svår att följa,
men dess fyra samlingar av ögon är mycket enklare att detektera. En följning av
dessa ger en bra indikation på hur maneten försöker röra sig.

Ett annat djur som studeras inom biologi är daphnier. Det är ett litet kräftdjur
som i praktiken används bland annat som indikator för gifthalter i sjöar. Studien
som presenteras i den här avhandlingen handlar om hur daphnior rör sig när de
utsätts för multipla hot i form av UV-strålning ovanifrån och rovdjur underifrån.
I de filmer som analyseras i det här projektet ser daphniorna väldigt små ut och
är runda. Därför modelleras de bara som en punkt. I det presenterade projektet
är dock fokus mer på den geometri som uppstår när ljusstrålar går genom vatten.
När ljus inifrån akvariet passerar ut till glaset och sedan ut i luften så böjs det.
Detta gör att objekt som befinner sig i vatten ser ut att vara närmare än vad de
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Figur 3: Objekt i vatten är inte där man kan tro att de är.

egentligen är för den som ser det utifrån. Om man inte tar hänsyn till krökningen
när man beräknar var daphniorna befinner sig så får man systematiska fel i berä-
knade 3D-positioner, precis som visas i figur 3. Därför presenteras en metod för
att på ett korrekt sätt beräkna var någonstans daphniorna befinner sig.

Det är inte bara geometrin som påverkas av vatten. Speciellt på stora avstånd
så försämras synligheten på grund av att ljuset absorberas av vattnet. Hur mycket
som absorberas beror på vilken färg ljuset har (dvs. våglängd). Rött ljus absorberas
snabbast och gör att undervattensbilder brukar bli mestadels blå-gröna. Men att
färgerna försämras är inte bara en nackdel. Det ger även en indikation på avstånd.
Detta använder vi för att beräkna så kallad relativ rörelse mellan två bilder, det vill
säga hur kameran har förflyttat i världen sig mellan två bilder.

Sammanfattningsvis presenteras i den här avhandlingen främst nya metoder
inom medicinsk och biologisk forskning, men bidrar även med matematiska me-
toder för undervattensbilder.
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Preface

This thesis contributes to method development of computer vision and image
analysis with medical and biological applications.

The contents of the thesis is based on the following ten papers. My contributions
are noted below each paper. A subsidiary paper is also listed below.

Main papers

• Tobias Palmér, Kalle Åström, Olof Enqvist, Nela Ivica, and Per Petersson.
“Rat Paw Tracking for Detailed Motion Analysis”. In: Visual observation
and analysis of Vertebrate And Insect Behavior 2014. 2014

Author contributions: This paper was conceived by PP. Surgery and buil-
ding of electrodes was performed by NI. Recording of experiments was
done by NI. Computer vision algorithms were developed by TP under su-
pervision of OE and KÅ. Analysis of neural data was performed by PH.

• Tobias Palmér, Martin Tamtè, Pär Halje, Olof Enqvist, and Per Petersson.
“A System for Automated Tracking of Motor Components in Neurop-
hysiological Research”. In: Journal of neuroscience methods 205.2 (2012),
pp. 334–344

Author contributions: The paper was conceived by PP. Surgery and buil-
ding of electrodes was performed by MT. Recording of experiments was
done by TP and MT. Computer vision algorithms were developed by TP
under supervision of OE. Analysis of neural data was performed by MT
and PH.

• Tobias Palmér, Maxwell B. Santana, Romulo A. Fuentes, and Per Petersson.
“Automated Tracking of Motor Behavior as a Means to Assess Severity of
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Symptoms in the 6-OHDA Marmoset Model of Parkinsons Disease”. In:
Visual observation and analysis of Vertebrate And Insect Behavior 2012. 2012

Author contributions: The paper was conceived by PP and RF. Experi-
ments were carried out by MS. MS, PP and RF performed the surgeries.
Computer vision algorithms were developed by TP.

• Maxwell B. Santana, Tobias Palmér, Hougelle Simplício, Romulo A. Fuen-
tes, and Per Petersson. “Characterization of Long-Term Motor Deficits in
the 6-OHDA Model of Parkinson’s Disease in the Common Marmoset”.
In: Behavioural brain research 290 (2015), pp. 90–101

Author contributions: The paper was conceived by PP and RF. Experi-
ments were carried out by MS. MS, HS, PP and RF performed the surge-
ries. Computer vision algorithms were developed by TP.

• Tobias Kjellberg, Tobias Palmér, Magnus Oskarsson, and Kalle Åström.
“Tracking the Motion of Box Jellyfish”. In: Visual observation and Analysis
of Vertebrate and Insect Behavior 2014. 2014

Author contributions: Conceived by KÅ and MO. Image analysis met-
hods developed by TK under supervision of MO, KÅ and TP. Paper written
by MO.

• Tobias Palmér, Kalle Åström, Olof Enqvist, and Per Petersson. “Visual
Analysis of Zebrafish Behavior”. In: Visual Observation and Analysis of
Vertebrate and Insect Behavior 2016. 2016

Author contributions: Conceived by PP and TP. Image analysis algo-
rithms were developed by TP under supervision of OE. Methods for ana-
lyzing tracking data were developed by TP, KÅ, OE and PP. The paper was
written by TP. The experimental set-up presented in paper VI was used. A
subset of the data presented in paper VI was used.

• Tobias Palmér, Fredrik Ek, Olof Enqvist, Roger Olsson, Kalle Åström, and
Per Petersson. “Action Sequencing in the Spontaneous Behavior of Zebra-
fish Larvae with Implications for Drug Development”. Manuscript

Author contributions: Conceived by PP, TP, RO and FE. Experimental
set-up constructed by TP and FE. Experiments recorded by FE. Compu-
ter vision algorithms developed by TP. Behavioral analysis developed and
performed by TP under supervision of PP, KÅ and OE.
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• Tobias Palmér, Giuseppe Bianco, Mikael T. Ekvall, Lars-Anders Hansson,
and Kalle Åström. “Calibration, Positioning and Tracking in a Refractive
and Reflective Scene”. In: International Conference on Pattern Recognition.
2016

Author contributions: Conceived by KÅ using the pre-existing experi-
mental set-up presented in previous studies by GB, ME and LH (e.g. [2]).
The computer vision methods were developed by TP under supervision by
KÅ. The paper was written by TP.

• Mikael T. Ekvall, Tobias Palmér, Giuseppe Bianco, Jan Heuschele, Johan
Bäckman, Kalle Åström, and Lars-Anders Hansson. “Daphnia Response to
Multiple Threats from UV-A and Predation”. Manuscript

Author contributions: The experiments were performed within the expe-
rimental set-up and procedures presented in previous studies by GB, ME
and LH (e.g. [2]). Experiments were recorded by ME. Calibration of the
cameras and scene and the tracking of Daphnia was performed by TP using
the methods proposed in paper VIII. The paper was written by ME.

• Tobias Palmér, Kalle Åström, and Jan-Michael Frahm. “The Misty Three
Point Algorithm for Relative Pose”. Manuscript

Author contributions: Idea of using attenuation as a depth-sensor was
conceived by JF. Minimal relative-pose problem solved by KÅ and TP. Im-
plemented and tested by TP. The paper was written by TP under supervi-
sion by KÅ and JF.

Subsidiary paper

• Kalle Åström, Magnus Oskarsson, Tobias Kjellberg, Tobias Palmér, and
Dan-Eric Nilsson. “Visual Tracking of Box Jellyfish: A Real-Time Motion
Tracking System”. In: Computer Vision and Pattern Recognition in Environ-
mental Informatics (2015), p. 107

Author contributions: Conceived by KÅ, MO and DN. Image analysis
methods developed by TK under supervision of MO, KÅ and TP. Paper
written by MO and DN.
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Introduction

1 Overview of the thesis

The two main topics of this thesis are on how computer vision can be applied
to extract data from animal experiments and how data from the computer vision
systems can be processed to enable useful behavioral analysis. Note that the two
parts overlap – e.g. to enable the analysis of how the body angle of zebrafish larvae
change during turning, the computer vision system needs to estimate the body
angle. Furthermore, knowledge of noise and errors in the computer vision system
is crucial for designing a robust behavioral analysis system. This dependency of
the parts inside the systems is illustrated in Fig. 1.

The use of automatized image analysis for the purpose of analyzing animal
behavior is highly popular in e.g. medical and biological sciences. It allows for
higher throughput experiments with consistent results compared to the alternative
of manual labeling.

The main contributions of this thesis are presented in ten papers that span
six different projects and five types of animals – rats, monkeys, zebrafish, Daphnia
and jellyfish. The scientific results for four of the animals (rats, monkeys, zebrafish
and jellyfish) are represented by two papers each – one computer vision paper and
one medical/biological paper. An exception among the animal projects is the
jellyfish project that is only represented by a computer vision paper.

Seemingly an outlier, the sixth included project (paper X) is not related to
animal experiments. The paper is instead related to the geometrical problems of
underwater geometry that are considered the Daphnia project. In paper VIII, it
is noted that the 3D geometry in underwater imaging differs from that of in-air
applications. An additional difference between underwater imaging and in-air
imaging is leveraged in paper X – the depth and color dependent attenuation of
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Figure 1: An overview of the systems for analyzing animal behavior included in this
thesis. The created systems only transfer data as indicated by the arrows, but in the
development of the systems, all parts overlap as indicated by the colors. Contributi-
ons have been made in the colored areas.

light in water provides pseudo-depth information.
This thesis is separated into four parts. In the first part, a short introduction to

the theory of computer vision and image analysis is provided. Then the specific
methods developed for the included papers are outlined in a different context
than in the papers. In addition, some material that relates to the papers but is
not included in them is presented here. The third part consists of presentations
of each of the projects included in the thesis. The computer vision theory applied
in each project is referenced to and the medical/biological rationale is explained.
This additional material is presented for each project. The fourth part consists of
the papers.

1.1 Applications for animal experiments

All motile organisms need to organize their motor output to achieve functional
movements. This organization is controlled by the central nervous system. How

2



1. Overview of the thesis

this is actually done is already partly known from many years of research. For
example, which parts of the brain that control which parts of the body has been
known at least since the 1930’s. It is also well known which level of complexity
different structures control. For example, the deeper parts of the brain are impor-
tant for basic functions such as breathing, while the structures at the surface of
the brain (the cortex) deals with more high level tasks such as dancing or playing
the piano.

However, this is an oversimplification of the complex system of the brain.
For example, different structures in the brain communicate with each other to
organize movement. There is not one part of the brain that alone deals with, for
example, controlling the muscles in the feet. A question that is far from being
answered is how movements are organized by combinations of brain structures.
An increased knowledge in this field would improve understanding of neural dis-
orders, such as for example Parkinson’s disease. This could potentially lead to
new methods of treatment. In addition, it could lead to further development in
engineering applications such as neural prosthetics and brain machine interfaces.

One approach to increasing knowledge on this topic is to conduct experi-
ments on motile organisms with brains and measure both activity in the brain
and the movement of the animal. For the purpose of understanding the human
brain, studies on humans would be ideal. However, the methods that currently
exist are intrusive and causes physical harm to the brain. Therefore, the harmful
experiments are conducted on animals.

One of the many experiments that is commonly conducted on rats is skilled
reaching. In this task, a rat is taught to reach for food rewards through a narrow
slit and its movements and performance is studied. The test has proven to be
sensitive in detecting for example the early stages of Parkinson’s disease. A method
for tracking the paw movements is proposed in the included papers (papers II
and I). The computer vision method is applied on videos of rats that has micro-
electrodes implanted into their brains. This allows for the study of correlation
between fine motor behavior and neural activity.

The common marmoset is one of the non-human primates that is used to
study Parkinson’s disease. Since the animals themselves are not known to develop
this specific neural disorder, it is necessary to induce it. One of the most com-
monly used methods is to inject the neurotoxin 6-OHDA into the brain, with the
effect that the dopamine producing cells are degenerated. This method causes a
Parkinsonian behavior in the animals. One of the benefits of inducing Parkinson’s

3
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disease in animals as compared to studying pre-existing human patients is that
the animals can be given the neural disorder in only one hemisphere. This allows
for comparisons between the neural activity in the Parkinsonian hemisphere to
that of the unharmed hemisphere. The included papers (paper IV and III) inves-
tigates the long-term effects of the 6-OHDA model of Parkinson’s disease in the
common marmoset.

A related topic is that of developing drugs that effects the central nervous sy-
stem. In general, the animal experiments start on small and simple organisms and
progress into larger and more complex animals if the results are promising. One
of the smaller animals that is commonly tested is the zebrafish, particularly in its
larval stage. The zebrafish larva is relatively simple to conduct drug testing on,
since it can absorb substances directly through its skin. An improvement in de-
tecting both efficient and inefficient substances has the potential of decreasing the
amount of experiments on larger and more complex animals. So far, drug testing
on zebrafish larvae have been limited to simple measures such as position and and
overall distance traveled of the fish. To improve upon the quality of behavioral
testing, there is need to use more advanced features for describing changes in be-
havior. These new features require more detailed output from the video tracking
system. Therefore, the included papers (paper VI and V) propose a method that
enables both high throughput and detail in the tracking data. Novel methods for
analyzing the tracking output are proposed.

An animal that unlike the others featured in this thesis does not have a brain
is the box jellyfish. Instead of a brain it has a nerve net and, remarkably among
jellyfish, it has eyes. This is interesting to study since the connection between vi-
sual input and motor output can be assumed to be substantially less complex than
in animals with brains. One important step towards analyzing this connection
is to quantify motor output. The proposed approach (paper VII) assumes that
the "head" of the jellyfish is fixated so that it can not actually move. Then the
jellyfish is recorded as it receives visual stimuli and attempts to move. Its four
rhopalia (clusters of eyes) are mostly clearly visible and easy to track compared to
the transparent body.

Daphnia are small aquatic organisms that live in for example lakes and ponds
in many parts of the world. They are sensitive to toxins in the water, which makes
their behavior an indicator of toxicity levels. The included biological research
paper (paper IX) focuses on the behavior of Daphnia under multiple threats –
both UV-light from above and predation from below. A method (see paper VIII)

4
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to estimate the 3D positions of Daphnia inside of the aquarium is proposed to
enable to the biological study.

2 Image analysis

The difference between computer vision and image analysis is not clearly defined.
The two fields use largely the same algorithms and theory. In addition, there are
several other fields that are closely related and often with unclear separation – for
example pattern recognition, signal processing, machine vision, image processing
and photogrammetry. However, computer vision tends to focus on 3D analysis
of images (e.g. structure from motion) while image analysis mainly deals with 2D
pixel-wise operations (e.g. edge detection).

In this section is described the theory of 2D image analysis that is the most re-
levant to the included papers, as well as the basics of the field. Similarly, section 3
describes the basic and most relevant 3D computer vision theory.

2.1 Images

An image taken with an RGB camera is represented by a three dimensional data
structure I on the form

I ∈ RM×N×3, (1)

whereM andN are the height and width of the image, respectively, and the third
dimension consists of the three color channels – red, green and blue. In other
words, an RGB image consists of MN pixels, each represented by three values.
In this thesis, it is assumed that all images have pixels values that range from 0 to
1 in each color channel.

Image intensities are sometimes referenced as Iijk, where i denotes the row,
j the column and k the color channel. In some parts of this thesis, images are
represented as a function of image coordinates (x, y). That is, an image I can
also be represented by the function

I : (x, y)→ R3, (2)

where (x, y) are the coordinates. Note that the coordinate system in which (x, y)
is defined is not necessarily the same as (i, j).
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(a) A grayscale image of Ludde the dog.
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(b) A 3D scatter plot representation of
(a).

Figure 2: Different representations of an image. Figure (a) and (b) contain exactly the
same information to the computer, but only the left image has any semantic meaning
to a human. None of the figures have semantic meaning to a computer.

Furthermore, note that there is nothing in this data structure that (without
training) allows for a computer to semantically "understand" an image. That is,
even though a human can see that there is a dog in Fig. 2a, there is no semantic
information in the pixel values that tells the computer it is a dog (unless it has been
trained to do it). What the computer "sees" is closer related to what a human can
see in Fig. 2b.

2.2 Segmentation

2.2.1 Thresholding

Sometimes it is of interest to segment different parts of an image. For example,
Fig. 2a can be segmented into regions in a number of ways. For example, it
can be semantically based regions such as: dog, grass, paw, ear, etc. How such a
segmentation can be achieved by a computer is one of the most popular subjects in
the field of image analysis. It can also be more openly defined segmentation such
as background and foreground. A third example that is mathematically clearly
defined, but has no semantic meaning, is segmentation by applying thresholds to
grayscale intensities. For example, the binary image shown in Fig. 3a is the result
of classifying all pixels in Fig. 2a. Pixels that have grayscale intensities greater than
0.15 belong to class 1 and the rest belong to class 0.
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(a) A binary image created by applying a
threshold to the image in Fig. 2a.

(b) Erosion of (a) by three pixels.

(c) Dilation of (a) by three pixels. (d) Automatic semantic segmentation of
the image in Fig. 2a.

Figure 3: A binary image (a) and the results of different morphological operations
applied on it in (b) and (c)). Furthermore, (d) provides an example of what methods
from the field of semantic segmentation can achieve. Pixels belonging to class 0 are
black and pixels belonging to class 1 are white. Note the properties of each operation
– e.g. erosion removes small "islands" in (b) and dilation merges the body and head
in (c).

2.2.2 Morphology

A binary image can be subject to morphological operations such as erosion and
dilation. Erosion of a binary image means that the areas classified as 1 are shrunk
from the borders to the regions belonging to class 0 (cf. Fig. 3a and Fig. 3b).
Similarly, dilation of a binary image means an expansion of the areas classified as
1 towards the pixels belonging to class 0 (cf. Fig. 3a and Fig. 3c). The result of
applying a more advanced method for segmentation is shown in Fig. 3d. Here, a
method that uses convolutional neural networks (CNN) for automatic semantic
segmentation is used [95]. Note that the output of the method is not only the
binary image – the black area in the figure is actually classified as dog.
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(a) Discrete derivative of 2a in vertical di-
rection.

(b) Discrete derivative of 2a in horizontal
direction.

(c) Length of discrete gradient of 2a. (d) Result from Canny edge detector app-
lied on 2a.

Figure 4: Edge detection. The discrete partial derivatives, (a) and (b), and the length
of the gradient (c) gives an indication of edges. (d) shows the result of applying
the Canny edge detector. Note that there are two different colormaps are used in
the subfigures. (a)-(c) are visualized such that −1 is blue, 0 is white and +1 is red.
Since the gradient length is non-negative, there are no blue pixels in (c). The second
colormap is used in the binary image (d) – pixels that lie on an edge are black and
the other are white.

2.3 Edges

Edges in an image correspond to regions of rapid changes in color and/or intensity.
A simple edge detector is given by the discrete gradients in the image, that is, the
discrete derivatives in the i and j directions. Fig. 4a – 4c shows an example of this,
applied on the image from Fig. 2a. A threshold can be applied on the derivatives
to obtain a classification of whether a pixel is an edge pixel or not.

In paper II, a method is used that computes signed edge images where the
sign (−1 or 1) of a pixel depends on the orientation of the edge at the pixel.
This method is later changed to on of the most commonly used edge detectors,

8
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the Canny edge detector [12], for paper I. An example result of the Canny edge
detector is shown in Fig. 4d.

2.4 Integral images

Instead of computing the discrete derivatives of an image, it is sometimes useful
to compute the opposite – that is, the discrete integral of an image. They allow
for fast measurements of sums over rectangular subsets of pixels in an image. The
resulting integral of the image is commonly referred to as an integral image [19,
49, 88]. An example of an application where such images are useful is presented
in section 4.6.1.

3 Computer vision

3.1 Cameras

This section contains descriptions of the geometry of the two camera models used
in the included papers. First, the two classes of camera models – pinhole camera
and generalized camera – are introduced. The introduction to cameras is then
concluded by describing the intrinsic camera parameters.

3.1.1 The pinhole camera model

The pinhole camera model assumes that all rays meet at a common point, referred
to as the focal point (or camera center). Assume that the focal point is located
at the origin, that the camera is facing towards the positive z-axis and that the
focal length is f = 1 (see Fig. 5). Then z = −1 describes the physical image
plane. Note that the projection on z = −1 is mirrored horizontally and vertically
compared to the scene. However, by instead projecting on the virtual image plane
z = 1, the same projection as for z = −1 is provided but without the mirroring
effects. Therefore, the plane z = 1 is defined as the image plane on which all
points are projected.

A point U = (X,Y, Z)> in the scene is observed as the intersection of the
line from the origin to the scene point and the plane z = 1. By parametrizing the
line as

lU : λ→ 0 + λ(U − 0) = λU , (3)
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z = −f z = f
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u1
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u3 U1
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Figure 5: The geometry of the pinhole camera model. In the notation used in this
thesis, Uk denotes a scene point, uk is a normalized image coordinate and the point
pk lies on the real image plane. Note that the points pk are never actually used. The
rays from the scene points meet at the focal pointO.

the projection is found by picking λ = 1/Z and inserting

u = lU (1/Z) = (X/Z, Y/Z,Z/Z)> = (x, y, 1)> . (4)

The relation between scene points U and their projections u can be formulated
as a matrix-vector multiplication as follows

λu =




1 0 0 0
0 1 0 0
0 0 1 0







X
Y
Z
1


 . (5)

3.1.2 Intrinsic parameters

So far has been described how the rays of light from the scene points are projected
on the plane z = 1 that represents the image sensor. What has not yet been
shown is how the projections relate to the image sensor elements (i.e. pixels). For
this purpose, the intrinsic camera matrix K is defined as follows

K =



fx s cx
0 fy cy
0 0 1


 , (6)

where (fx, fy) is the focal length in pixels, (cx, cy) is the optical center in pixels
and s is the skew. Note that fx = fy if the pixels have equal sides and s = 0
if the pixel axes are orthogonal. The intrinsic parameters are applied to projected
image points as x = Ku.

10
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3.1.3 Radial distortion

The camera lens can cause a distortion that increases with the distance from the
optical center. This nonlinear effect is referred to as radial distortion and is in this
thesis modeled by polynomials as

(ux, uy)
> =

(
u′x, u

′
y

)> · (1 + k1r
2 + k2r

4 + k3r
6), (7)

where (ux, uy) and (u′x, u
′
y) are the distorted and undistorted normalized image

coordinates, respectively, and r2 = u2
x + u2

y.
Note that it is sometimes more convenient to define the transformation for

image points x. This can be achieved by first reformulating Eq. (7) using homo-
geneous coordinates as follows,

(ux, uy, 1)> =

(
u′x, u

′
y,

1
p(r)

)>
· p(r) = Λr

(
u′x, u

′
y, 1
)>
, (8)

where p(r) = 1 + k1r
2 + k2r

4 + k3r
6 and Λr = diag {p(r), p(r), 1}.

By multiplying both sides with KΛ−1
r and using that u = K−1Ku, the follo-

wing equation is provided,

(KΛ−1
r )(

=I︷ ︸︸ ︷
K−1 K) (ux, uy, 1)>︸ ︷︷ ︸

=(x,y,1)>

= (K

=I︷ ︸︸ ︷
Λ−1
r )Λr

(
u′x, u

′
y, 1
)>

︸ ︷︷ ︸
=(x′,y′,1)>

. (9)

In conclusion, radially distorted image points (x, y, 1)> are related to undistorted
points (x′, y′, 1)> by the equation

(
KΛ−1

r K−1) (x, y, 1)> =
(
x′, y′, 1

)>
. (10)

3.1.4 Extrinsic parameters

The camera that has been used for the derivations so far has been defined in a
local coordinate system. In this system, the focal point is located at the origin
and the camera is directed towards the positive z-axis. Now, assume that this
local coordinate system of the camera is related to the word coordinate system
by a translation t followed by a rotation R. That is, the scene points U are
transformed to the local coordinate system of the camera by the transformation

U ′ = R>U −R>t. (11)
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p1

p2

p3

U1

U2

U3

w1

w2

w3

{x1,x2,x3}

Figure 6: A generalized camera. For each image point xk, there exists a ray (pk,wk)
into the scene.

Thus a scene point U can be projected by first transforming it by Eq. (11) and
then projecting the result, U ′, as in Eq. (5).

3.1.5 Summary

In conclusion, the projection of a scene point U is computed as

λx = K(R>Y −R>t) = KR>
[
I −t

]
︸ ︷︷ ︸

P

Ŷ = P Û , (12)

where P is the projection matrix and Û = [U> 1]> are the homogeneous coordi-
nates [53] of U . The result, λx = (x, y, z)>, is then normalized by division by
z and radially distorted by Eq. (7).

3.1.6 The generalized camera model

The generalized camera model is the most general camera model. It only assumes
that for each pixel, there exists a ray into the scene that originates from the pixel
(see Fig. 6). No assumption is made on the continuity of the pixel-ray map. Note
that in the cases where rays change direction in the scene, the final linear ray
segment is the one that is used. An example of a generalized camera is a pinhole
camera – for each pixel there exists a ray into the scene. A second example is
provided by a rig of pinhole cameras whose lines of sight do not overlap. In this
case, the direction into the scene for each pixel is known, and thus the rig of
cameras can be modeled as a generalized camera. A third example is given by
underwater cameras with flat port housings (see Fig. 7). The different physical
properties of water, glass and air causes the rays from scene points to refract.
Thereby, all rays do not meet at a common point. However, for each pixel, the
direction into the water can be computed and thus the camera can be modeled as

12
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x (p,w)

p1

p2

p3

p4

U1

U2

U3

U4

w1

w2

w3

w4

Air Glass
Water

Figure 7: A pinhole camera observes a scene from behind two flat refractions. This
can also be seen as a generalized camera where image points {x1, . . . ,x4} are in-
serted into the black (dotted) box that provide the rays {(pk,wk)}. Note that the
treatment of this camera as a generalized camera discards information that could
otherwise be used to add constraints for e.g. pose estimation.

a generalized camera. Additional examples are: a camera (of any kind) that views
a scene through multiple non-flat reflections and five cameras that view a scene
through a varying number of refractions.

Note that it is not necessarily easy to compute the mappings from the pixels
to the (final) rays. And note that when treating a camera as a generalized camera,
there is geometrical information that could potentially be used but is discarded.
For example, the ray paths shown in Fig. 7 are constrained to meet at the fo-
cal point and the change direction according to Snell’s law. Thereby, outgoing
rays (pk,wk) are related to each other. However, in the generalized camera mo-
del, no relations are assumed. Another example is the relative motion problem –
the problem for a calibrated pinhole camera requires five pairs of corresponding
points, while a generalized camera requires six pairs. The relative motion problem
is further discussed in the next section.
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3.2 Calibration

To calibrate means to estimate parameters of an instrument that involves the me-
asurements or output it makes, usually to meet some standard scale. For example,
a TV can be calibrated to make sure that what is intended to be displayed as red
really is displayed as red and green as green, etc. In the field of computer vision,
calibration most commonly refers to the estimation of a set of parameters of a
camera. In this thesis, camera calibration is split up into two groups: intrinsic
calibration and extrinsic calibration.

Intrinsic calibration refers to estimating the parameters describing the lens
and imaging sensor, i.e. the focal length, radial distortion, tangential distortion,
image sensor skew, etc. The most widely used algorithms for estimating the in-
trinsic parameters is based on the use of images of a checkerboard of known di-
mensions [6, 33, 96].

Extrinsic calibration refers to the estimation of position and orientation of a
camera. This can be split into two categories – absolute pose and relative pose.
The absolute pose problem is the problem of estimating the position of a camera
given a set of known scene points. The relative pose problem consists of estima-
ting the relative poses of two cameras given a set of matching image points.

There are many algorithms for extrinsic calibration. Table 8 provides an over-
view of some of the methods that are the most relevant for this thesis. For ex-
ample, the five-point method [55, 81] uses five pairs of corresponding image
points to estimate the essential matrix, assuming intrinsic calibration is done a-
priori. The Three Point Delta method proposed in [58] uses three pairs of corre-
sponding image points and the difference in distance to the corresponding scene
points to estimate relative pose in the generalized camera model. The direct linear
transform method (DLT) (used in papers [56, 61, 62, 70]) does not model ra-
dial/tangential distortion and uses six pairs of corresponding image/world points
to estimate the projection matrix of a single camera. Derivations of these methods
are outlined in the following.

3.2.1 Direct linear transform

The direct linear transform (DLT) algorithm [84] is a method for computing an
unknown linear transformation A in a set of similarity relations on the form

xk ∝ Ayk, (13)

14
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Algorithm Assumes
intrinsic
calibration?

Camera mo-
del

Number of
pointwise corre-
spondences

The eight point al-
gorithm [50, 77]

No Pinhole 8 (x, y) points

The seven point
algorithm

No Pinhole 7 (x, y) points

The five point al-
gorithm [55]

Yes Pinhole 5 (x, y) points

The six point algo-
rithm [81]

Yes Generalized 6 (x, y) points

The Misty Three
Point algorithm
[58]

Yes Generalized 3 (x, y,R,G,B)
points

The Three Point
Delta algorithm
[58]

Yes Generalized 3 (x, y) points
and difference in
depth for each
pair

Figure 8: A summary of methods for relative pose estimation.

where the xk’s and yk’s are known.
The relation between scene points and image points (Eq. (12)) are on the

form of Eq. (13). Consequently, the DLT can be applied to estimate the pro-
jection matrix P . In the following is shown how the DLT is applied to compute
the absolute pose (i.e. the projection matrix P ) using at least n = 6 pairs of
corresponding image/scene points.

Assume that n correspondences {(xk,Uk)}k=1,...n are known. The con-
straint that xk ∝ PUk can be rewritten as

PUk × xk = 0, (14)

since the cross-product between linearly dependent vectors is zero. The cross-
product between two vectors can be formulated as a matrix-vector multiplication
as follows

u× v = [v]>×u, (15)
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where

[v]× =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 . (16)

Thus equation (14) can be rewritten as

[xk]
>
×PUk = 0. (17)

This equation is sought to be reformulated on the form M (k)p = 0, where M (k)

is a matrix that depends on xk and p is a vector representation of the matrix P .
To achieve this, P is first partitioned as

P =



p>1
p>2
p>3


 . (18)

The expression PUk can be rewritten as

PUk =



p>1 Uk
p>2 Uk
p>3 Uk


 =



U>k p1

U>k p2

U>k p3


 =



U>k 0 0

0 U>k 0
0 0 U>k





p1

p2

p3


 (19)

Thus the similarity relation between the scene point Uk and the image point xk
can be written as

M (k)p = 0, (20)

where

M (k) =




0 −x3k x2k

x3k 0 −x1k

−x2k x1k 0





U>k 0 0

0 U>k 0
0 0 U>k


 =

=




0 −x3kU
>
k x2kU

>
k

x3kU
>
k 0 −x1kU

>
k

−x2kU
>
k x1kU

>
k 0


 ,

(21)

and

p = (P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, P34)> . (22)
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Note that since rank([xk]×) ≤ 2, the rank of M (k) is also less than or equal to
two. Consequently, each pair of points introduce up to two linearly independent
equations. The system of equations for all k now reads

Mp =



M (1)

. . .

M (n)


p = 0, (23)

and contains up to 2n linearly independent equations. Since p has 12 degrees
of freedom, at least n = 6 pairs of corresponding points are required to find a
solution to Eq. (23).

The actual solution p to Eq. (23) can be found using e.g. singular value de-
composition (SVD) as follows:

Mp = UΣV >p =
n∑

k=1

σkUk(V
>
k p) = 0, (24)

whereUk and Vk are the k:th colon vectors of the matrices U and V , respectively.
Since the right (and left) singular vectors form an orthogonal basis, V >i Vj = 0
if i 6= j and one otherwise. Therefore, assigning p = Vn and inserting it into
Eq. (24) gives

MVn =

n∑

k=1

σkUk(V
>
k Vn) = σnUn. (25)

If σn = 0, then p = αVn solves Eq. (23) for any α. Even if the smallest singular
value is non-zero, the corresponding singular vector is still used since it provides
the best solution to Eq. (23) in a least squares sense. Thus, P can be reconstructed
as

P = α



p1 p2 p3 p4

p5 p6 p7 p8

p9 p10 p11 p12


 . (26)

Since the projection of a scene point (X,Y, Z, 1)> using P is


x
y
1


 =

1
α(p9X + p10Y + p11Z + p12)

[
α(p1X + p2Y + p3Z + p4)
α(p5X + p6Y + p7Z + p8)

]
,

(27)
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then any α 6= 0 provides a non-trivial solution to Eq. (23) and it can be assumed
that α = 1.

Lastly, if there are less than 12 linearly independent rows of M , the nullspace
of M is at least two-dimensional and the infinite number of solutions can not be
decreased to a finite number by setting α = 1. Multi-dimensional nullspaces are
further studied in Sections 3.2.3 and 3.2.4.

3.2.2 The eight point algorithm

The relation between two pinhole cameras is constrained by the epipolar constraint
(see e.g. [31]). This constraint can be formulated as

x>Fy = 0, (28)

where x and y are homogeneous image coordinates in the first and second ca-
mera, respectively, that correspond to the same scene point. The 3× 3 matrix F
is referred to as the fundamental matrix and is used to compute the relative poses
of the cameras.
Equation (28) can be rewritten as a scalar product equation

M>
1 f = 0, (29)

by first expanding it

F11x1y1 + F21x2y1 + F31x3y1+

+F12x1y2 + F22x2y2 + F32x3y2+

+F13x1y3 + F23x2y3 + F33x3y3 = 0,

(30)

and then defining

M1 = (x1y1, x2y1, . . . , x3y3)> ,

f = (F11, F21, . . . , F33)> .
(31)

Solutions to equation (29) can be found by computing the singular vector decom-
position of M1. However, the null space of M>

1 will be 9 dimensional since it
only contains one row. Since f contains 9 elements, and a one dimensional null
space desired, is a matrix M is sought that contains 8 linearly independent rows.

18
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Therefore, seven more point correspondences are used to create M2, . . . ,M8

which are subsequently used to define

M =



M>

1
. . .
M>

8


 . (32)

The equation can be rewritten on the form

Mf = 0, (33)

Then the vector representation of the fundamental matrix, f , is found by com-
puting the singular vector decomposition of the M , i.e.

Mf = UΣV >f =
9∑

k=1

σkUk(V
>
k f) = 0. (34)

Note that since the Vk’s are linearly independent, solutions to the equation are
provided by linear combinations of all Vk such that σk = 0. Assume that there
are m non-zero singular values, then the solutions f to Eq. (29) are provided by

f = αm+1Vm+1 + · · ·+ α9V9, (35)

where αm, . . . , αn are arbitrary coordinates in the null space.
Using eight pairwise point correspondences, {x1, . . . ,x8} and {y1, . . . ,y8},

typically gives m = 8 non-zero singular values. Consequently,

f = αV9. (36)

Since Eq. (29) is unaffected by the scale of F , we can set α = 1. F is then given
by reshaping f as follows:

F =



V1,9 V4,9 V7,9

V2,9 V5,9 V8,9

V3,9 V6,9 V9,9


 . (37)

Thus there is typically only one solution.
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3.2.3 The seven point algorithm

Assume that only seven pairs of points are used to define M (Eq. (32) and
Eq. (31)). Then, typically, m = 7 and elements in the null space of M are
given by

f = α1V8 + α2V9. (38)

Since Eq. (29) is unaffected by the scale of F , it can be assumed that α1 = 1.
Thus there is one unknown, α2, in the solution f . F can now be reconstructed
as

F =



f1(1, α2) f4(1, α2) f7(1, α2)
f2(1, α2) f5(1, α2) f8(1, α2)
f3(1, α2) f6(1, α2) f9(1, α2)


 , (39)

for any α2.
To decrease the number of solutions to a finite number, the additional constraint is
detF = 0 is added. This constraint provides a third degree polynomial equation,
detF = p(α2) = 0, in α2, that can be solved with up to three real solutions.

3.2.4 The five point algorithm

Consider the case where the two cameras are calibrated and that five pairs of points
are given in their calibrated coordinate system (see Fig. 9). Then the matrix in
the epipolar constraint (Eq. (28)) is a special case of the fundamental matrix –
the essential matrix. The essential matrix has the additional (compared to the fun-
damental matrix) properties that two eigenvalues are equal and the third is zero.
This constraint is formulated as a matrix equation in the following derivation.

The five point algorithm further decreases the number of points used to de-
fine M , and consequently the number of dimensions of the null space increases.
Solutions f are now found on the form

f = α1V6 + α2V7 + α3V8 + α4V9, (40)

where, similar to the seven point algorithm, we can set α1 = 1. To decrease the
number of solutions to a finite number, ten constraints are introduced [77],

{
detE = 0,

2EE>E − tr (EE>)E = 0.
(41)
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U3
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p3 q3
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q4p5
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Figure 9: The five point relative pose problem. Five scene points Uk are observed
as pk and qk in two intrinsically calibrated pinhole cameras. The position t and
orientation R for the camera to the right is sought.

As in the previous derivations, one constraint is provided by detE = 0. The
second equation is actually a matrix equation that consists of 9 constraints. This
system of equations has at most 10 real solutions. For more details, see e.g. [81].

3.2.5 The Misty Three Point algorithm

One of the contributions in this thesis is paper X, in which is proposed two new
relative pose algorithms for generalized cameras that only require three pairs of
image points that correspond to the same scene point. The Three Point Delta
method assumes that, in addition to the points, the difference in distance from
each scene point to the camera positions is known. The Misty Three Point al-
gorithm uses three pairs of corresponding points and their respective colors to
estimate the relative pose, as shown in Fig. 10. Use of the algorithm is enabled
by the distance dependent degradation of light that is observed in underwater
images. The method is explained in detail in section 10.2.

3.3 Bundle adjustment

The above methods (e.g. the five point algorithm) estimates the relative motion
between only two cameras. However, these algorithms can be applied to estimate
the relative poses of several cameras in a sequential algorithm. That is, the relative
motion (R1, t1) between the first and second cameras, and then (R2, t2) between
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O

(U1,E1)

(U2,E2)
(U3,E3)

t

(p11, I11)

(p21, I21)

z11

z21

Figure 10: The relative pose problem solved in paper X. Two cameras at different
locations and with different orientations observe three points of unknown position
and unknown color. Note that we are not only using the direction uik from each
observed point, but also the observed color. The differences in depth ∆zik = zjk −
zik are also crucial parts of this method. In the left camera, with larger distance to
the objects, the colors look very similar. In the right camera, however, the observed
colors are more similar to the actual color of the object. This distance dependent
degradation in color is what enables the estimation of depth differences.

the second and third cameras can be estimated. The relative pose of the third ca-
mera (in the coordinate system defined by the first camera) can then be computed
by combining the two estimated relative poses. This sequential algorithm provi-
des an estimate of the relative pose of camera n that depend on all n− 1 previous
estimates. Therefore, the n’th estimate is subject to the cumulative errors in the
previous n − 1 estimated relative poses. In this section is outlined a widely used
method for minimizing the reprojection errors in all cameras simultaneously and
removing the cumulative character of the errors.

Let Uk define a set of Np scene points that correspond to image points
xik observed in Nc cameras, where k = 1, . . . , Np and i = 1, . . . , Nc. Let
Pi = [Ri ti] be the extrinsic camera parameters and Ωi the set of intrinsic
camera parameters of each camera. Bundle adjustment in this case is the simul-
taneous optimization of each Uk, Pi and Ωi with respect to the reprojection
errors relative to xik. More generally, bundle adjustment can be defined as the si-
multaneous optimization of scene structure, relative camera motion and intrinsic
camera parameters with respect to reprojection errors.

An example of bundle adjustment for a set of intrinsically calibrated pinhole
cameras is provided in the following. Assume that the cameras and observed
points are normalized. Let f : RM → RN be a vector valued error function that
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provides, among others, the reprojection errors of all points. Each scene point and
each camera provides a vector of errors freproj(Ri, ti,Uk,xik). There are several
possible definitions of such an error function, for example

freproj(R, t,U ,x) =




R11U1 +R12U2 +R13U3 + t1
R31U1 +R32U2 +R33U3 + t3

R21U1 +R22U2 +R23U3 + t2
R31U1 +R32U2 +R33U3 + t3


−

[
x1

x2

]
. (42)

Furthermore, it is of importance that each Ri is a rotation matrix. This can be
achieved by for example reformulating the constraint R>R = I3×3 and defining
the error function frot(R) as

frot(R) =




R2
11 +R2

21 +R2
31 − 1

R11R12 +R21R22 +R31R32

R11R13 +R21R23 +R31R33

R2
12 +R2

22 +R2
32 − 1

R12R13 +R22R23 +R32R33

R2
13 +R2

23 +R2
33 − 1



. (43)

Let Y be a colon vector of length M that contains all the variables. Then, the
error function f is defined as

f(Y ) =




frot(R1)
. . .

frot(RNc)
freproj(R1, t1,U1,x11)

. . .
freproj(RNc , tNc ,UNp ,xNcNp)



. (44)

Given an error function f , that for each M -vector of variables Y provides an
N -vector of errors, the optimization problem can be defined as

Y ∗ = argmin
Y

‖f(Y )‖2 = argmin
Y

(f(Y ))>(f(Y )). (45)

A commonly used method for minimizing the nonlinear function ‖f(Y )‖2 is
the Levenberg-Marquardt algorithm. It is an iterative algorithm that, assuming
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that an initial vector Y0 is defined, in each step updates the current solution Yk
to

Yk+1 = Yk + δk, (46)

where δk is an unknown update step at iteration k. The Levenberg-Marquardt
method provides a specific method for picking a suitable δ. This is derived as
follows. The updated error, f(Yk + δk), can be linearized as

f(Yk + δk) ≈ f(Yk) + Jδk, (47)

where J is the Jacobian matrix of f , that is, J is a matrix that contains all partial
derivatives of f . Note that J is a sparse matrix, since most parts of the error
functions only depend on a few variables. Setting the updated error to zero thus
provides an equation in δk as

f(Yk) + Jδk = 0. (48)

This equation has the least squares solution

δk = −
(
J>J

)−1
J>f(Yk). (49)

The Levenberg-Marquardt algorithm provides a more stable solution to the equa-
tion by adding a damping factor λ > 0,

δk = −
(
J>J + λ diag

(
J>J

))−1
J>f(Yk), (50)

where diag
(
J>J

)
is a diagonal matrix where the diagonal elements are those of

J>J .

3.4 Solving systems of polynomial equations

In paper X, an encountered relative-pose problem was formulated as a system of
polynomial equations. This section outlines the fundamentals of the theory of
polynomial solving that is the most relevant for this particular problem. Furt-
hermore, how the theory is applied to solve this particular system of polynomial
equations is outlined. Note that it is assumed in this section that all polynomials
are defined over C, but the same theory holds for any algebraically closed field.
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Polynomial solvers, and in particular the action matrix method, are important
tools in computer vision. Some of the earliest applications of the action matrix
method for solving polynomial equations in computer vision were proposed by
Stewenius [80]. At that time, most methods were hand-crafted [40, 79]. Ho-
wever, tools have been developed to automatize the method [44]. Furthermore,
there have been some developments in making the methods more numerically
stable [10, 42] and faster [9, 43]. For an overview of the theory of algebraic
geometry, see e.g. [17, 54].

A monomial in the n variables x1, . . . , xn with integer exponents α1, . . . , αn
is written on the compact form

xα = xα1
1 · xα2

2 · · ·xαnn . (51)

A polynomial p(x) in the variables x1, . . . , xn is defined as a finite linear combi-
nation of monomials, that is

p(x) =
∑

α∈A
aαx

α, (52)

where aα is the coefficient for the monomial of the exponential vectorα andA is
a finite set of exponents. The set of all polynomials in x1, . . . , xn with coefficients
in C is denoted C[x1, . . . , xn].
As an example, if x = (x, y, z),A = {(2, 1, 0), (1, 1, 1), (0, 0, 1), (0, 0, 0)} and
a = {a(2, 1, 0), a(1, 1, 1), a(0, 0, 1), a(0, 0, 0)} =

{
π,−5,

√
3, 1
}

, then

p(x, y, z) = πx2y − 5xyz +
√

3z + 1. (53)

A system of polynomial equations in x is a system on the form





p1(x) = 0,
...

pm(x) = 0.

(54)

The set of solutions x ∈ Cn to the system in Eq. (54) is denoted the affine variety
of the set of polynomials, i.e.

V (p1(x), . . . , pm(x)) = {y ∈ Cn p1(y) = 0, . . . , pm(y) = 0} . (55)
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Examples of affine varieties in one polynomial are presented in Fig. 13 and Fig. 14,
where V ((x/2)2 + y2 − z) and V ((x/2)2 + y2 − z) are visualized.

An ideal generated by p1(x), . . . , pm(x) is the set of all sums of polynomials
multiplied with p1(x), . . . , pm(x). This can be written as

〈p1, . . . , pm〉 =

{
m∑

i=1

hiqi h1, . . . , hm ∈ C[x1, . . . , xn]

}
, (56)

where the hi’s are any polynomials over the field C. An important property of
ideals is that the affine variety of the ideal is equal to the affine variety of the
polynomials that generate the ideal, that is

V (〈p1, . . . , pm〉) = V (p1, . . . , pm). (57)

Furthermore, an ideal is a radical ideal if it contains all polynomials that vanish on
V (I). For example, 〈x2〉 is not radical since both V (x2) = {0} and V (x) = {0}
while x /∈ 〈x2〉. Two examples of radical ideals are 〈x2 − 1, x+ 1〉 and 〈x7, x〉.

Two polynomials p and q are equivalent modulo I if p − q ∈ I , where I is
an ideal. The set of polynomials in C[x] that are equivalent to p is denoted the
equivalence class of p and is defined as

[p] = {q ∈ C[x] | p− q ∈ I} . (58)

Furthermore, the quotient space C[x]/I is defined as the set of all equivalence
classes modulo I , that is

C[x]/I = {f ∈ [g] | g ∈ C[x]} . (59)

The action matrix method is an algorithm that can be used to solve systems of
polynomial equations. Assume that a system of polynomial equations have been
reformulated by applying row-operations to the form

a(x)b(x) = Mb(x), (60)

where a(x) is a monomial, b(x) is a vector of basis polynomials andM a constant
matrix. Then a(x) is an eigenvalue and b(x) an eigenvector of M . Techniques
from linear algebra can be applied to compute the eigenvalues and eigenvectors of
M , thus providing potential solutions to the initial system of equations.
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The action matrix method is used in chapter paper X to solve the following
system of equations,





A11xy +A14x+A15y +A17 = 0,

A21xy+ A22xz +A23yz +A24x+A25y +A26z +A27 = 0,

A32xz +A34x +A36z +A37 = 0,

(61)

where x, y and z are the unknown variables and A11, . . . , A37 are known coeffi-
cients. How these equations can be solved are outlined in the following.

A consequence of Eq. (57) is that if two bases f1, . . . , fs and g1, . . . , gt ge-
nerate the same ideal, then the varieties over the two bases are equal. That is, if
〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V (f1, . . . , fs) = V (g1, . . . , gt).
This can be applied to solve Eq. (61) as follows. First, define

p1(x, y, z) =A11xy +A14x+A15y +A17 = 0,

p2(x, y, z) =A21xy +A22xz +A23yz+

A24x+A25y +A26z +A27 = 0,

p3(x, y, z) =A32xz +A34x+A36z +A37 = 0.

(62)

Since {p1, p2, p3} and {p1, p3, p2A11A32 − p1A21A32 − p3A22A11} generate
the same ideal, the corresponding affine varieties are equal. Note that also Gauss
elimination can be applied to systems of polynomial equations. Furthermore,
each polynomial can divided by the leading term coefficients without any effect
on the ideal it generates. Thus a set of polynomials that generate the same ideal
as {p1, p2, p3} is provided by

p̂1(x, y, z) = xy +Â12x+ Â13y + Â15 = 0,

p̂2(x, y, z) = xz +Â22x +Â24z + Â25 = 0,

p̂3(x, y, z) = yz + Â33y +Â34z + Â35 = 0.

(63)

Note that for this particular problem, it turns out that the coefficient for x in
the third polynomial, p̂3(x, y, z), is zero. The term is therefore omitted from
Eq. (63) without further explanation.

Since zp1, yp2, xp3 ∈ 〈p1, p2, p3〉, then also

V (p1, p2, p3) = V (p1, p2, p3, zp1, yp2, xp3), (64)
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and thus the system can be rewritten as

p̂1(x, y, z) = xy +Â12x+ Â13y + Â15 = 0,

p̂2(x, y, z) = xz +Â22x +Â24z + Â25 = 0,

p̂3(x, y, z) = yz + Â33y +Â34z + Â35 = 0,

p̂4(x, y, z) = xyz + Â12xz +Â13yz + Â15z = 0,

p̂5(x, y, z) = xyz +Â22xy +Â24yz + Â25y = 0,

p̂6(x, y, z) = xyz +Â33xy + Â34xz + Â35x = 0.

(65)

Note that p̂1 can be used to reduce monomials containing xy to first degree po-
lynomials in x, y and z. Similarly, p̂2 and p̂3 can reduce xz and yz to first degree
polynomials.
Gauss elimination can be used to rewrite the system on the form





M11y +M12z +M13 = xy,

M21y +M22z +M23 = xz,

M31y +M32z +M33 = x,

(66)

i.e. as the eigenvalue equation

a(x)b(x) = Mb(x), (67)

where a(x) = x and b(x) = (y, z, 1)>. The reason that the equation system
in Eq. (61) can be formulated on the form of Eq. (66) is that the dimension
of the quotient space for the ideal 〈p1, p2, p3〉 is finite dimensional (it is in fact
three dimensional). Thereby, each eigenvalue λ and associated eigenvector v =
(v1, v2, v3)> provide a potential solution,

(x, y, z)> =

(
λ,
v1

v3
,
v2

v3

)>
. (68)

Note that Eq. (66) has three solutions. However, in this particular application,
x, y and z correspond to distances and must therefore be positive. Consequently,
the number of solutions is typically decreased.
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Figure 11: Snell’s law. A ray originating from the camera center C with direction u
undergoes a change of direction according to ρ1 sin θ1 = ρ2 sin θ2. This causes the
usually linear equations for projections, for example, to become nonlinear and much
harder to solve.

3.5 Underwater imaging

When rays of light travel through a medium, they interfere with the molecules
in the medium. For example, the speed of light varies depending on the materia.
The difference in speed causes light rays entering one medium from another to
change direction. This phenomena is called refraction. The relation between the
angle θ1 of an impinging ray u, with respect to the refractive plane normal, is
related to the angle θ2 of the outgoing ray v by the equation known as Snell’s law,

ρ1 sin(θ1) = ρ2 sin(θ2), (69)

where ρ1 and ρ2 are the refractive indices of the surfaces, as visualized by Fig 11.
See section 9 and paper VIII for more details on the geometrical effects of refracti-
ons.

Furthermore, a photon can be absorbed and possibly subsequently released in
an arbitrary direction by molecules in the medium. In a homogeneous material,
the number of photons being absorbed is proportional to the distance traveled in
the medium, i.e.

Φ(z) = −µdΦ(z), (70)

where Φ(z) is the light intensity at depth z and µ is the attenuation coefficient of
the material. A solution to 70 is given by

Φ(t) = Φ(0)e−µz, (71)

clearly showing the exponential loss of intensity over distance.
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The absorption and arbitrarily directed emission of photons also cause an ef-
fect known as backscatter – photons not originally in the camera’s line of sight can
be absorbed by a molecule in the line of sight and then released in the direction
of the camera. This adds another term in the equation describing the measured
light intensity at each pixel. Denote the ambient radiance of water B. Then the
observation of the background is

B(1− e−µzk). (72)

Thus, the measured light intensity Ik at pixel position k is modeled as

Ik = Eke
−µzk +B(1− e−µzk), (73)

which is a the simplified version of the Jaffe-McGlamery equation [35, 37].

4 Video tracking

4.1 Background models and segmentation

A background model is a tool to help segment observed objects in a scene into
two classes – background and foreground. What background model is appropriate
depend on the application.

For example, in some cases of traffic surveillance, a useful background model
describes how a scene without cars, pedestrians, etc. appears. In other traffic
surveillance applications, cars can be considered to be part of the background if
they have been immobile for a long time (e.g. parked).

One of the simplest background models consists of a background image B and
a threshold τ . Foreground and background is classified in an image I by applying
the threshold on the distance from the pixel values in the image to the background
image. That is, each pixel (i, j) in an image is classified as

Fij =

{
1, if |Iij −Bij | > τ,

0, otherwise,
(74)

where the result of classifying all pixels is the binary foreground image F . Note
that also the non-binary difference image F = I − B is well suited for certain
applications, since it is more smooth than a binary foreground image.

Other models use a statistical framework. For example, the foreground and
background in each pixel can be modeled as Gaussian distributions N (µFij , σ

F
ij)
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and N (µBij , σ
B
ij ), respectively. In this model, the probability that an observed

pixel (i, j) belongs to the background is P (Iij ∈ N (µBij , σ
B
ij )) and the probabi-

lity that it belongs to foreground is P (Iij ∈ N (µFij , σ
F
ij)). The classification of

pixels as being foreground or background can then be defined as

Fij =

{
1, if P (Iij ∈ N (µFij , σ

F
ij)) > P (Iij ∈ N (µBij , σ

B
ij )),

0, otherwise.
(75)

This model can be extended to any type of distributions for background fore-
ground. Note that a native problem of using background/foreground estimation
is that objects that have the same color as the background (at the current location)
are typically not detected as foreground.

There exists a large number of background estimation algorithms. Many of
them consider complicated conditions such as cluttered backgrounds and fore-
grounds. In the presented papers, however, the experimental set-ups, including
the cameras, have been designed to make the conditions for detecting foreground
objects as good as possible. Static cameras and static backgrounds are used. In
all papers where background estimation has been performed use a similar appro-
ach. Each pixel is modeled using a bimodal Gaussian distribution – i.e. a pixel
value observed at each point in time belongs to one of two Gaussian distribu-
tions. In some of the papers, the actual variation is estimated and subsequent
object detection is performed by computing the probability of pixels belonging
to the foreground distribution. In other papers, the variation is approximated as
being equal and constant for all distributions. In this case, comparing the proba-
bilities of a pixel intensity belonging to foreground or background distributions is
equivalent to comparing the distances to the observed pixel intensity.

4.2 Concerning motion models

In the papers included in this thesis, there is an absence of traditional tracking
methods. This is motivated as follows. Kinematically-based tracking methods
pose constraints on how the tracked objects (e.g. marmoset body, rat paw, etc.)
can move.Many applications are well suited for using such models. For example,
tracking multiple people in a store for the purpose of knowing which aisles they
visit might be aided by a motion model for the purpose of keeping track of indi-
viduals. That is, applications where it is more important to know coarsely where
subjects are and avoid identity switches, and less important to know how the in-
dividuals move. However, when attempting to characterize how a zebrafish larva
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moves – short burst of swimming, quick turns, etc. – movement constraints in
the video tracking algorithm would intrude on the data analysis that is to follow.
Furthermore, the presented applications in papers I-VI only feature single target
tracking, thus identity switches are avoided.

In summary, tracking methods that pose constraints on the movements of the
animals are not used in the included papers.

4.3 Quadrics

Quadrics are useful tools in computer vision for describing some basic geometrical
shapes, such as spheres and ellipses. Their usefulness is partly due to the property
that perspective projections of quadrics surfaces are conic sections, which can
then be computed analytically. This thesis contains several applications of qua-
dric surfaces and conic sections. Ellipsoids, spheres and elliptical paraboloids are
used to model rigid elements of a rat paw, a food pellet and the nose in paper I
and paper II. Ellipsoids are used to geometrically model marmosets in paper III
and paper IV. The methods employed to estimate the parameters of the quadrics
are outlined in the following sections. Section 4.4 presents methods to generate
quadrics with chosen parameters of position, orientation and size. A method to
compute the perspective projection of quadrics is outlined in section 4.5. Lastly,
methods for fitting quadric surfaces to images is discussed in section 4.6.

A quadratic equation in one variable x is an equation on the form

ax2 + bx+ c = 0, (76)

where a, b and c are constants and a 6= 0. This equation is easy to check for real
solutions and to solve. The equation can be reformulated on matrix form as

[
x
1

]> [
a b/2
b/2 c

] [
x
1

]
= 0. (77)

A generalization to N dimensions is denoted a quadric. This can be written on
the form

x>Qx = 0, (78)

where x = (x1, . . . , xN+1, 1)> is a (N + 2)-dimensional homogeneous coor-
dinate vector and Q is a (N + 2) × (N + 2) matrix of constants. Note that
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the dimension of x is N + 2 and that the non-homogeneous solutions are N -
dimensional in a (N + 1)-dimensional space. For example, if N = 1, then the
solutions (x(s), y(s)) are curves in R2 that are parametrized by s. Furthermore,
if N = 2, then the solutions (x(s, t), y(s, t), z(s, t)) are surfaces in R3 that are
parametrized by (s, t).

What geometrical shape the quadric describes depends on the dimensions and
values of the matrix Q. As previously noted, a one-dimensional quadric is a curve
in the euclidean plane. However, what shape the curve has depends on the values
of the elements of Q – the curve may be a parabola, an ellipse or a hyperbola,
as shown in Fig. 12. Furthermore, a two-dimensional quadric is a surface in the
euclidean space. A few of the possible shapes that Q can represent are ellipsoids,
elliptic paraboloids, hyperbolic paraboloids or elliptic hyperboloids, two of which
are shown in Fig. 13 and Fig. 14.

4.4 How to generate a quadric matrix

Ellipse

The unit circle can be described by the quadratic equation

x2 + y2 − 1 = 0, (79)

which can be rewritten on the form of Eq. (78),

y>Q0y = 0, Q0 =




1 0 0
0 1 0
0 0 −1


 . (80)

The circle can be transformed to an ellipse of arbitrary position (x0, y0), axis
lengths (ax, ay) and rotation φ as follows. First, the circle is scaled by ax in x-
direction and ay in y-direction. Then, it is rotated by the angle φ, followed by
translation by (x0, y0).
This corresponds to transforming the points on the circle by the transformation
matrices

Ts =



ax 0 0
0 ay 0
0 0 1


 , Tr =




cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


 , Tt =




1 0 x0

0 1 y0

0 0 1


 .

(81)
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Figure 12: Examples of conic sections. A black ellipse (x/2)2 + y2 − 1 = 0, blue
hyperbola (x/2)2 − y2 + 1 = 0, red hyperbola (x/2)2 − y2 − 1 = 0 and green
asymptotes x2 − y2 = 0.

That is, the points y on the unit circle are transformed to

x = TtTrTsy = Ty. (82)

Note that the column vectors of the rotational transformation Tr correspond to
the direction of the two axes.
The sought quadric matrix Q can now be computed by solving Eq. (82) for y
and inserting it into Eq. (79),

(
T−1x

)>
Q0
(
T−1x

)
= x> T−>Q0T

−1
︸ ︷︷ ︸

=Q

x = 0. (83)

In conclusion, Q = T−>Q0T
−1, where Q0 is the quadric matrix for the unit

circle and T = TtTrTs is provided by Eq. (81).

Ellipsoid

The unit sphere is described by the quadratic equation

x2 + y2 + z2 − 1 = 0, (84)

which can be rewritten on the form of Eq. (78),

y>Q0y = 0, Q0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 , (85)
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Figure 13: An ellipsoid defined by the equation (x/2)2 + (y/1.5)2 + z2 − 1 = 0.

Analogously to the circle, the sphere can be transformed to an ellipsoid Q of
arbitrary position (x0, y0, z0) and axis lengths (ax, ay, az). In this case, however,
the orientation is described by the directions of the axes, {v1,v2,v3}, where
v>i vj = 0 if i 6= j.

Thus, the matrix for the ellipsoid Q is provided by Q = T−>Q0T
−1, where

T = TtTrTs and

Ts =




ax 0 0 0
0 ay 0 0
0 0 az 0
0 0 0 1


 , Tr =

[
v1 v2 v3 0
0 0 0 1

]
, Tt =




1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1


 .

(86)

Elliptic paraboloid

A circular paraboloid is described by the equation

x2 + y2 − z = 0, (87)
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Figure 14: An elliptical paraboloid, (x/2)2 + y2 − z = 0.

which can be rewritten on the form of Eq. (78),

y>Q0y = 0, Q0 =




1 0 0 0
0 1 0 0
0 0 0 −1

2
0 0 − 1

2 0


 , (88)

The paraboloid can be transformed to any position, orientation and size by ap-
plying the same method that was used on ellipsoids.

4.5 Projections of quadric surfaces

It can be shown that the projection of a quadric surface is a filled conic section.
In this section is derived a method for finding the matrix of a conic section that
describes the projection of the silhouette of a quadric surface. See also e.g. [78].

First, assume that a quadric matrix Q is given, and let it be partitioned as

Q =

[
A b
b> c

]
, (89)

where A is a 3× 3 matrix, b a 3-element colon vector and c a scalar. Note that it
can be assumed that any quadric surface x>Qx = 0 is described by a symmetric
matrix Q, since x>Qx+ (x>Qx)> = x>

(
Q> +Q

)
x = 0.

Secondly, to find a point on the silhouette of the quadric, parametrize a ray
from the origin through an image point x in homogeneous coordinates,

U(t) =

[
x
t

]
. (90)
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The ray meets the quadric when

U(t)>QU(t) = x>Ax+ 2b>xt+ ct2 = 0. (91)

Note that this is a second order polynomial equation in t, and as such it has at
most two real solutions. In this application, the point x for which there is only
one unique solution is sought, since such a point lies on the silhouette of the
projected quadric surface.

Assume that c 6= 0. Then solutions to the equation are provided by

t = −b
>x
c
± 1
c

√
(b>x)

2 − cxAx. (92)

Eq. (91) has one unique solution when the discriminant is zero,

(b>x)2 − cx>Ax = x>
(
bb> − cA

)

︸ ︷︷ ︸
=C

x = 0. (93)

Thus the points x that define rays that meets the tangents of the quadric surface
can be described by the equation

x>Cx = 0, (94)

where

C = bb> − cA. (95)

The depths of a point x on the conic section is provided by inserting x>Cx = 0
into Eq. (92), i.e.

t = −b
>x
c
. (96)

Note that Eq. (92) only has real solutions when the discriminant is positive. The-
refore, the filled conic section that is the projection of the quadric surface is pro-
vided by the inequality

x>Cx ≥ 0. (97)
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The above derivations are based on the use of a nominal projection matrix, i.e.
P = [I 0]. A generalization to arbitrary projection matrices P = K [R t] is
derived in the following. First, the projection matrix P is expanded as

T =

[
KR Kt
0> 1

]
. (98)

Homogeneous points on the quadric surface, i.e. U such that U>QU = 0, are
transformed to the local coordinate system of the camera by T as Û = TU . The
matrix for the quadric surface that contains the transformed points Û , i.e. Q̂ such
that Û>Q̂Û = 0, is sought. Since U>QU = 0 and Û = TU , then

(
T−1Û

)>
Q
(
T−1Û

)
= Û> T−>QT−1

︸ ︷︷ ︸
=Q̂

Û . (99)

The provided matrix Q̂ = T−>QT−1 is then projected as outlined above.

4.6 Methods for ellipse fitting

Model fitting typically means to find the parameters for which the model is as
similar to the observed data as possible. This can be expressed as a mathematical
optimization problem,

θ∗ = argmin
θ

f(θ, X), (100)

where θ are the parameters of the model,X are the measurements and f(θ) is the
error function. Note that this optimization problem can be equivalently defined
as the maximization of a goodness-of-fit function.

In the case of fitting a geometrical shape to observed data, the squared sum of
euclidean distances is typically used as an error function, i.e.

f(θ) =
N∑

k=1

min
x∈M(θ)

‖x− yk‖2
2, (101)

where the yk’s are the measured data points and M(θ) is the set of points in the
model given the parameters θ. Furthermore, the distance from a data point xk to
the model is defined as the minimal distance from xk to the model.
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Figure 15: The problem of computing the distance from a point to an ellipse. The
ellipse is centered at P , and has axis directions as shown in the figure and axis lengths
a and b. The distance from the pointR to the ellipse is sought. Note that the closest
point on the ellipse,Q, does not lie on the straight line from P toR.

For certain geometrical shapes such as lines, circles and rectangles, the shortest
distance between a point and the model can be directly computed. The shortest
distance between a point and an ellipse, however, is in general not as simple to
compute. A visualization of this is provided by Fig. 15. In the figure is shown
an example when the closest point Q on the ellipse is not on the line from the
data point R to the center P of the ellipse. To compute the euclidean distance
between a point and an ellipse is a problem for which there is no closed form so-
lution. There are, however, iterative algorithms that estimate this distance. Furt-
hermore, there are methods for ellipse fitting that minimize other error functions,
for example the algebraic error [25].

4.6.1 A method to measure goodness-of-fit for quadric surfaces

This section provides a outline of the error functions used for fitting quadric sur-
faces to foreground that are applied in papers I, II, III and IV. Note that all four
papers use quadrics as models, but that there are some differences in implementa-
tion.

Consider a quadric surface Q(θ) that is defined by the parameters θ corre-
sponding to position, rotation and size. The methods outlined in section 4.4 are
used to create a quadric matrix Q that represents the quadric surface. Then, the
methods presented in section 4.5 are used to compute the projection of Q(θ) by
a known projection matrix. The result is a filled conic section C(θ) described by
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the matrix C,

x>Cx ≤ 0. (102)

The quadric surface is then fitted to foreground images F by optimizing the pa-
rameters θ with respect a goodness-of-fit function that is defined for the conic
section.

In the related applications (papers I, II, III and IV), the goodness-of-fit function
between a filled conic section C(θ) and a foreground image F is defined as

qA(θ) =

∑
x,y min(S(x, y|θ), F (x, y))∑
x,y max(S(x, y|θ), F (x, y))

, (103)

where S(θ) is a binary image such that S(x, y|θ) = 1 if (x, y) is inside the
filled conic section and S(x, y|θ) = 0 otherwise. That is, the goodness-of-fit
function measures how many pixels that are classified as foreground in both S(θ)
and F , divided by the number of pixels that are classified as foreground in either
model or data. Note that in paper II, the foreground image F is binary and
thereby qA(θ) provides values between 0 and 1. The remaining three papers use
difference images without applying a threshold – this makes the matching quality
qA(θ) depend more smoothly on the parameters θ.
The binary image S(x, y|θ) is generated from C(θ) and defined as an M × N
image, where

S(x, y|θ) =

{
1, if x>Qx ≤ 0,

0, else,
(104)

for all (x, y) ∈ [1, . . . ,M ] × [1, . . . , N ] and where x = (x, y, 1)>. Thereby,
the image S(θ) can be computed by evaluating each of the MN pixels in the
image. The result can then be inserted into Eq. (103) to receive a measure of the
matching quality. This is the method used in paper II.

Note that the method can be made more computationally efficient by avoi-
ding the independent computation of S(θ), and instead compute the numerator
and denominator of qa(θ),

fnum(θ) =
∑

x,y

min(S(x, y|θ), F (x, y)),

fden(θ) =
∑

x,y

max(S(x, y|θ), F (x, y)),
(105)
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directly. This is described in the following.
Consider the inequality that describes a filled conic section,

F (a, (x, y)) = ax2 + x(by + d) + cy2 + ey + f ≤ 0. (106)

That is, a point (x, y) is covered by the filled conic section if F (a, (x, y)) ≤ 0,
and not covered otherwise. Note that for each fixed y, this is a second degree
polynomial inequality in x, which in general has zero, one or two intervals as
solutions. For the intended applications, however, it is assumed that the constants
a of the conic section are such that the solutions x to the inequality are contained
in at most one connected set [x1, x2].

There exists real solutions x to the inequality only if the discriminant is posi-
tive, i.e. if

(by + d)2 − 4a(cy2 + ey + f) ≥ 0. (107)

The inequality in Eq. (106) is then solved for each y that satisfies the inequality in
Eq. (107). Thereby is provided a either an empty set or a single interval [x1, x2]
of solutions for each y.

The intersection between the background F and the filled conic section – for
a given y – is provided by I(x2, y) − I(x1, y), where I is the integral image of
F . Furthermore, the union of the background and model can be computed by
noting that |S(θ) ∪ F | = |F | + |S(θ) \ F |. For a fixed y, |F | corresponds to
the interval x2 − x1, and |S(θ) \ F | corresponds to (I(M,y) − I(x2, y)) +
(I(x1, y)− I(M,y)). Therefore, Eq. (103) can be reformulated as

qA(θ) =

=

N∑

y=1

I(x2(y), y)− I(x1(y), y)

N∑

y=1

(x2(y)−x1(y))+(I(M,y)−I(x2(y), y))+(I(x1(y), y)−I(M,y))

,

(108)

where x1(y) and x2(y) are solutions x to F (a, (x, y)) = 0 such that x1(y) ≤
x2(y). If there are no real solutions to F (a, (x, y)) = 0, then x1(y) and x2(y)
are set to zero. Eq. (108) is summarized in Algorithm 1.
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Input: Integral image I and conic parameters a = (a, b, c, d, e, f)>.
Output: Goodness-of-fit q
1: qnum ← 0
2: qden ← 0
3: for y ← 1, . . . , N do
4: Evaluate the discriminant d← (by + d)2 − 4a(cy2 + ey + f)
5: if d ≥ 0 then
6: â← a
7: b̂← by + d
8: ĉ← cy2 + ey + f
9: Solve âx2 + b̂x+ ĉ = 0 for x and denote the solutions x1 < x2.

10: qnum ← qnum + (I(x2, y)− I(x1, y))
11: qden ← qden + (x2 − x1) + (I(M,y) − I(x2, y)) + (I(x1, y) −

I(x1, y))
12: else
13: qden ← qden + (I(M,y)− I(0, y))
14: end if
15: end for
16: q ← qnum

qden

Algorithm 1: A method for evaluating ellipse goodness-of-fit.

In addition to the area matching quality, paper I and paper II use an edge
matching quality. The two versions of are outlined in the following.

In paper II, an edge image E is computed from the binary foreground image
F . Each pixel (x, y) that is classified as foreground (i.e. F (x, y) = 1) is con-
sidered as part of an edge if there is at least one background pixel in its 8-
neighborhood. The direction of the edge at (x, y) is estimated and stored in the
edge image as E(x, y) = −1 if the angle is between 0 and 180◦ and E(x, y) = 1
otherwise. An edge image Ê that corresponds to the rat model is created ana-
logously from the binary image of the projected quadrics. The edge matching
quality is then defined as

qedge =

√
max

(
0,
∑

x,y E(x, y)Ê(x, y)
)

∑
x,y

∣∣∣Ê(x, y)
∣∣∣

. (109)
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Paper I use another definition of the edge matching quality. First, the Canny
edge detector (see section 2.3) is used to create an edge imageE from an observed
image. Then, for each edge point (x, y) on the projected quadrics, the shortest
euclidean distance to an edge in E is computed. The edge matching quality is
then defined as

qE =
1
|∂S|

∑

(x,y)∈∂S

1
D(x, y) + 1

, (110)

where ∂S is the set of edge points on the projected quadrics and D(x, y) is the
shortest distance from the point (x, y) to an edge pixel in E.
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5 Robust pose estimation for animals

Human pose estimation is a topic that has been studied extensively [5, 68, 71,
76]. Applications include for example human-computer interaction [36, 67],
markerless motion capture [21, 75] and clinical gait analysis [63, 92]. There
exists datasets and challenges in which researchers can evaluate the performance
of their algorithm. One example is the Human 3.6M dataset by Ionescu et al. that
contains 3.6 million human poses in different scenarios [13, 34]. In contrast, pose
estimation in any other kind of animal has been largely neglected by the computer
vision community. As a consequence, the majority of the papers included in
this thesis consider problems where there are neither established challenges nor
datasets that allows for comparison between different solutions.

Even though parts of the theory and methods developed for humans can be
applied for other animals, there are some practical differences to consider that
depend on the animal and application. These similarities and differences, as well
as proposed solutions, are outlined in this section.

The problem of estimating the pose of an animal depends on the geometry
and texture of the animal, the shape and color of the arena, the light conditi-
ons, etc. For example, in the included papers, zebrafish larvae only rarely cause
self-occlusion (from the camera’s point of view), while the marmosets regularly
occlude their legs, arms and/or tail significantly. Furthermore, which geometrical
model is suitable for an animal depends on the application and the video or image
data. The possibilities for the video(s) depend on the properties of the data acqui-
sition system – for example number of cameras, video resolution, video frame rate
and sensor type (color, IR, depth, etc.). It also depends on factors such as staining
(for example, Daphnia are colored by quantum dots in papers VIII and IX) and
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the tracking arena (flat or 3D, small or large, shape, etc.). Thus, the chosen model
is a compromise between what information is possible to extract from the video(s)
and what data are beneficial for the subsequent behavioral analysis.

For example, a deformable mesh model is used by Fontaine et al. [26] on high
resolution videos of zebrafish larvae, while a skeleton model that consists of eight
points is used on low resolution videos in paper V and paper VI. Additionally, the
turning behavior of marmosets is of interest for the neurophysiological study in
paper IV, while only the positions of the Daphnia is necessary for the analysis in
paper IX.

For example, the common marmoset is to a large degree similar to humans.
Most notably, it has a head, a similarly shaped torso, two legs, two arms, elbows,
knees, hands and feet. The major difference in a skeleton model of a marmoset
compared to a human is the tail (which can simply be added to the model). The
differences in shape and size of corresponding body parts are minor and can be
adjusted for. Consequently, an adaptation of algorithms in articulated human
pose estimation [5, 68, 71, 76] for marmosets could potentially provide good
results. However, this is generally not the case due to a non-geometric difference
in marmosets – they move and behave differently than humans. For example, in
applications such as in paper III and paper IV, the arms and legs of the animal are
rarely seen separated from the body. In other words, the poses that are sought to be
estimated are more challenging than the commonly considered poses in human
pose estimation. Thus for paper III and paper IV, a more suitable geometrical
model consists of only the torso and tail.

5.1 Related work

Rat tracking

There are many proposed methods for tracking of rats (Rattus) and mice (Mus)
[7, 20, 27, 46, 93], commonly with the intended application of studying social
behavior. In common for all of these methods is that they track the whole body of
the animals. This clearly differs from our proposed methods (paper I and paper II)
that track the articulated 3D-pose of the front paws of rats.

A popular subject within the field of rat tracking is whisker tracking [15, 28,
89]. Even though finer movements of rats are tracked, there is no tracking of
paws.

However, methods for tracking rat paws have been proposed in the context
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of gait analysis [22, 29]. These methods use images of the footprints of the paws
to analyze gait patterns. Note that this method is only applied for the case where
the paws touch the ground. Our method, however, estimates the 3D-poses of rat
paws while in the air during grasping motions.

In conclusion, our proposed methods (paper I and paper II) track the articu-
lated front paws of the rats during a reaching task. To our knowledge, there is no
previous automatic method that tracks the articulated poses of front paws of rats.

Marmoset tracking

The common marmoset (Callithrix jacchus) is a widely used non-human primate
in neurophysiological and medical research [16]. Despite the widespread use of
this animal, there is a lack of proposed methods for tracking of marmosets. To
our knowledge, there are no publication that predates our proposed methods (pa-
per III and paper IV). Since the proposals of our algorithms, there have been two
additional publications on this topic [8, 87].

Zebrafish tracking

Zebrafish (Danio rerio) larvae is a commonly used test animal primarily in medical
research. Its widespread use is motivated by the fact that it is a vertebrate, it is
small and easy to maintain and can be tested in large numbers. Furthermore,
it is particularly useful in drug screening applications since it absorbs medical
substances directly from the water it is swimming in.

There are several previously proposed methods and commercial products for
the tracking and behavioral analysis of zebrafish (larvae). The methods generally
focus on either quantity or quality, i.e. to analyze large numbers of fish/larvae at
a coarse scale or small number or single fish/larva at a fine scale. The parameters
of recording duration, video resolution, frame rate, number of fishes and well size
need to be tuned accordingly.

For example, Fontaine et al. record single fish at 1500 hz with 1024 × 1024
pixels resolution [26]. The high spatial resolution gives the possibility to fit a
detailed geometric model to the fish and the high temporal resolution gives the
possibility to analyze fine movements. However, the recordings are limited to
short durations due to the high data rate.

There are also methods that estimate the 3D position of zebrafish. For ex-
ample, Tian et al. and Cachat et al. use two cameras to estimate 3D-poses and
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trajectories [11, 86] of single fish.
Other methods are focused more towards high throughput. For example Cre-

ton track the position and orientation of larvae in 12 well microtiter plates [18]
with a spatial resolution of 9 MP.

Our proposed method (paper V and paper VI) estimates the positions and
skeleton curves of multiple larvae simultaneously in low resolution videos. The
method is applied on videos recorded at 300 hz with 640 × 480 resolution. In
these videos, the larvae are approximately 10 pixels long. The proposed method
provides a novel compromise between quality and quantity.

Jellyfish tracking

Tripedalia cystophora is a box jellyfish that is unique among other jellyfish since
they have eyes. A total of 24 eyes are divided into four clusters that are denoted
rhopalia.

In paper VII is proposed a method for real-time tracking of the position of
the rhopalia in an experiment where the bell of the jellyfish is fixated.

Daphnia tracking

The zooplankton Daphnia magna is a small aquatic organism that inhabits freshwa-
ter environments and is an important part of the ecosystem. Therefore, the be-
havior of Daphnia is of great interest in biology. Daphnia are very small (up to 5
mm long) and translucent. Consequently, there are some issues to consider when
designing a system to track its behavior.

Kunze et al. track the movements of multiple Daphnia in 2D by applying
Kalman filters to the tracked contours of images after subtracting the estimated
background [45].

The group of L-A. Hansson propose a method where the Daphnia are colored
using quantum dots [48] and tracked in 2D. The method is improved upon by
Ekvall et al. and Bianco et al. [4, 23] by e.g. tracking the Daphnia in 3D. Note
that in these papers, the refractions caused by the aquarium glass and water are
not modeled.

Our proposed method further improves upon the quantum dot based met-
hods [4, 23, 48]. We propose the first, to our knowledge, 3D-tracking system
for Daphnia that accurately model the geometric effects caused by refractions and
reflections (paper VIII and paper IX).

48



5. Robust pose estimation for animals

Figure 16: The ellipsoid based hierarchical rat paw pose model used in [56]. The
position of the paw is (X,Y, Z) and the orientation is defined by the angles
(φX , φY , φZ). Digit k is described by the angles of adduction φkA and flexion φ1k

F ,
φ2k
F , φ3k

F . The sizes of the ellipsoids and the metacarpal vectors v1, v2, v3 and v4 are
constant.

5.2 Rats

In the skilled reaching experiment, the articulated poses of rat paws are sought to
be analyzed. From a neurophysiological point of view, it is of interest to explore
potential correlations between neuronal activity and the fine kinematics of the
paw during reaching. It is our hypothesis that the angles of the digits and, in
particular, the dynamics between those angles and the position of the paw are of
interest for this task.

5.2.1 The model

The rat paw is modeled hierarchically such that the pose of the palm is defi-
ned in the global coordinate system and the phalanges (parts of the digits) are
defined locally. A proximal phalanx can rotate along two axes – the axis of ad-
duction/abduction and the axis of flexion/extension (the φA’s and φF ’s, respecti-
vely, in Fig 16). The remaining phalanges are limited to rotation by their flex-
ion/extension axes. Due to difficulties in estimating the poses of the metacarpal
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bones (the bones inside the palm), the corresponding vectors from the palm posi-
tion to the proximal phalanges are manually set to constant values for each animal.
Furthermore, it is assumed that the sizes of the phalanges are constant. Using all
of the above variables and constants, the global pose of each phalanx can be com-
puted.

In total, the articulated pose of a rat paw is defined by 22 variables: 3 + 3
for the pose of the palm and 2 + 1 + 1 for each digit. Each of these variables is
anatomically valid and believed to be of use for subsequent neural and behavioral
analysis. However, note that the angle of flexion/extension in the most distal joint
of each digit is not actually estimated. This is because the most distal phalanx is so
short and difficult to estimate – these angles are instead considered as a function
of the flexion angle of the second joint on each digit [47].

5.2.2 Pose estimation

Four cameras are used to record the experiments, where the result is frames such
as shown in Fig. 17 and Fig. 32. The cameras are calibrated using DLT (see
section 3.2.1). For each frame in a video, the quadric parameters that minimize
the error function are estimated through an iterative method. The error function
is defined as in section 4.6.1 and the iterative scheme is outlined in paper I and
paper II.

5.3 Marmosets, box

In the box experiment, the locomotive behavior of marmosets inside a box is
the target of study. Measurements of movement speed and overall activity is of
particular interest for the neurophysiological study.

Due to the difficult problem of estimating the poses of arms and legs suf-
ficiently accurate, a simple model that can be tracked robustly is needed. For
this purpose, the marmoset is modeled by a single ellipsoid of variable position,
orientation and size.

Two cameras are used to record the experiments, and examples from the video
data are shown in Fig. 18 and Fig. 35. The cameras are calibrated using DLT (see
section 3.2.1).

For each frame in a video, the parameters of the quadric surface for which the
error function is minimized are sought. The error function is defined by Eq. (103)
and the iterative estimation method is outlined in paper III.
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Figure 17: Images from the four cameras used in the reaching experiment. The
estimated paw model has been projected and plotted in the images. The digits are
plotted in red, green, blue and cyan, and the palm and forearm in yellow. The snout
and pellet are both plotted in magenta.

5.4 Marmosets, tower

The setup of the tower experiment consists of a 2.2 meter high testing chamber
in which 7 horizontal sticks are placed at different heights. The main locomotive
goal of the experiment is to characterize vertical locomotion behavior of marmo-
sets. Thus only the position of the marmoset at each time frame is of interest to
analyze. The animals are modeled as single ellipsoids in this set-up as well.

A single camera is used to record the experiments, where the result is frames
such as shown in Fig. 19 and Fig. 34. The camera is calibrated using DLT (see
section 3.2.1).

The same error function and the same method for fitting ellipsoids that was
used for the box experiments is used for the tower experiment. That is, the error
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Figure 18: Images from two cameras that correspond to the same point in time
during a marmoset box experiment. Model fitting results have been superimposed in
blue.

Figure 19: Images from four points in time during a marmoset tower experiment.
Model fitting results have been superimposed in blue.

function is defined by Eq. (103) and the iterative estimation method is outlined
in paper III. Note that since only one camera is used, it is assumed that the z-
position of the animal is fixed, and that rotation only occurs along the z-axis.
That is, the z-position and rotation along the x and y-axes are not estimated.

5.5 Zebrafish

The purpose of the zebrafish experiment is to evaluate the effect of drugs that
target the central nervous system, for example drugs that could potentially be
used in treatment of schizophrenia or anxiety.
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Figure 20: Two pairs of images from two points in time during a zebrafish experi-
ment. The leftmost image in each pair is the original video. The rightmost images
focus on small regions around the larvae. Model fitting results have been superimpo-
sed as a red circle (head) and green curve (body).

5.5.1 The model

In the recorded videos, the zebrafish larvae appear as thin lines or curves (see
Fig. 20). The typical observation of a larva is approximately ten pixels long, three
to four pixels wide at the head and thinner towards the tail. Therefore, a suitable
model for the larva in this application is a curve with no width and where the start
(i.e. the head) is at the thicker side of the curve.

5.5.2 Pose estimation

The pose of a zebrafish larva is estimated in a two-step process. First, the position
of the head is estimated as the position of the maximum intensity (in the region
of the image where the larva can be located). The position of maximum intensity
is computed robustly by first applying a Gaussian filter. Furthermore, the initial
estimated pixel position of the head is improved upon by fitting second order
polynomials in the x and y-directions. The head position is defined as coordinates
of the maxima of the fitted polynomials. Thus the head position is estimated in
sub-pixel resolution. Then, the curve of the body is estimated as the positions of
maximal intensities on concentric circles, centered at the head position. Similarly
to the head position, these are computed in sub-pixel resolution, but by fitting a
polynomial on each circle.

5.5.3 Additional results

In addition to the results presented in paper V and paper VI, a test was conducted
on the quality of the pose estimation results. For that purpose, 500 frames were
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Figure 21: Distributions of pose estimation errors for each of the eight tracked points
on zebrafish larvae. The tracking error of a point is defined as the Euclidean distance
from the point to the spline fitted to the ground truth points.

randomly selected. In each frame, a larva was selected at random, and points
on the zebrafish larva were manually selected. A spline was fitted to the selected
points, and then the distance from the pose estimation results were computed.
The results of this evaluation are presented as eight histograms – one per point on
the estimated skeleton model of the larvae – in Fig. 21. Note that the error for
the head ("Point 1") is typically less than one pixel, and that the errors further out
on the tail are larger but typically less than 2 pixels.
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Figure 22: An image from a video of box jellyfish. Model fitting results have been
superimposed as red circles (rhopalia) and dashed green lines (body).

5.6 Jellyfish

The box jellyfish is transparent and, consequently, challenging to estimate the full
body pose of. Fortunately, it has four clusters of eyes, rhopalia, that are easier to
detect (see Fig. 22). These are positioned approximately equidistantly on the bell,
thus making a good indication of how the actual bell is moving. The rhopalia
mostly appear as circular blobs, and there is no interest in analyzing their shape in
the intended application. Therefore, the box jellyfish is modeled as consisting of
four circular rhopalia.

The experiments on the box jellyfish are recorded by a single camera, and
no methods of calibration are applied in the included paper (paper VII). In the
included paper, a system is proposed that detects and tracks the rhopalia. For a
description of the system, see paper VII.

5.7 Daphnia

As previously noted, what model is suitable for an animal depend on for example
the video data. In this application, another factor is of importance – namely
staining. The zooplankton Daphnia is a small and transparent animal that is
hard to see unless viewing at a high resolution. A solution that allows for the
observation of Daphnia at greater distance is given by using quantum dots to color
the Daphnia [48]. In the videos of the presented application (papers VIII and IX),
the Daphnia are small, but clearly visible as small dots, as presented in figure 23.
A suitable model in this case is as a dot with color. Potential Daphnia positions
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Figure 23: Examples of frames from a video of Daphnia. In the leftmost and center
images can be seen both a direct view and a reflection. The rightmost image only
contains the direct view.

are found in the videos at the locations of local maxima that have colors similar
to the introduced quantum dot colors. Note that the coloring by quantum dots
can potentially simplify tracking of multiple Daphnia if they are assigned different
colors.

The Daphnia experiments are recorded by four cameras, which are calibrated
using the methods outlined in section 9 and paper VIII.

6 Robust feature extraction from frame-by-frame pose es-
timation data

As explained and motivated in Section 4.2, the outputs from the tracking systems
outlined above are not constrained by motion models. Consequently, the tracking
data are not necessarily smooth and may contain outliers. Methods for extracting
features from such frame-by-frame pose estimation data need to be robust to the
characteristic noise from the tracking system to avoid inducing errors in the beha-
vioral analysis. An example of this is provided by Fig. 24, where the tracked head
position of a zebrafish larva is plotted. In this figure can be seen time intervals
that contain pixel-sized oscillatory noise (Fig. 24b) during a movement and larger
oscillatory noise (Fig. 24c) while stationary. A method that provides kinematic fe-
atures (such as distance or speed) for behavioral analysis need to be robust to such
noise in order to give reliable data. Failing to do this may lead to vastly different
results, as shown in Section 6.3.1. Furthermore, the extracted features should be
useful for subsequent behavioral analysis.
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This section provides an outline of the methods for robust feature extraction
that are proposed in the included papers on rats, marmosets and zebrafish. The
subsequent analysis of the extracted features is commented upon in Section 7, but
mostly contained in the included papers.

Note that this thesis does not contain any proposed methods for extracting or
analyzing kinematic features from experiments on box jellyfish. Furthermore, no
methods are proposed for extracting kinematic features from the frame-by-frame
tracking data of Daphnia. The analysis of Daphnia behavior was performed using
the nlme package [66] and R [85].

6.1 Reaching

The part of the reaching data that corresponds to the paw pose is represented by
a 19-dimensional vector, that contains the angles of flexion/extension (8 values),
adduction/abduction (4 values), wrist position (3 values), palm orientation (3
values) and a deformation value of the paw. Note that additional values (such as
nose, pellet, etc.) are also tracked, but are not subject to analysis here.

6.1.1 Motor components

The reaching movement can be seen as separated into three different phases –
advance, arpeggio and grasp [69]. First, the paw is advanced through the slit and
usually far out into the scene. At this moment, the paw is typically at least 45
degrees from being parallel to the shelf. Then, the paw is moved down, towards
the shelf. As it hits the shelf, the palm turns until it is parallel to the shelf. This
downwards and turning phase is denoted arpeggio. Then, the rat clenches the paw
in a grasping movement. After these three phases, the paw is withdrawn from the
scene, with or without food.

In the included papers, detectors for advance, arpeggio and grasp were con-
structed by manually selecting intervals corresponding to each of the phases in a
number of reaching attempts. Then the mean value of those were used to cre-
ate advance, arpeggio and grasp templates of length 6 and 8, respectively. The
detectors consist of template matching by correlation maximization, using the
semi-automatically defined templates.

57



Method development

(b)

(c)

(a) The tracked head position (blue) of a zebrafish larva. The dotted black line gives an
indication of where the wall of the well is. The green circle and the red asterisk denote
the start and end, respectively, of the 16 seconds long interval. Two intervals are studied
in detail in (b) and (c) – these intervals are marked in the figure as black rectangles.

x

y

(b) Small oscillatory
noise while moving.

x

y

(c) Oscillatory noise while stationary.

Figure 24: Example output from the zebrafish tracking algorithm. (a) shows the
tracked head position in 2D. (b)–(c) shows the tracked x and y-coordinates of the
head independently, for two intervals of different tracking quality. (b) shows an
interval where the larva is moving and there is noise of size ∼ 1 pixel. In (c), there
can be seen oscillatory noise while the larva is (most likely) not moving.

6.2 Marmosets

The frame-by-frame tracking data of a marmoset is on the form

{. . . , (xk,ψk,ak), . . . } , (111)

where, for each k, xk is the position in 2D or 3D, ψk is the orientation and ak
are the axis lengths. However, the orientation and axis lengths are not actually
used in the presented applications (paper IV and III) and therefore discarded for
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the remainder of this section. Note that the animals are modeled as ellipsoids in
both experiments, but that the z-position and rotation along the x and y axes are
fixated for the tower experiment. Therefore, the tracked position and angle in the
tower experiment are considered in 2D.

6.2.1 Walk bouts

Even though marmosets do not have as clearly discretized movement as e.g. the
zebrafish larvae, their full body movements can be discretized into bursts of mo-
vements nonetheless. Such movements are here referred to as walk bouts, and
are defined analogously to swim bouts (see section 6.3.2). For this applica-
tion, the set of time differences used in Eq. (116) are given, in seconds, by
I = {0.25, 0.50, 1.0, 1.5}.

6.2.2 Features of the walk bouts

The separation of movements into walk bouts provide tools to extract meaningful
behavioral data. For example, the maximal movement speed, distance traveled
and duration can be measured for each bout. Furthermore, how often the animal
initiates a walk bout is an informative measure.

An important aspect of the studied marmoset model of Parkinson’s disease is
that it should decrease the speed of the animals. For that purpose, the maximal
speed for each walk bout was measured in paper IV. A robust measure of speed
that gives qualitatively good results is achieved by applying a median filter (see
e.g. [3]) on the tracked sequence of positions, followed by estimating speed as

v(tk) = vk =
‖xk+N − xk‖2

tk+N − tk
, (112)

where N is defined such that the time difference tk+N − tk is 0.1 seconds. The
speed function v(t) is then filtered by a Gaussian filter, and the maximal speed is
defined as the maximal value of the filtered speed function.

In addition, the distance traveled in each walk bout is also expected to decrease
after inducing Parkinsonism in the animals. A robust measure of distance that
gives qualitatively good results is achieved by fitting splines to the positions, using
the estimated goodness-of-fit as spline weights. The distance is then defined as the
sum of euclidean distances between all subsequent times. Note that this measure
of distance is different from the measure proposed in section 6.3.1. The method
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that is applied for measuring distance in marmosets has a higher precision and is
convenient to use here. However, this method is badly suited for the zebrafish
data, since it is more sensitive to noise. Furthermore, the method is much slower
compared to the applied method. This is of practical importance since the vector
of tracked head positions for each of the 48 zebrafish is approximately 40 times
longer.

Lastly, the duration of a walk bout is defined as the length (in seconds) of the
detected walk bout interval.

6.2.3 Levels in the tower experiment

The tower is a narrow and high testing chamber that has 7 sticks at varying heig-
hts, as shown in Fig. 34. The marmosets are believed to prefer to be positioned
relatively high up in the tower. However, the distance between sticks increases as
the height over the floor increases. It is hypothesized that Parkinsonian marmo-
sets are less likely to be located higher up. For this purpose, the distribution of
time that the marmosets spend at the different sticks is estimated. This is straight
forward to compute using the tracked y-coordinate of the animals.

Furthermore, the marmosets do not always transition between the closest
sticks – they sometimes travel multiple levels at a time. If the ability to move
is impaired in the Parkinsonian marmosets, they should not only stay at the lower
levels – they should also not jump between multiple sticks at a time. This effect
is not captured by the above mentioned distributions of time on each level. The-
refore, the level transitioning behavior is also characterized, where the transitional
probabilities are measured using the maximum likelihood estimate.

6.3 Zebrafish

The position data provided by the zebrafish tracking algorithm (see section 5.5)
is on the form

{. . . , (x1k, . . . ,x8k), . . . } , (113)

where, for each time index k, x1k is the head position and xjk are points on the
tail that are increasingly more distant as j increases. In the proposed methods
for analysis, however, this detailed data on the shape of the larvae is simplified.
Instead, a straight line is fitted to the 8 points and the angle of the line is used.
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Thereby, the zebrafish tracking data that is considered for the remainder of this
section is on the form

{. . . , (xk, φk), . . . } , (114)

where xk is the head position and φk is the angle.

6.3.1 Distance

The distance between two points is easily defined – for example, the euclidean
distance is often suitable. However, the traveled distance of an object along a
trajectory is not as simple to define. For example, consider the trajectory shown in
Fig. 24a. The length of the trajectory could be defined as the euclidean distance
between the start point and end point. Or it could be defined as the sum of
euclidean distances between all subsequent points in the trajectory. Neither of
these definitions is practically useful – the former measure is too coarse and subject
to noise in the start and end points, and the latter is too sensitive to e.g. oscillatory
noise in the data.

To design a measure for distance that is robust to the typical noise in this
tracking data, the noise first needs to characterized. For the zebrafish tracking
data, the noise is separated into two types. First, the tracking errors that may
occur when a larva is close to the wall are modeled as independent frame-to-frame
jumps of at most σ = 6 pixels between two positions. Secondly, the tracking
errors encountered when a larva is completely occluded larvae are seen as frame-
to-frame jumps of more than σ′ pixels. One way of constructing a metric that
is robust to such noise is to create a sequence that starts at the index i1 = 1,
and then add the next point that is at least σ and less than σ′ pixels away from
the previous point. Thus is created a sequence of points {xi1 , . . . ,xiN }, where
‖xik+1 − xik‖2 ≥ σ for each k = 1, . . . , N − 1.

Note that σ can be decreased by first applying, for example, a rectangular
mean value filter to the tracked x and y coordinates. Since the oscillatory noise is
modeled as time independent jumps between two positions p0 and p1, a rectan-
gular mean value filter would instead produce the mean value of p0 and p1. The
oscillatory noise is then empirically considered to be small enough to decrease the
threshold σ to half of the initial noise size.

The measure used in the included papers is defined as follows. The x and y
coordinates are filtered by a rectangular mean value filter of length 4, and then
the above mentioned measure is used with the threshold σ = 3.
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6.3.2 Swim bouts

The zebrafish larva moves in discrete bursts of movement – these are denoted swim
bouts. Some of the features that are extracted from the swim bouts are outlined in
the following sections. See also paper V and paper VI.

A swim bout is defined as a interval in time with a momentarily high speed
and a net movement. That is, time tk corresponds to a swim bout if both

‖xk+n0 − xk‖
n0

> vthr, and ‖xk+n1 − xk‖ > dthr, (115)

where vthr and dthr are speed and distance thresholds, respectively, and n0 and n1

are time differences where n1 > n0. The second inequality can be reformulated
as a speed-inequality by dividing by n1. Furthermore, if the speed thresholds are
equal, then

‖xk+n − xk‖
n

> vthr, ∀n ∈ I, (116)

where I = {n0, n1} is the set of time differences. Note that I is not limited to
contain only two values – any number of time differences can be used. The in-
cluded papers (paper V and VI) use the empirically defined set I = {12, 24, 48},
which provides qualitatively good results.

6.3.3 Angles

How and when the zebrafish larva turns is considered important for the analysis
that is to follow. Therefore, the turning for each swim bout is measured. The
starting point of a swim bout is not clearly defined and sensitive to errors in
the pose estimation and, thereby, also the starting angle is not clearly defined
and sensitive to noise. For that purpose, the maximal angular change is instead
measured. This is achieved by, for each swim bout, finding the maximal and
minimal cumulative angles that are attained. The angular change is then defined
as the first encountered angle of the two extreme angles minus the second. Note
that this is typically a value between −180◦ and 180◦.

6.3.4 Clusters

A method that is different from manually defined and traditional kinematic me-
asures of speed, distance, acceleration, angular change, etc. is to define a metric
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between swim bouts, and then group the data according to distance. What each
cluster describes depend on the definition of the metric and the clustering met-
hod.

For that purpose, papers V and VI propose a non-parametric method for
grouping similar swim bouts. This method for classifying swim bouts is described
in detail in paper V.

6.3.5 Sequencing

A sequence of classified swim bouts can be modeled as a (higher order) Markov
chain where the states are the swim bout classes. Thereby, the transitional pro-
babilities of the model can be estimated. In paper V and paper VI, the acquired
clusters correspond to actual movements such as left turn, short forwards swim-
ming. Therefore, the transitional probabilities describe actual sequencing of mo-
tor behavior. This is described in more detail in paper VI, and the subsequent
behavioral analysis is also presented in paper VI.

7 Analysis of extracted feature data

How extracted feature data can be analyzed is proposed primarily in papers II,
IV, VI and IX, but also briefly outlined in papers I, III and V. While the com-
puter vision and image analysis methods (e.g. animal pose estimation or camera
calibration) can be described in general, the analysis component is implemented
specifically for each study to answer particular medical or biological questions.
This part is very dependent of the size, individual variability and characteristics
of the dataset. An example of how variable the data can be is provided by Fig. 25.
Here, the traveled distance per swim bout is presented as histograms for four in-
dividual zebrafish larvae in a control experiment. Note the large variability in the
number of swim bouts and the small variations in the shapes of the distributions.

The different projects are subject to their own characteristic datasets. There-
fore, the analyses of extracted features are not further presented here – the reader is
directed to the papers instead. Descriptions of the methods for analyzing rats are
outlined in paper II, marmosets in paper IV, zebrafish in paper VI and Daphnia
in paper IX.
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Figure 25: Distance traveled per swim bout for four individual zebrafish larvae in
a control experiment. Note the variation in activity of the larvae – the most active
executes more than 8 times as many swim bouts as the least active.

8 Modeling of motor program initiation with the Ornstein-
Uhlenbeck process

The Ornstein-Uhlenbeck process is a stochastic process that can be defined as the
solution to the following stochastic equation

dxt = θ(µ− xt)dt+ σdWt, (117)

where θ, µ and σ are constant parameters of the process and Wt is a Wiener
process. That is, in each time step t, the process xt takes a step θ(µ − xt)dt
towards the value µ and a random step σdWt. One solution is given by a random
walk process that starts at zero and at each time step is updated by a random walk
step and a drive step.

The Ornstein-Uhlenbeck distribution is defined by the expected time for an
Ornstein-Uhlenbeck process, x(t), that starts at zero with drive parameter cdrift

and step size cdiff to reach the threshold cthreshold. The associated probability
density function can be expressed as

p(t) = P (x(t) ≥ cthreshold). (118)

In general, there exists no closed-form solution to the equation. Instead, the
distribution is usually estimated by simulating the Ornstein-Uhlenbeck process
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sufficiently many times and then estimating the expected arrival times nume-
rically. In the following is proposed a method for computing the distribution
directly.

Consider the stochastic process described by

{
x(t) = x(t−1) + dWt + cdrift,

x(0) = 0,
(119)

where dWt is a random walk process with discrete time steps of length cdiff. At
time t = 1, the expected position of x(t) is given by

P (x(1) = cdrift + cdiff) = 1/2,

P (x(1) = cdrift − cdiff) = 1/2,
(120)

for t = 2 by

P (x(2) = 2cdrift + 2cdiff) = 1/4,

P (x(2) = 2cdrift + 0) = 1/2,

P (x(2) = 2cdrift − 2cdiff) = 1/4,

(121)

and for t = 3 by

P (x(3) = 3cdrift + 3cdiff) = 1/8,

P (x(3) = 3cdrift + cdiff) = 3/8,

P (x(3) = 3cdrift − cdiff) = 3/8,

P (x(3) = 3cdrift − 3cdiff) = 1/8.

(122)

Note that in each time step, the probabilities are the convolution of the previous
probabilities and (−1, 1). For example, the probabilities for t = 1, p(1) =
(1/2, 1/2), are updated to p(2) = (1/4, 1/2, 1/4) = p(1) ∗ (1, 1). Also note
that in each time step, the positions of non-zero probability are updated as follows:
the drive step is added to all elements, a positive random walk step is added to the
first element and a negative step is added to the remaining elements.
Thus is provided the first component of a method for simulating the expansion
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Figure 26: Examples of simulated Ornstein-Uhlenbeck distributions with varying
drive parameters cdrift. Note that the tails are particularly heavy for low drive values
and that the distribution is more symmetric for high drive values.

of the probability over time as




p(0) = (1),

x(0) = (0),

p(k+1) = p(k) ∗ (1, 1)/2,

x(k+1) =
(
x

(k)
1 + cdiff + cdrift, x

(k)
1 − cdiff + cdrift,

x
(k)
2 − cdiff + cdrift, x

(k)
3 − cdiff + cdrift, . . .

)
.

(123)

Note that the vectors of probabilities p(k) and positions x(k) increase in size each
iteration.
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Input: Drift parameter cdrift, number of iterations N and random walk step
length cdiff.

Output: Vector of probabilities P .
1: P = 0N×1

2: p(1) = (1)
3: x(1) = (0)
4: for k = 2, . . . , N do
5: n← length(p(k))

6: if x(k)
1 ≥ 1 then

7: Pk ← p
(k)
1

8: p(k) ←
(
p

(k)
2 , . . . , p

(k)
n

)

9: x(k) ←
(
x

(k)
2 , . . . , x

(k)
n

)

10: end if
11: p(k+1) ← p(k) ∗ (1, 1)/2

12: x(k+1) ←
(
x

(k)
1 + cdrift + cdiff, x

(k)
1 + cdrift − cdiff,

13: x
(k)
2 + cdrift − cdiff, . . . , x

(k)
n + cdrift − cdiff

)

14: end for

Algorithm 2: Simulation of the Ornstein-Uhlenbeck distribution. Note that the
threshold can be set cthreshold = 1 by rescaling cdrift and cdiff.

The second component describes what happens when the threshold is reached.
Assume that at time t = n, the first element of the position vector is larger than or

equal to the threshold, i.e. x(n)
1 ≥ cthreshold. Then the probability of reaching the

threshold in n iterations is given by p(n)
1 . Since the sought distribution describes

the probabilities of reaching the threshold in any given time, the first element of

both x(n) and p(n) are removed after saving the value of p(n)
1 . Then the iteration

scheme continues as before.

Thus has been outlined a method for computing the Ornstein-Uhlenbeck distri-
bution. This is summarized in Algorithm 2. Distributions for a few selected drift
parameter values are shown in Fig. 26.
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Figure 27: Triangulation in water. The ray paths that correspond to the observations
u and u′ of a scene point U in two cameras are plotted. Note that the rays parame-
trized asC + su andC ′+ tu′ meet at Û , which is not the position of the observed
scene point.

9 Calibration and positioning with refractive and reflective
planes

The problem of estimating the position of objects behind refractive and reflective
interfaces from observed image points is considered in paper VIII. That is, the
3D positions of Daphnia in an aquarium are sought from recorded videos of a
biological experiment (see paper IX).

To estimate the 3D position of a point in air corresponding to image point
observations in at least two cameras is simple if the cameras are intrinsically and
extrinsically calibrated. For each image point, there is a ray into the scene that
can be computed. The observed 3D point corresponding to a set of image points
is found at the intersection of all rays from those image points. For the intended
application, however, the 3D points are in water and the cameras in air. The
light ray from a scene point pass through the flat glass of the aquarium before
arriving at the camera. A ray of light from a scene point in water is refracted (i.e.
change direction) as it passes through one medium to another. The ray path from
a scene point to a camera is therefore first refracted at the water-glass interface,
and then again at the glass-air interface. As a result, the scene point is typically
not where in-air triangulation would estimate it to be (see Fig. 27). How the angle
of a ray changes as it passes through the interface from one medium to another is
described by Snell’s law, which is visualized in Fig. 28. Note that in the proposed
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Figure 28: Snell’s law. A ray originating from the camera center C with direction u
undergoes a change of direction according to ρ1 sin θ1 = ρ2 sin θ2. This causes the
usually linear equations for projections, for example, to become nonlinear and much
harder to solve.
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Figure 29: Reflections. A ray with direction u originating from a point P intersects
a reflective plane (n, d) at a point R, where the ray changes direction to v and
subsequently intersects a point U . Note that the ray segment from R to U is the
mirror image of the virtual ray segment fromR toQ.

methods, it is assumed that the glass is thin enough to make a single refraction
(water-air) a good enough approximation.

In addition to refraction, there is the possibility that a ray is reflected in a wall
or the water surface before it arrives at the camera. Reflections are modeled using
virtual points – this allows for reflecting points instead of directions. Thereby, the
point where a ray is reflected is not used. An example is visualized in Fig. 29. For
more details on the modeling of reflections, see paper VIII.

Thus far has been described the angular changes that the light ray of an ob-
served Daphnia undergoes before it meets the camera. These are formulated as
equations that depend on refractive and reflective plane parameters, refractive in-
dices, scene points, points of refraction, virtual points, image points and intrinsic
and extrinsic camera parameters. Additional equations are formulated to con-
strain projections to the measured image points and the plane normals to have
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unit length. All of these equations are reformulated as error functions and imple-
mented in a bundle adjustment framework (see section 3.3). This framework can
be used to, for example, calibrate the refractive and reflective plane parameters,
estimate the 3D position corresponding to a set of observed image points and
project scene points in the cameras.

The details of each of these steps are presented in paper VIII.

9.1 Additional results

In addition to the results presented in paper VIII, an evaluation was performed to
investigate how triangulation errors are related to the number of reflective planes.
Therefore, a practically relevant evaluation was done by generating scene points
in the model of the actual set-up used for the Daphnia experiments. That is, data
such as the observed data in the Daphnia experiment was synthetically genera-
ted. The scene points were projected, using the previously outlined methods, in
different reflective plane configurations. Since the real set-up has three reflective
surfaces (two walls and the surface of the water), there are three possible planes
that a ray can be reflected exactly one time. For the case of more than two re-
flections, only subsets of the possible configurations were considered. The results
of triangulation using these different configuration of reflection are presented as
the distance to ground truth in Fig. 30. From the figure can be concluded that
the triangulation of a scene point is less sensitive to noise if it is (in addition to a
direct view) also observed through reflections.

10 The Misty Three Point algorithm

The Misty Three Point algorithm is a method that estimates the relative motion
of a camera from three pairs of image coordinates that correspond to the same
scene point, and the observed colors at those coordinates.

10.1 Related work

To estimate the relative motion of two cameras is a well-studied topic that has
been researched for more than a century [14, 41]. In 1855, Chasles proposed
solutions to the relative pose problem. In 1913, Kruppa proved that the five-
point problem has at most 11 solutions. A more thorough survey of the history
of computer vision is given by Sturm [82].
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Figure 30: Median of triangulation error for different reflective configurations as a
function of added image point noise variance x2. n = 0 means that triangulation
is performed using only direct views of the point. n > 1 means that both direct
views and n additional observations through reflection, for each camera, are used for
triangulation.

However, the actual problem to solve depends on a number of assumptions
and what parameters are known. Nistér proposes an efficient solution to the
minimal case (five pairs of corresponding image points) for a calibrated pinhole
camera [55]. Stewénius et al. first show that at least six pairs of corresponding
image points are needed to estimate the relative poses of two calibrated generalized
cameras and then solves the minimal case [81].

A less studied topic is that of estimating structure and motion from underwa-
ter images. Jordt and Koch propose a method for estimating relative pose where
refractions caused by a flat port housing are handled using a virtual camera [38].
Here, a non-minimal relative pose solution is proposed that improves upon the
results that are obtained by a simple pinhole camera model. The problem of es-
timating the absolute pose of a camera under flat refractive interfaces is solved
minimally by Haner and Åström [30].

There are also proposed methods for restoring images that have been degraded
by attenuation in water. For example, Schechner and Karpel propose methods
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Figure 31: The relative pose problem solved in paper X. Two cameras centered at the
origin and t, respectively, observe three points of unknown position and unknown
color. Note that we are not only using the direction uik from each observed point,
but also the observed color. The differences in depth ∆zik = zjk − zik are also
crucial parts of this method. In the left camera, with larger distance to the objects,
the colors look very similar. In the right camera, however, the observed colors are
more similar to the actual color of the object. This distance dependent degradation
in color is what enables the estimation of depth differences.

for recovering the colors and estimating depth maps in single underwater images
using polarized light [72, 73]. This problem is also considered by Jordt [37].
The related topic of restoring the colors in hazy images has gained more attention
that underwater applications, but often use similar physical models [32, 74, 83].
For example, Bahat and Irani propose a method for dehazing foggy images using
recurring image patches [2].

In paper X, we consider the case where pairs of corresponding image points
in two generalized cameras are known and the difference in distance to each of
the corresponding scene points are known. We show that at least three pairs of
image points are required and solve the minimal case. Furthermore, we propose a
method to estimate the differences in depth from underwater images. As a result,
we propose a method for estimating the relative poses of two underwater cameras
using three points and their colors.

10.2 The algorithm

Assume that three scene points Uk with irradiance Ek are observed in two ca-
meras as the points xik with colors Iik = (I red

ik , I
green
ik , Iblue

ik )>, where k denote
the point index and i the camera index. The observed colors of the points are
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modeled by a simplified version of the Jaffe-McGlamery equation,

Iλik = αλ

(
Eλk e

−ηλzik +Bλ
∞(1− e−ηλzik)

)
+ βλ, (124)

where λ ∈ {red, green, blue} is the color channel, αλ and βλ are color correction
coefficients [37], ηλ is the attenuation coefficient of the water, zik is the distance
from the outer refraction plane of camera i to point k and Bλ

∞ is the "veiling
light".

It is noted that the Jaffe-McGlamery equation can be solved for the term
αλ
(
Ek −Bλ

∞
)
, which is equal in both observations of point k. This leads to the

equation

Iλik − γλ
Iλjk − γλ

= eηλ∆zijk , (125)

where ∆zijk = zjk − zik is the difference in distance between the two observa-
tions and γλ = αλB

λ
∞ + βλ is the observation of the veiling light. Thus, it has

been shown that there is a quantifiable pseudo-depth information in underwater
stereo images.

A method (the Three Color Depth Difference algorithm) is proposed to solve
Eq. (125) for the unknown difference in depth, and to estimate the underwater
imaging parameters γλ and ηλ. This is done by defining an error function,

rλ(γ, η,∆zijk) = Iλik − γλ − (Iλjk − γλ)eηλ∆zijk , (126)

and performing a nonlinear optimization routine using Gauss-Newtons algo-
rithm.

A method (the Three Point Delta algorithm) is proposed that takes image
points xik and differences in depth ∆zijk = zjk − zik as input, and gives an
estimate of the relative motion between camera i and j as output. The method is
derived for a generalized camera that is assumed to be calibrated. That is, for each
image point xik, a 3D-point pik and 3D-direction uik can be computed. In the
case of underwater cameras – i.e. where the difference in depth is the difference
in distance between the two camera refractive planes and the scene point – pik is
assumed to be a point on the outer refractive plane of camera i.

For each pair of observed image points (xik,xjk) that correspond to the same
scene point Uk, the rays into the scene can be parametrized by the distances zik
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and zjk to the scene point,

Uk = pik + zikuik, zik ∈ R,
U ′k = pjk + zjkujk, zjk ∈ R.

(127)

Note that these parametrizations are given in the local coordinate systems of each
camera. Since the poses of the cameras is unknown, there is an unknown rigid
transformation between Uk and U ′k. Therefore, the Gramians for the two sets of
points U = {U1,U2,U3} and U ′ =

{
U ′1,U

′
2,U

′
3

}
are equal [94]. The Gramian

for U is defined as V >V , where

V =
[
U2 −U1, U3 −U1

]
. (128)

Inserting the expressions for the Uk’s and U ′k’s gives the Gramians

V =

[
zi2ui2 − zi1ui1 + pi2 − pi1
zi3ui3 − zi1ui1 + pi3 − pi1

]>
,

V ′ =
[
(zi2 + ∆zij2)uj2 − (zi1 + ∆zij1)uj1 + pj2 − pj1

(zi3 + ∆zij3)uj3 − (zi1 + ∆zij1)uj1 + pj3 − pj1

]>
.

(129)

Thus the constraint that the Gramians are equal amounts to

V >V − (V ′)>(V ′) = 0, (130)

which provides three equations that are quadratic in the three unknowns zik,




A11xy +A14x+A15y +A17 = 0,

A21xy+ A22xz +A23yz +A24x+A25y +A26z +A27 = 0,

A32xz +A34x +A36z +A37 = 0,

(131)

where x = zi1, y = zi2, and z = zi3. How this system of three polynomial
equations in three unknown can be solved is outlined in section 3.4.

Given a solution (zi1, zi2, zi3) to Eq. (131), the scene points Uk and U ′k can
be computed. What remains is then to estimate the rigid transform (R, t) from
Uk toU ′k = RUk+t. The rigid transform is the sought relative motion between
the first and second camera.

Lastly, a method (the Misty Three Point algorithm) is proposed that takes
image points xik and their colors Iik from two cameras as input, and provides an
estimate on the relative poses of the cameras. This method is a combination of the
Three Color Depth Difference algorithm and the Three Point Delta algorithm.
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11 Skilled reaching in rats

The main neurophysiological rationale for studying the skilled reaching behavior
in rats is that it allows for studying the central nervous system as it initiates and
controls fine motor behavior. In this experimental paradigm, the animals learn to
pick up food rewards by their front paws as shown in Fig. 32.

Some of the earliest neurophysiological studies on rat reaching was performed
in the 1930’s [64, 65] for the purpose of investigating handedness. Skilled rea-
ching in rats has been studied extensively by I.Q. Whishaw since the 1980’s [1,
51, 52, 69, 90, 91]. Two important observations in these papers is that skilled
reaching appears be a sensible tool for e.g. detecting early stages of Parkinson’s
disease [51, 52] and that skilled reaching in rats is similar to skilled reaching in
humans [69, 91]. Therefore it is of great scientific and practical interest to further
investigate both the behavioral and neuronal dynamics of skilled reaching in rats.

The skilled reaching tests were conducted as follows. Each reaching trial starts
at the back side of the box (the rightmost side of Fig. 33b). Then the rat climbs
over the obstacle in the center of the figure, and approaches the left side of the
image where it can reach for food. After it has made a reaching attempt, it has to
return to the back side of the box before new food is placed on the shelf. This part
of the procedure ensures that the time interval for each reaching trial is separated
from the others. Thus, the neural activity during a reaching movement can be
compared to the baseline activity before the attempt.

The dataset for each recording consists of video data and neural data. Four
cameras are directed at the reaching scene (see Fig. 33a and Fig. 32) and a fifth
camera (not used in the included papers) views the rectangular box from the side
(see Fig. 33b). The neural data were provided by micro-electrodes with 64 chan-
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t = 0.000s t = 0.020s t = 0.048s t = 0.104s

Figure 32: The reaching movement of a rat. Images from two cameras are shown
from four points in time during a reaching attempt.

nels, that were implanted into the primary motor cortex and striatum in both of
the hemispheres of the animals. Each channel is sampled at 32 kHz, and each
sample is represented by a measurement of the voltage. Both the activity of single
neurons (referred to as the single unit activity) and the low-pass filtered signals of
each channel (referred to as the local field potential) are extracted from these mea-
surements. The single unit activity is represented by the sequence of times when
action potentials are generated, and the local field potentials are represented by the
sequence of measured voltages. These data are subsequently analyzed together
with the behavioral tracking data.

The behavioral data is extracted as follows. First, the scene is calibrated
using DLT (see section 3.2.1) and the background is modeled as described in
section 4.1. The animal is geometrically modeled and its pose is estimated in each
frame as outlined in section 5.2. Methods for generating and projecting quadric
surfaces are introduced in sections 4.4 and 4.5. Thirdly, features were extracted
from the data as presented in section 6.1. Lastly, the behavioral data and the cor-
relation between the neural data and the extracted features is analyzed as proposed
in paper II.
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(a) Front view (b) Side view

Figure 33: (a): an overview of the experimental set-up. Four cameras are recording a
scene in which the rat can reach for food rewards (cf. Fig 32). A calibration object
– i.e. an object with known dimensions and geometry that is used to calibrate the
cameras – is placed in the scene. (b): three merged images from a side-view camera
that is not seen in the left figure. In this image, the slit through which the rat can
reach for food rewards is on the left hand side. Note that there is an obstacle that the
middle rat is climbing over - this obstacle is used to force the rat to do a reaching-like
movement but for a different purpose that receiving food rewards.

12 Box and tower experiments in the common marmoset

The common marmoset (Callithrix jacchus) is a widely used model species for
medical studies. In this thesis is included two papers [61, 70] that studies the
long term effects of motor impairment induced by a 6-OHDA model of Parkin-
son’s disease. The proposed computer vision based methods are used together
with manual scoring, and shows that the induced Parkinsonism persists for se-
veral months. Thus is implied that this non-human primate model of Parkinson’s
disease is well suited for long-term evaluation of novel therapies for treatment of
Parkinson’s disease.

To enable the study of the motor symptoms, two experimental set-ups – box
and tower – were constructed. In the box experiment, a marmoset is placed inside
a box, as depicted in Fig. 35, where it is free to move around. There are small
circular holes on one side of the box and shelves on the outside. These were used
in a parallel study where animals were trained to reach for and grasp food rewards
– this behavior was not evaluated in the included studies and the shelves were not
baited. In the tower experiment, a marmoset is placed inside a vertical cage that
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(a) The tower set-up. (b) Example video data and pose estimation results for four
frames.

Figure 34: The tower set-up is plotted in (a) and example frames from the recorded
videos are shown in (b). The estimated geometrical model of the animal has been
plotted in blue on the images.

has 7 sticks at different heights above the floor, as shown in Fig. 34. The distance
between the sticks increases as the distance from the floor increases.

The most relevant theory of image analysis and computer vision, and the
specific methods applied for the box and tower experiments are listed in the fol-
lowing. The background is modeled as described in section 4.1. Geometrical
modeling and tracking of the marmosets is motivated and outlined in sections 5.3
and 5.4. Methods for generating and projecting quadric surfaces are introduced
in sections 4.4, 4.5 and fitting quadrics to images in section 4.6.1. Feature ex-
traction is performed as proposed in section 6.2. Analysis of the extracted feature
data is presented in paper IV.
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(a) The box set-up. (b) Example data and projected pose estimation
results for two frames (left and right columns).

Figure 35: The box set-up is plotted in (a) and examples of recorded video data are
shown in (b). Note that the plotted pose estimation results are the projections of the
estimated 3D-pose. Also note that there are holes in one of the walls and shelves on
the outside of the box – these are not used for the presented study.

13 Tracking the rhopalia of box jellyfish

The box jellyfish is a simple organism that does not have a brain (it only has a
simple nerve net). What is remarkable, however, is that it has eyes. An animal
that has both of these properties is very useful for studies on vision and systems of
vision. Due to the absence of a brain, it can be assumed that the neural decision
making processes that initiates movement are relatively simple, as compared to
e.g. rats or marmosets.

One of the goals of this project is to study the correlation between visual
stimuli and motor output. For that purpose, an experimental set-up has been
built where the jellyfish are fastened at the top of the bell. The animals are video
recorded while they attempt to move (see Fig. 36). In addition, there are lighting
elements that can provide visual stimuli (not used in this study).

To enable the study of jellyfish behavior, the attempted movements of the
animals need to be quantified. In paper VII is proposed a method for tracking
the rhopalia of the box jellyfish in this particular set-up. The proposed method is
efficient and could potentially be implemented for real-time applications.
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Figure 36: An image from a video of box jellyfish. Model fitting results have been
superimposed as red circles (rhopalia) and dashed green lines (body).

A possible use of a real-time tracking application is to create a virtual reality
system for the jellyfish – i.e. a system where the attempted movements of the
jellyfish is forwarded to the light elements that provide the visual stimuli. For
example, the lights could change according to the estimated direction of the at-
tempted swim movements. This could potentially let biological scientists create
virtual mazes, for example, where the jellyfish attempt to navigate.

14 Drug induced behavior in zebrafish

The zebrafish (Danio rerio) is a commonly used animal in the field of medicine,
but up until recently the commercially available automatic tracking software have
tracked only one position per fish, consequently greatly limiting the behavioral
analysis. In order to allow for more advanced analysis of the behavior of zebrafish
larvae, more advanced tracking data are required. Therefore, papers V and VI
propose a system for tracking the body shape of zebrafish larvae, and analyzing
the results, in a high-throughput application. This system allows for experiments
on large numbers of individuals and, at the same time, it provides a high level of
detail.

The experimental set-up used for the zebrafish experiments consists of two
microtiter plates placed in a water bath (to maintain 28◦C temperature). A ca-
mera records the scene from above in 300 frames per second at a resolution of
640 × 480 pixels (see Fig. 37). Lighting of the scene is provided by LED strips
positioned below the plates.
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Figure 37: A frame from the zebrafish videos. Pose estimation results for half of the
larvae are superimposed in blue.

The methods outlined in section 4.1 were used to create a background image.
The geometrical modeling and tracking of the larvae is performed as presented
in section 5.5. Kinematic features are extracted by the methods outlined in
section 6.3. Lastly, the behavior of the larvae are analyzed as proposed in pa-
per VI.

15 UV-light and predator response in Daphnia

The zooplankton Daphnia is a small aquatic organism that lives in e.g. lakes in
large parts of the world. Their response to multiple threats (UV-radiation and pre-
dation) is studied in the presented application (paper IX). This behavioral study
is enabled by the computer vision methods proposed in paper VIII.

The experimental set-up consists of an aquarium, an array of UV-light LEDs,
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Cam. 1
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Cam. 2π2

Cam. 3
π3

Cam. 4

π4

(a) The result of calibration of the four ca-
meras and the triangulated 3D-positions
of one Daphnia.

(b) Photos of the aquarium and cameras
(top) and the LED array used to excite the
fluorescent quantum dots and simulate UVR
threat (bottom).

Figure 38: The experimental Daphnia set-up used for the experiments on Daphnia.
(a) shows the results of calibration, results of positioning and the ray-paths from one
point to the cameras. Here, the cyan dots are image points, the green circles are
points of refraction, the blue crosses are points of reflection, and the large red dot is
the estimated 3D position of a Daphnia.

excitation light LEDs for the quantum dots, and four cameras (see Figure 38).
The methods proposed in section 9 and 3.3 are used to calibrate the scene and

to estimate the positions of the Daphnia. Extraction of feature data and analysis
of feature data is conducted as proposed in paper IX.
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Overview of the papers

In this chapter is presented an overview of the papers included in this thesis. Note
that the order of papers I and II is reversed in this section.

Paper II - A System for Automated Tracking of Motor Components in Neurop-
hysiological Research

This paper presents a novel method for tracking a rat paw and a novel application
of the method for a specific neurophysiological test. For the purpose of obtaining
useful behavioral data, the rat paw is modeled by a set of hierarchically connected
ellipsoids that represent the palm and the phalanges. In this model, the pose of
the paw is described by the position of the wrist, angle of the palm of the paw,
and the angles (along the anatomically possible axes of rotation) of each of the
phalanges. An iterative and generative method is proposed to estimate the paw
poses. Furthermore, methods for analyzing the correlations between fine motor
behavior and neural activity are proposed. Lastly, examples of correlations found
in the recorded data using the tracked paw poses are presented.

Paper I - Rat Paw Tracking for Detailed Motion Analysis

This paper provides more in-depth descriptions of the computer vision algorithms
employed in paper II. Some updates of the algorithms are also presented. The
used dataset is identical to that of paper II.

Paper III - Automated Tracking of Motor Behavior as a Means to Assess Severity
of Symptoms in the 6-OHDA Marmoset Model of Parkinsons Disease

This paper propose a method for tracking marmosets in two separate experimental
testing set-ups - box and tower. In the box set-up, the marmoset is placed in
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a cubic testing chamber and recorded by two cameras. The animal is modeled
by an ellipsoid of variable axis lengths, position and orientation (i.e. 3 + 3 + 2
parameters). In the tower set-up, the animal is recorded in a high and narrow
setup using one camera. The marmoset is modeled by an ellipsoid of variable axis
lengths, position and orientation. Movements of the marmoset is constrained to
the (x, y)-plane since it is observed by a single camera. Therefore it is described
by only 2 + 2 + 1 parameters (instead of 3 + 3 + 2, that is the unconstrained
case).

Generative and iterative tracking methods are proposed for estimating the
pose parameters in both set-ups. Furthermore, methods for robustly obtaining
robust and relevant behavioral measurements from the tracking data are proposed.
Lastly, a preliminary behavioral analysis of recorded data from a set of experiments
on the 6-OHDA model of Parkinson’s disease in marmosets is presented.

Paper IV - Characterization of Long-Term Motor Deficits in the 6-OHDA Mo-
del of Parkinson’s Disease in the Common Marmoset

The paper presents an application of the methods proposed in paper III for the
purpose of characterizing the long-term motor deficits in the the 6-OHDA com-
mon marmoset model of Parkinson’s disease. A larger data set than presented in
paper III is analyzed and additional measures for analyzing the motor deficits are
proposed.

Paper V - Visual Analysis of Zebrafish Behavior

This paper propose a high-throughput system for analyzing the behavior of ze-
brafish larvae. 48 spatially separated larvae are recorded in videos of 640 × 480
pixels resolution in which they appear as curves of ∼ 2 pixels width and ∼ 8
pixels length. The larvae are modeled as curves consisting of eight points, starting
at the head position. For each frame and larvae, the parameters of the eight-
point-skeleton model are estimated. Thus is provided 48 time series containing
information of the position, direction and bending of the larvae over time.

Each time series is separated into discrete swim bouts by applying a threshold
to the estimated speed function. Methods for classification of swim bouts into K
groups is proposed. The distributions over time of bout classes in disjoint time
bins are analyzed for experiments on amphetamine and apomorphine, and are
compared to those of a control experiment.
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This paper provides more in-depth descriptions of the computer vision al-
gorithms employed in paper VI. A subset of the data and methods of analysis
proposed in paper VI is used and described.

Paper VI - Action Sequencing in the Spontaneous Behavior of Zebrafish Larvae
with Implications for Drug Development

This paper presents an application of the methods proposed in paper V. A larger
dataset is used and additional methods for analysis are proposed. Drugs with
known effects are studied and previously known effects are reproduced.

The swim bout classifier is used to convert the tracking data time series to
time series of classification results. Thus the behavior of each larva is described
by a sequence of numbers. These new time series are then modeled as n-th or-
der Markov chains, and the transitional probabilities of which are estimated. A
number of measures (speed, duration, transitional probabilities, etc.) are used to
create a 435-dimensional feature vector for each larva.

The behavior of zebrafish larvae in a control experiment is first characterized.
Then the behavior of larvae given different doses of amphetamine, apomorphine
and MK-801 is analyzed using the 435-dimensional feature vector in disjoint time
bins.

In conclusion, it is shown that the tracking and behavioral analysis methods
proposed in paper V are of practical relevance. Furthermore, it is shown that
the sequencing of motor behavior of zebrafish-larvae are of importance for drug
development.

Paper VII - Tracking the Motion of Box Jellyfish

This paper presents a simple framework for tracking the motion of box jellyfish.
Box jellyfish are fastened such that they can make swimming motions but not
move. The bell of the jellyfish is translucent and difficult to measure the mo-
vement of, but the rhopalia (clusters of eyes) are visible and relatively simple to
detect. The movement of the rhopalia provides a coarse measurement of the mo-
vement of the bell, thus also the swimming behavior of the jellyfish. For this
purpose, a method for detecting and tracking the rhopalia is proposed.
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Paper VIII - Calibration, Positioning and Tracking in a Refractive and Reflective
Scene

This paper proposes a method for tracking objects within a scene where objects
are observed through refraction and reflections.

The trigonometric equation describing refractions (Snell’s law) is reformula-
ted on vector form using a property of the cross product. Reflections are managed
by reflecting points instead of ray-directions, thus creating virtual points. These
are shown to be a useful tool. A bundle adjustment framework is developed for
this purpose, allowing for optimization of scene points (i.e. triangulation), image
points (i.e. projection) and refractive and reflective planes (here denoted scene cali-
bration). The proposed system for positioning, calibration and tracking is applied
on videos from a biological experiment on Daphnia.

Paper IX - Daphnia Response to Multiple Threats from UV-A and Predation

This paper presents an application of the method presented in paper VIII. The
response of Daphnia to the multiple threats introduced by UV-A radiation from
above and predation from below is investigated.

Paper X - The Misty Three Point Algorithm for Relative Pose

This paper propose a method for estimating the relative motion between two
cameras in an underwater setting given three points. The idea behind the paper
is to leverage the depth-information caused by a distance dependent attenuation
of light that can be observed in underwater images to estimate camera motion.

The exponential attenuation of light is modeled mathematically by the Jaffe-
McGlamery equation. The observed colors of three pairs of point-correspondences
are used to create a system of equations where the difference in depth (∆z1, ∆z2

and ∆z3) can be solved for up to an unknown scale. Thus, pseudo depth data are
obtained.

By defining z1, z2 and z3 as the distances from the first camera to the scene
points, the distances from the second camera to the scene points are z1 + ∆z1,
z2 + ∆z2 and z3 + ∆z3 (using the previously estimated depth differences). A set
of equations for the relative pose problem are then provided by noting that the
Gramian for the scene points at distance zk from the first camera is constrained to
be equal to the Gramian for the scene points at distance zk+∆zk from the second
camera. This results in a system of three polynomial equations in three unknown
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(z1, z2 and z3). The action matrix method is employed for solving the system,
i.e. for computing z1, z2 and z3. Thereby the scene points can be reconstructed
and the pose of the second camera can be computed by the standard resectioning
algorithms.
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Abstract: This work is part of a research project studying the learning of fine
motor skills in rats. A system for tracking a rat paw using a system of high-speed
cameras is presented along with preliminary analysis of the correlation between
paw movement and neural data. The tracking method is generative, modeling
the rat paw as a set of linked ellipsoids. To find the most probable paw pose
a number of hypothetical parameter values are explored. For each set of values
the paw model is projected in the different cameras and compared to the actual
measured images. The pose that is most consistent with the intensity and edge
information in the different views is chosen. By efficient utilization of integral
images, this evaluation can be performed very quickly, creating a tractable and
completely automatic method with good performance.

1 Introduction

1.1 Background

The central nervous system fundamentally deals with the control of actions. Con-
sequently behavioral studies have often been a natural starting point for investi-
gations aimed at understanding its functions. The goal of this work is to study
neuronal activity of the central nervous system during learning of new behaviours.
As shown in [4], we have developed a system for analysis of motor behaviour of
rats during skilled reaching experiments in order to learn about the changes occur-
ring in the central nervous system.

There are several ways to improve the system from [4]. Firstly, evaluation of
the quality function has been improved from quadratic time to linear time, with
respect to the length of the shortest side of the videos. This has made availa-
ble more advanced methods for quality function optimization, i.e. both tracking
quality and computational efficiency has been improved. Secondly, the depth of
each projected quadric is used in order to detect occlusions from the experimental
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Figure I.1: The experimental setup with four cameras, lights and a calibration object.

setup. This makes the similarity measures used for quality evaluation more appro-
priate. As this is work-in-progress, there are not yet any behavioural recordings
available using the latest experimental setup, thus there are no results presented
using the new setup.

1.2 The behavioural task

In the behavioral experiment the rat was placed in the reaching apparatus from
where it could obtain 45 mg food pellet rewards, positioned in an indentation
on the reward shelf, via controlled reaches through the aperture of the wall. At
the start of the experiment, the rats are slow and inefficient in this task, but after
approximately two weeks of almost daily training, they have fully learned the
reaching behaviour. This is interesting from a neural point of view as we then can
study what happens in the brain as the rats learn this new behaviour.

1.3 The videos

An improvement from the setup in [4], is the use of four front-view cameras, as
seen in Figure I.1. The previous version of the setup featured two combined with
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(a) (b)

(c) (d)

Figure I.2: Video inputs from four views in subfigures (a),(b),(c) and (d) with supe-
rimposed projections of pose estimation results. In this particular frame, the paw of
the rat is approaching the food pellet through a slit in the wall. The nose can also be
seen in this frame. The digits are illustrated in red, green, blue and cyan, where red
corresponds to the human index finger, green corresponds to the middle finger, etc.
Note that the rat paw only has four long digits; the thumb is considered too short
and is not used in this model. The palm of the paw and the forearm are yellow, the
nose is black and the food pellet is magenta.

mirrors, to generate six views. The use of mirrors introduced problems with the
focus, as the distance for light to travel from the paw through one of the mirrors to
the camera could be as much as twice as far as the closest distance to the camera.
Additionally, recording speed was increased from 200 frames per second to 300
frames per second, to enable better tracking of the very quick movements of the
rats. As no behavioural videos are yet recorded using the new camera setup, the
old ones are presented in Figure I.2.
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Figure I.3: The model for the paw, nose and pellet, with colors as explained in Fig I.2.

1.4 Calibration

Calibration was performed by placing an object with known geometry at a pre-
defined location and then manually selecting the object corners in each of the
videos. Given these selected image points, the camera matrix was computed using
direct linear transform (DLT) [2].

2 Tracking

2.1 Related work

The subject of hand pose estimation and tracking has gained a lot of attention
the last 5-10 years as the computational power available is approaching what is
needed for real-time applications [1]. In human applications it is possible to use
for example colored gloves [6],[7], or using a combination of normal cameras and
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depth cameras [3]. However, for the presented application this is not possible as
the movements are so fast and the paws are so small (less than 1cm in width), and
the rats are not as collaborative as humans can be.

2.2 Overview of the method

The tracking method is generative, i.e. the paw is modelled as explained in section
2.3, below, with 22 variable parameters and these parameters are subsequently es-
timated as the argument of the maximum of the quality function given in section
2.7. Evaluation of the quality function is derived starting at the projection of
quadrics in section 2.4, followed by the evaluation of the similarity of measured
images and estimated poses in sections 2.5, 2.6 and 2.7. A brief presentation of
the algorithm used for maximizing the quality measure in each frame and over
time is presented in section 2.8.

2.3 Rat model

The rat paw consists of four long digits ("fingers") and each digit consists of three
phalanges (bones). The paw is modelled by 13 quadrics, of which 12 represent
ellipsoids for the phalanges and one represents an ellipsoid for the palm of the paw.
Furthermore, the forearm is modelled as an ellipsoid and the nose is modelled as
an elliptic paraboloid. In total, the rat pose is modelled using 15 quadrics, as seen
in Figure I.3. Due to anatomical constraints, the kinematics of each digit can be
modelled using only four degrees of freedom - one for adduction/abduction at
the proximal joint and three for flexion at each one of the joints. Consequently,
the paw can be modelled using 16 parameters for the digits, four constant vectors
representing the metacarpal bones and 6 parameters for position and rotation of
the palm of the paw. Furthermore, the forearm is assumed to be fixated at the
wrist and can rotate along all three axes in space. This amounts to a total of 22
parameters.
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2.4 Projection of quadrics

A quadric surface in 3D can be described as the solutions X = (X,Y, Z) to the
quadratic equation

[
X Y Z 1

]
C




X
Y
Z
1


 = 0 (I.1)

The projection of such a surface onto an image plane is a conic section which can
be described as the solutions x = (x, y) to the quadratic equation

[
x y 1

]
C



x
y
1


 = 0 (I.2)

As described by [5], the conic matrix C can be easily computed along with the
depth of any projected point on the quadric.

2.5 The quality function

The quality function used here is a measure of how well an estimated pose fits the
intensity and edges of an image. The area quality function for one view is defined
as

qA =

∑
x,y min(P (x, y), F (x, y))∑
x,y max(P (x, y), F (x, y))

(I.3)

where P is the projection of the estimated paw pose and F is the measured fore-
ground image. Here P is binary while F is normally not. Note that for binary
functions, the quality function is identical to the Jaccard index, which is used in
[4]. The measured foreground image F is defined as the image minus the back-
ground, i.e. F = I − B. The projection of the paw pose, P , is defined as the
binary image with 1’s at each pixel covered by a projected quadric of the estimated
pose, and 0’s elsewhere. Thus, we are interested in evaluating how much of the
projection of a quadric covers the foreground of an image, i.e. to compute the
sum of the elements in an image that are covered by the filled conic. The naive
way to evaluate which pixels are covered by a conic is to evaluate (I.2) for each
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(a)

 

 
Estimated paw pose
Measured foreground

(b)

(c)

 

 
Estimated paw pose
Measured edge probability

(d)

Figure I.4: An image (a) with superimposed projections of pose estimation results
and a horizontal dotted line depicting the row of choice for (b). (b) is an illustration
of the row shown in (a), where the red line shows where the image is covered by
the estimated paw pose and the green line is the grayscale values of the row. (c) is
an illustration of the edge-probability used in (I.7) and (d) is, analogously to (b), an
illustration of the particular row of choise in (c).

pixel, which would require MN evaluations of (I.2). This is the method used in
[4] and is very time consuming. This can be improved by noting that for each
fixed x0 ∈ [1,M ],

[
x0 y 1

]
C



x0

y
1


 = 0, (I.4)

is a quadratic equation in y. Then the line segment {y0} × [y0, y1], where y0

and y1 are solutions to (I.4), covers the conic. Each such slice can be computed
by finding the real roots of the quadratic equation. If there are no real roots, the
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conic does not intersect that particular row, x0. As the estimated paw pose consists
of 16 quadrics, for each row x0 there is a (potentially empty) set of intervals
that cover parts of the row. After merging overlapping intervals, we get a set of
disjoint intervals for each row. Computing the contribution to (I.3) from one
such interval, can be done very efficiently using integral images. Let IF (x, y) be
the integral foreground image

IF (x, y) =

y∑

j=0

F (x, j) (I.5)

Then the contribution to (I.3) from an interval [y0, y1] is given by

IF (x, y1)− IF (x, y0) (I.6)

Thus the cover of a projected quadric can be computed in linear time (with
respect to the smallest side of an image). For each row, 16 equations equations
need to be solved, up to 16 intervals merged into disjoint intervals and grays-
cale values of the integral images at the endpoints of each interval needs to be
evaluated. This is considerably faster than naive evaluation of (I.3).

2.6 Edge quality function

Let D be a matrix where, for each coordinate (x, y), D(x, y) is the shortest
distance from (x, y) to an edge in an image I (can be computed efficiently using
distance transforms). Then for each point (x, y) on the edge of the projected paw
pose, 1

D(x,y)+1 is related to the probability of (x, y) corresponding to an edge.
The edge quality function is defined as

qE =
1
|∂P |

∑

(x,y)∈∂P

1
D(x, y) + 1

. (I.7)

2.7 The quality function

For a predicted paw pose, a point in time and each camera, the quality function is
defined as (I.3). The quality in each of the views are multiplied to give the quality
function for a predicted pose and a point in time:

q =

N∏

k=1

(
q

(k)
A λ+ (1− λ)q

(k)
E

)
(I.8)
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Fig. 5. Neural correlation to motor components. Examples of neurons correlated to individual motor components. Reach attempts are sorted depending on the peak value
for a motor component during the attempt, as shown in the left column. The top row is sorted for advance so that the shortest extensions are pooled into the blue group, the
intermediate extensions into the purple group and the longest into the red group. In the same manner, the middle row is sorted for arpeggio and the bottom row is sorted
for grasp. The middle column show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time point of maximum paw extension
and averaged over all attempts in each group. A green line indicates a significant difference in firing rates between any of the three groups (p < 0.05). The right column shows
the autocorrelogram and waveform for each presented neuron.

addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be
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addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be
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addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be

(c)

Figure I.5: Neural correlation to motor components. Examples of neurons correlated
to individual motor components. Reach attempts are sorted depending on the peak
value for a motor component during the attempt, as shown in (a). (c) is sorted
for grasp so that the lowest degree of fist closure are pooled into the blue group,
the intermediate closures into the purple group and the highest into the red group.
(c) show standardized peri-event firing rates and raster plots of individual trials for
each group, aligned to time point of maximum paw extension and averaged over all
attempts in each group. A green line indicates a significant difference in firing rates
between any of the three groups (p < 0.05). (b) shows the autocorrelogram and
waveform for each presented neuron. Modified from [4].

2.8 Maximizing the quality function

As the movement of the paw was so quick with respect to the recording speed,
using temporal consistency to improve tracking proved to be difficult. Thus the
method presented here is only based on frame-by-frame pose estimation. For
each frame, a number of previously encountered poses together with the pose of
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the previous frame was evaluated, to find an appropriate starting point. Then a
gradient-descent like optimization method was applied to find a local maxima,
which given that the more coarse global optimization is close to the global max-
ima, is also the global maxima.

3 Alignment of neural recordings to kinematic data

Nerve cells in the brain communicate by briefly altering their membrane poten-
tial, these impulses are referred to as action potentials. Already in the first analyses
of the changes in neuronal activity patterns related to different aspects of the mo-
tor output, we could identify single nerve cells that appeared to show specific mo-
dulations in the frequency of emitted action potentials in relation to specific parts
of the motor sequence. In Figure I.5, the recorded neuronal activity of a nerve
cell, in multiple reaching trials, was aligned to the part of the reaching movement
where grasping is initiated. It was noted that the average number of action poten-
tials detected scaled with the degree of fist closure suggesting that this nerve cell
may have a role in controlling this part of the reaching and grasping compound
movement.

4 Discussion

The presented system uses a calibration procedure (DLT) that is easy to code but
is numerically unstable and is a potential bottleneck for the rest of the system.
Even though calibration quality has been improved by using views with higher
resolution, we aim to improve this part by using a new calibration method that
will also be easier to perform during the experiments.
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a  b  s  t  r  a  c  t

In the study  of  motor  systems  it is  often  necessary  to  track  the  movements  of an experimental  animal  in
great detail  to allow  for  interpretation  of recorded  brain  signals  corresponding  to different  control  signals.
This task  becomes  increasingly  difficult  when  analyzing  complex  compound  movements  in freely  moving
animals.  One  example  of  a complex  motor  behavior  that  can  be  studied  in  rodents  is the  skilled reaching
test where  animals  are  trained  to  use  their  forepaws  to grasp  small  food  objects,  in many  ways  similar  to
human  hand  use.  To  fully  exploit  this  model  in neurophysiological  research  it  is  desirable  to describe  the
kinematics  at the  level  of  movements  around  individual  joints  in  3D space  since  this  permits  analyses
of  how  neuronal  control  signals  relate  to  complex  movement  patterns.  To  this  end,  we have  developed
an  automated  system  that estimates  the  paw pose  using  an anatomical  paw  model  and  recorded  video
images  from  six  different  image  planes  in rats chronically  implanted  with  recording  electrodes  in neuronal
circuits  involved  in  selection  and  execution  of forelimb  movements.  The  kinematic  description  provided
by the  system  allowed  for  a decomposition  of  reaching  movements  into  a  subset  of  motor  components.
Interestingly,  firing  rates  of  individual  neurons  were  found  to be  modulated  in  relation  to the  actuation
of  these  motor  components  suggesting  that  sets  of motor  primitives  may  constitute  building  blocks  for
the encoding  of movement  commands  in  motor  circuits.  The  designed  system  will,  thus,  enable  a  more
detailed  analytical  approach  in neurophysiological  studies  of  motor  systems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The central nervous system fundamentally deals with the con-
trol of actions. Consequently behavioral studies have often been
a natural starting point for investigations aimed at understanding
its functions. For the same reason, the search for new therapies
for neurological and psychiatric diseases largely depend on animal
models designed to mimic  certain aspects of the disease that
cause observable changes in the behavior of the subject. With the
more recent development of techniques allowing for simultaneous
recording of neuronal activity in many parts of the central ner-
vous system in freely behaving animals, the electrophysiological
processes underlying such changes in behavior – or even the
generation of specific components of observed actions – have
the potential to be investigated in much greater detail (Nicolelis,
2008). The access to neuronal data with sub-millisecond temporal
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precision in turn further increases the need for more detailed
documentation of movement patterns displayed by freely behav-
ing animals. However, because natural behavior typically involves
chains of movement sequences incorporating many partially over-
lapping motor components, an extra challenge in this respect is to
reliably identify and isolate the execution of these individual motor
elements. The most common approach for behavioral recording
in neurophysiological research is probably the use of digital video
techniques, where image sequences are obtained from different
camera angles and specific behaviors are either manually identified
off-line (Cenci and Lundblad, 2007; Whishaw et al., 1999) or, when
clearly visible in any of the cameras, automatically identified and
quantified from this viewing angle (Peikon et al., 2009; Vorhees
et al., 1992). In situations where movements involve several joints
the problem of tracking motor components involving for example
small angle changes in distally located joints becomes increasingly
complex. A well-studied and functionally very important example
of movement sequences involving parallel movements in multiple
joints in humans is the skilled arm and hand movements involved
in reaching for and grasping of different objects (de Bruin et al.,
2008; Gentilucci et al., 1997; Jeannerod, 1984). Perhaps surpris-
ingly, rodents can after extensive training also perform reaching
and grasping movements using their forepaw in many ways similar

0165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2012.01.008
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to a human hand, hence making this behavior particularly well
suited for studies on skilled motor control in translational research
(Peterson, 1934; Sacrey et al., 2009).

To be able to track forelimb movements with high fidelity in
the skilled reaching task we designed a system that uses a three-
dimensional (3D) model of the paw for which movements are
reconstructed based on image sequences recorded from multiple
viewing angles. Each paw pose is estimated by an optimization
procedure that maximizes a matching quality measure in order to
retrieve the best approximation of that pose. The matching qual-
ity is measured as the discrepancy between projections of the 3D
model onto the image planes and the actual images, using edges and
silhouettes as cues. We  here describe how this system allows us to
correlate single unit activity of neurons in corticostriatal circuits
in rats to different motor components in the reaching-grasping
sequence, opening up for significantly more detailed analyses of
skilled movement control.

2. Materials and methods

2.1. Animals

One adult female Sprague–Dawley rat (230 g; Taconic Inc.) was
used in the study. The animal was kept on 12:12 h light cycle and
received food and water ad libitum except for a 22 h-period prior
to each testing session during which no food was provided. After
each testing session the animal had free access to food for 1 h. All
experiments were approved in advance by the Malmö/Lund ethical
committee of animal experiments.Training protocol

The rat was trained during a three week period prior to the
implantation of recording electrodes according to the protocol
described by Whishaw et al. (2008).  Training entailed habituation
of the rat to the apparatus, habituation to the food reward (pel-
let) and establishment of paw dominance. The training continued
until performance no longer improved between sessions, reflecting
a fully learned behavior (Hermer-Vazquez and Moshtagh, 2009).
See Appendix A for details.

2.3. Electrodes

Formvar-insulated 33 �m tungsten wires (CFW Inc.) were
arranged into four separate 4 × 5 arrays with 250 �m spacing
between adjacent wires. Each array consisted of 16 recording chan-
nels and two reference channels, as well as two  blind channels.
The wires of each array were cut to the appropriate length for
the corresponding recording site (cortical or striatal). Reference
wires were cut ∼1 mm shorter than the recording wires and de-
insulated ∼300 �m at the tip, positioning them dorsally to the
recording site (at the cortical surface and within the corpus cal-
losum, for cortical and striatal arrays, respectively). The wires were
attached to board-to-board-connectors (Kyocera 5602) with con-
ducting epoxy (Epotek EE 129-4), and linked to the acquisition
device via a board-to-Omnetics connector adapter (Kyocera 5602;
Omnetics). A 200 �m silver wire was used as animal ground via
direct connection to four screws inserted into the cranium.

2.4. Surgery

Implantations were performed under Fentalyl/Medetomidine
anesthesia (0.3/0.3 mg/kg, i.p.). Electrodes were implanted in the
forelimb area of the primary motor cortex (center coordinates:
AP: +1.5, ML:  ±2.8, DV: −1.0 from cortical surface, Donoghue and
Wise, 1982) and of the striatum, (center coordinates: AP: +0.2,
ML:  ±3.8, DV: −3.5 from cortical surface, West et al., 1990) in
both hemispheres. The implant was fixated with dental acrylic
attaching to screws in the skull. After surgery the anesthesia was

reversed by Atipamezole hydrochloride (5 mg/kg, i.p.). Buprenor-
phine (0.5 mg/kg, s.c.) was administered as postoperative analgesic.
The animal was  allowed to recover for a week after implantation
before testing commenced.

2.5. Experimental set-up

The testing apparatus for the reaching task consisted of a
450 mm × 140 mm × 350 mm (l/w/h) transparent Plexiglas cage
with a 13 mm wide aperture at the middle of one of the short sides
(vertical position of aperture: 40–150 mm above the ground). Out-
side the aperture a 30 mm deep shelf was  positioned. To facilitate
the placement of food pellets, three separate hemispherical inden-
tations (5 mm in diameter) were made in the shelf 15 mm from the
outer edge of the slit. The middle pocket was positioned right in
front of the aperture with the other two  pockets centered 6.5 mm
more lateral on each side. This configuration prevented the rat from
using its tongue to acquire the pellet. Furthermore, it permitted
the experimenter to decide which paw the rat had to use, as this
geometry allows only reaches with the paw contralateral to the side
pockets (for further details, see Whishaw and Pellis, 1990). At the
center of the cage was a 40 mm high solid obstacle that enforced
a forelimb stepping movement similar to the actual reaching and
grasping movement, for comparison of similar movements with
different purposes.

2.6. Reaching task

In the behavioral task the rat was  placed in the reaching
apparatus from where it could obtain 45 mg food pellet rewards,
positioned in the indentation on the reward shelf, via controlled
reaches through the aperture of the wall. A trial ended either if
the rat acquired the pellet after one or several reach attempts, or
if the pellet at any time was  moved from its original position, in
which case the food pellet was manually removed by the exper-
imenter. In order to produce discrete reaching trials, the rat was
trained to return to the end of the cage opposite to the reaching slit
before it was  presented with another food pellet, requiring the ani-
mal  to reposition before every trial. Moreover, by semi-randomly
withholding food the rat was prompted to identify the presence of
a pellet before each reach attempt, yielding maximal accuracy of
each skilled reach (Appendix A).

2.7. Acquisition of neurophysiological signals

Extracellular neuronal recordings were acquired using a multi-
channel recording system with Cheetah software (Neuralynx Inc.)
and digitized at 32 kHz per channel. Local field potentials were
bandpass filtered between 0.1 and 300 Hz (not used in this study)
and action potential waveforms between 600 and 9000 Hz.

2.8. Video acquisition systems

The details of the paw movement during the reach and
grasp behavior were captured by two  front-view cameras (CMOS,
640 × 480 pixels; Dalsa Inc.) positioned close to the aperture. Addi-
tionally, three mirrors positioned along the edges of the reward
shelf gave two  extra viewing planes for each front-view camera.
Thus, the front-view cameras and mirrors were mounted such that
six complementary viewing planes covered the region of interest
where the rat forelimb was  moving. Extra care was taken to avoid
uneven light conditions or reflexes from surfaces. To ensure that
inadvertent variations in the camera positions would not influ-
ence the 3D reconstruction a calibration procedure with an object
of known measures was performed at the start of each recording.
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This allowed for off-line determination of the mathematical func-
tion that best described the projections of 3D objects onto the image
planes. The apparatus also included one side camera recording the
movements of the rat within the box (Stingray, 640 × 480 pixels;
Allied Vision Technologies).

The two front-view cameras were triggered by an external pulse
generator (Master 8, A.M.P.I) acquiring images at 200 Hz during
a time period manually controlled by a switch during the ongo-
ing experiment, while the side-view camera continuously acquired
images at 50 Hz. A set of images acquired from this set of cameras
at the same moment in time is in the following referred to as a
multiframe. In order to ensure perfect temporal alignment between
the acquired images and the neuronal recordings, the timestamp
for each multiframe was also stored in the Neuralynx multichan-
nel recording system. Uncompressed image data was sampled
from the three cameras on three separate computers, using Com-
mon  Vision Blox software (Stemmer Imaging, Gmbh) and FireView
(Allied Vision Technologies), for the front-view and side-view cam-
eras, respectively. Post-acquisition compression of stored data was
made for reduction of data size using standard DivX-codecs.

2.9. Software implementation

The analysis software was implemented using an object-
oriented approach in Matlab (MathWorks) along with mex-
functions (C code compiled in Matlab) that handled a few frequently
used low-level functions [the program can be obtained from the
authors on request]. For derivation of equations used in projective
geometry see Appendix B.

2.10. Paw model

The rat paw was modeled as a set of 13 elements of which one
element represents the palm of the paw and the other 12 repre-
sent the phalanges (three for each of the four long digits – the most
radial digit, corresponding to the human thumb, was not included
in the model due to its particularly reduced size in rodents). Each
element was described as an ellipsoid joined to the adjacent ele-
ments at defined points, corresponding to anatomical bones and
joints. The size and position of the paw elements was  manually
adjusted to fit a high resolution 3D-image of the paw. To allow
for individual differences in paw size, overall scaling of the model
paw was performed for each animal (system robustness to choice
of parameter values are presented in Appendix C). A few logical
constraints based on physiological limitations were introduced to
narrow down searches for possible paw poses. For example, the
most distal phalanx of the paw is especially small which makes the
tracking of movements in the third (distal interphalangeal; DIP)
joint of the digit less reliable. This joint was therefore assumed to
have a flexion/extension parameter determined by the physiologi-
cal influence of the second (proximal interphalangeal; PIP) joint; in
detail, the DIP-joint was set to have the same angle as the PIP-joint,
with a flexion limit of 60 degrees, measured from its fully extended
state (Landsmeer, 1963).

After decreasing the degrees of freedom, the included parame-
ters were the following:

(i) Three parameters for wrist position in space
(ii) Three parameters for wrist movements

(iii) One parameter for opposition of the palm due to movement of
the metacarpal bones

(iv) One parameter for adduction/abduction for each digit
(v) Two parameters for flexion/extension of the first two  joints of

each digit (the metacarpophalangeal; MCP-joint, and the PIP-
joint).

These parameters add up to a total of 19 degrees of freedom
that together define the movements of the model paw. The most
likely paw pose in 3D space could then be estimated by adjusting
the orientation of the ellipsoid elements around their respective
movement axes and projecting the composite pose onto calculated
image planes corresponding to the camera and mirror positions
(Fig. 1).

2.11. Paw pose estimation

For each multiframe, an iterative optimization procedure was
employed to estimate the paw pose in terms of the parameter
set described in Section 2.10. In order to find the initial set of
parameters, we employed a database containing the parameter
sets corresponding to the most commonly encountered poses (see
Section 2.11.3). The search algorithm then generated a number of
hypothetical poses and chose the one that best matched the cap-
tured video in each iterative step. The following section describes
how matching quality was  measured and Section 2.11.2 how hypo-
thetical poses were generated in the search algorithm.

2.11.1. Matching quality
To measure the matching quality of a given pose with respect to

the video images we  used a combination of two matching quality
measures – first, the silhouette matching quality, measuring how
well the video image silhouette is explained by the given pose, and
second, the edge matching quality, measuring how well the video
image edges are explained by the pose (Oikonomidis et al., 2011).

Prior to each reaching session, an image of the static background
was captured. This image was  then used to detect foreground
objects by so called background subtraction. Pixels deviating sig-
nificantly from the background image are likely to belong to
foreground objects such as the forelimb, the food pellet or the
snout. Hence, pixels with a deviation over a predefined thresh-
old are classified as foreground. This information was stored in
a binary silhouette image S, where Sij = 1 means foreground and
Sij = 0 means background for the pixel at (i, j).

If we  then consider a given pose, defined by the values for all the
19 parameters denoted in Section 2.10, and project the 3D model
of the pose onto a given image plane, we  obtain a predicted silhou-
ette image Ŝ. If the model parameters are correct, matrices S and Ŝ
should be similar. To quantify this we  used the Jaccard index, being
the number of pixels that are equal to 1 in both of the matrices S
and Ŝ, divided by the number of pixels equal to 1 in at least one
of the matrices S or Ŝ. Thus, the silhouette matching quality was
defined as

qS =
∑

i,jSijŜij∑
i,jSij‖Ŝij

(1)

where || is the logical OR-operator.
To measure the edge matching quality, an edge image E was

computed from S in the following way. First, the 8-neighborhood
(horizontal, vertical and diagonal) of each foreground pixel is ana-
lyzed. If at least one of the pixels in the neighborhood is background,
the pixel is considered to be an edge pixel. The edge orientation
in that point is approximated as the mean angle from the center
pixel to all background pixels in the neighborhood. Depending on
this angle, the corresponding element in the edge image E is set to
either −1 (for angles from 0 to �) or +1 (for angles from � to 0).
If there are no background pixels in the neighborhood the corre-
sponding element is set to 0. Finally, the measured edge image E is
filtered with a Gaussian filter to increase robustness.
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Fig. 1. Computational principle for estimation of paw poses. The pose of a 3D forepaw model is inferred by fitting of the calculated 2D projections onto the different image
planes.  An estimated 3D paw pose and two of the six image planes (�above and �side) are shown. Colored silhouettes outlined on the video images denote the calculated
projections.

Analogously, a predicted edge image Ê was constructed from Ŝ,
but without the Gaussian filtering. Edge matching quality was  then
defined as:

qE =

√
max

{
0,
∑

i,jEijÊij

}
∑

i,j|Êij|
(2)

Both qS and qE yield values between 0 and 1, where 1 corre-
sponds to a perfect match. The combined matching quality for each
view was then obtained as

q = qSqE (3)

Finally, the total matching quality was defined as the average of
the combined matching quality over all viewing planes.

2.11.2. Generating hypotheses
The 19 parameters describing paw poses were divided into

five subsets which were processed consecutively, as an exhaus-
tive search over all combinations of the 19 parameters would be
computationally unfeasible. At each step of the search algorithm,
optimization was performed over one of these subsets. To illustrate
how this optimization is carried out we here consider two  of the
subsets. The others follow the same principles.

2.11.2.1. Search algorithm I – flexion/extension optimization. The
algorithm searches for the best combination of flexion/extension
parameter values for a pose with their current values as the starting
point.

1. Create n1 hypotheses for the flexion at the first joint (MCP) of
digit 2 in an interval centered at the current flexion value.

2. Similarly, create n2 hypotheses for the second joint (PIP).
3. For each of the n1n2 pairs of hypotheses, compute the frac-

tion of the major axes of the three ellipsoids that overlaps with
areas classified as foreground when projected onto all the differ-
ent camera image planes. If below some threshold, discard the
hypothesis.

4. For the remaining hypotheses, generate silhouette and edge
images for digit 2 from the 3D model and evaluate how much of

the silhouette and edges that correspond to the observed coun-
terparts. Keep the m best hypotheses.

5. Repeat steps 1–4 for digits 3, 4, and 5.
6. For all m4 combinations of flexion parameters, evaluate the total

matching quality and assume the best combination as the result
of optimization.

2.11.2.2. Search algorithm II – wrist position optimization. The algo-
rithm searches for the best position of the wrist with the current
position as the starting point.

1. Sample n values for each of the three spatial dimensions in
intervals centered on current position values. The possible com-
binations of these values lead to n3 hypothetical poses.

2. For each of the n3 hypothetical poses, compute the fraction of
the major axes of the ellipsoids of the digits that overlaps with
areas classified as foreground when projected onto all the differ-
ent camera image planes. If below some threshold, discard the
hypothesis.

3. For all remaining hypotheses, evaluate the total matching quality
and assume the best combination as the result of the optimiza-
tion.

Optimization was iterated over the five subspaces until no fur-
ther improvement of matching quality was  found for any of the
different search spaces. Control experiment confirmed that differ-
ences in matching quality of final pose estimates depending on the
specific search order used were small (Appendix C).

2.11.3. Pose estimation initialization
The database employed to initialize the optimization procedure

for paw pose estimation contained the parameter sets correspond-
ing to the most commonly encountered paw poses. In addition,
poses that had previously proven difficult to estimate were also
included (such poses were identified by poor matching quality in
earlier tracking results and were semi-automatically re-estimated
and manually verified to have high matching quality before being
added to the database). As a starting point, each search was  ini-
tialized through selection of a set of parameters from the database
based on the optimal parameter set found in the previous step. The
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entire database was used if no such parameter set existed. Heuris-
tic functions were employed to decrease the number of parameter
sets to a more limited number and the set with best matching
quality according to Eq. (3) was chosen for initialization. This pro-
cedure contributed to an increase in robustness and speed of the
subsequent search algorithms.

2.12. Analysis of single unit activity

Spiking activity in each channel of the extracellular recordings
was separated into single unit (SU) or multi unit (MU) activity
through manual spike feature based sorting techniques (Offline
Sorter, Plexon Inc.). To isolate action potentials from a single
unit, waveforms plotted in principal component feature space
(PC1–PC3) were required to form a cluster well separated from both
noise and other units. A refractory period of 1.6 ms  was  assumed
and was used as a control criterion for isolated SUs. SUs encoun-
tered in the same channel across days were assumed to be the same
if they had similar waveform and firing dynamics. The video track-
ing gave us an extensive parametrical description of the whole
reaching and grasping movement, allowing flexibility in how to
align and compare different reaching trials. We  chose to use the
time of maximal forelimb extension as our temporal reference since
that permitted us to include and compare also those attempts that
occurred after a failed first attempt. This was important for the
subsequent neurophysiological analysis, where a main goal was
to study how variations in the reaching and grasping movements
were reflected in neural activity, and these higher-order attempts
added substantial variation to our data set. Once the times of max-
imal extension were determined standardized firing rates were
estimated by convoluting the spike trains with a Gaussian kernel
(� = 30 ms,  step size = 10 ms,  “psth” function in the Chronux tool-
box, Mitra and Bokil, 2008) and normalizing them to the standard
deviation of the baseline (−1500 ms  to −500 ms). Paired, two-sided
Wilcoxon signed rank tests were used to test for significant devia-
tions from baseline activity (p < 0.05, “signrank”  function in Matlab
2010b).

3. Results

3.1. Acquisition of experimental data

Behavioral and neuronal data were acquired in eight sessions
on different days, where each session continued as long as the rat
showed interest for the task. Each of the eight sessions contained on
average 52 ± 37 (mean ± SD) reaching trials, which in unsuccessful
trials often included several additional reach attempts.

3.2. Reliability of pose estimation

It was initially confirmed through visual inspection of a large
number of reaching sequences that the calculated paw poses cor-
responded very well to the subjective estimates of the poses as
judged by the good fitting of the pose projection onto the video
images from the different cameras. A typical image sequence from
two camera views and the projection of the calculated pose of
the 3D model onto the corresponding image planes are shown in
Fig. 2A. Obtaining a more quantitative measure of tracking per-
formance is however a more challenging task since it essentially
requires ground truth information on the exact paw pose; that is,
direct measurements on the physical paw (Erol et al., 2007; Ho
et al., 2011) which is not possible in freely moving animals. We
therefore instead evaluated the performance of the system quan-
titatively using a paraformaldehyde fixated rat forepaw with static
joint angles that was manually positioned in many different spatial
locations typical of normal reaching movements in the set-up. The

‘true’ joint angles of the fixated paw were determined in a sepa-
rate procedure from a large number of photos taken from different
angles that were used to create a visual hull of the paw surface to
which the 3D model could be manually fitted with high precision
(Fig. 2B and C).

The joint angles of the pose estimates generated by the system
for the fixated paw (one for each paw positioning) was shown to
deviate on average only 2.4 ± 2.4% of the full movement range for
each joint compared to the reference pose obtained by manual fit-
ting of the 3D model to the visual hull (in Cartesian coordinates
this error corresponds to a spatial shift of the joint positions of
0.29 ± 0.22 mm [being in the same range as the camera resolution
for an individual image plane: ∼5 pixels/mm]). In the histogram
in Fig. 2D, the mean error of all the estimated poses compared to
the reference pose are summarized and an example of a relatively
poor estimate (worse than 95% of the estimates) is shown to illus-
trate the degree of resemblance in this situation (Fig. 2E). Thus, it
appeared that at least in this simplified testing paradigm the sys-
tem provided accurate pose estimates for all the positions tested.
It was also confirmed that the matching scores generated by the
quality function used to assess the goodness of pose fitting (Sec-
tion 2.11.1)  had a strong inverse correlation with the calculated
distance from the reference pose [Pearson’s correlation coefficient:
� = −0.85, p � 0.001].

Furthermore, computer simulations were employed to evalu-
ate the robustness of the search algorithm to variations of free
parameter values (such as foreground/background thresholds or
size scaling of the model paw) and sensitivity to input noise
(for example light reflections or variations in illumination). Such
noise will typically result in segmentation errors. In the simula-
tions performed the system overall displayed a stable performance
in situations resembling actual recording conditions and using
parameter values within the normally used range. Outside a given
interval, system performance would then gradually deteriorate.
These data are summarized in Appendix C.

3.3. Identification of motor components

In most types of natural behavior several, partially over-
lapping, movement components are combined into compound
motor actions. In previous studies using manual classification
of movements, a limited number of heuristically defined motor
components have been proposed to make up the reaching and
grasping movements of rats performing this task (Gholamrezaei
and Whishaw, 2009; Whishaw and Pellis, 1990). As a starting point
for identification of motor components we therefore divided a
subset of recorded reaching trials into movement sequences incor-
porating four of the previously suggested phases: (1) Advancement,
(2) Arpeggio, (3) Grasping and (4) Retraction.  Due to variations in
reaching speed, the number of multiframes in each phase often
varied slightly between different trials. However, the start and end
points of each phase were generally easily identifiable. For all the
19 degrees of freedom, the parameter values obtained from the
multiframe corresponding to the start point of each phase were
subtracted from that corresponding to the end point. Averaging
these parameter differences thus generated four 19-dimensional
movement vectors representing the joint movements of each
phase. By considering Retraction as backward Advancement, the
Retraction vector could be replaced by the negative Advancement
vector. The remaining three vectors were subsequently used as base
vectors of the motor components, spanning a 3D motor compo-
nent space. To eliminate tracking noise and to further separate the
different motor components, any non-zero vector element corre-
sponding to movement in a joint that was judged not to be part
of a given motor component was  set to zero – for example wrist
movements were not considered to be part of grasping. Examples
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Fig. 2. Tracking of skilled reaching movement sequences. (A) The tracking of the paw in a typical reaching and grasping movement for two of the six viewing planes. The
silhouette outline of the estimated paw pose is superimposed on the images for illustration of tracking performance (colored dots/lines indicate joints/bones of the model).
(B)  Visual hull of the fixated paw shown from four different viewing angles. (C) Reference pose obtained by manual fitting of the 3D model to the visual hull. (D) Histogram
of  differences in joint angles between estimates provided by the system and the manually fitted reference pose (errors are denoted in percentage of total movement range;
n  = 76 poses). (E) Example of a less accurate pose estimate provided by the system (mean angle error = ∼3.3%). Note that for 95% of the estimates the mean error is less than
3.3%  and that even for less accurate pose estimates great resemblances to the manually fitted reference pose (C) is evident.

of calculated motor components are shown in Fig. 3. Note that even
though each motor component was extracted from movements of a
certain part of the compound action sequence, they were often flex-
ibly combined with other motor components during the reaching
and grasping movement.

3.4. Reaching movements described in motor component space

By reducing the 19 degrees of freedom to this much smaller set
of motor components, each reach attempt could be relatively well
described as a trajectory in 3D motor component space. The reduc-
tion was achieved through a least-squares approximation of each
19-dimensional vector to a linear combination of the three base
vectors, which results in a unique point on the trajectory in the
3D motor component space. Interestingly, in spite of the reduced
dimensionality this compact 3D representation of the compound
movements proved sufficient to separate different reaching and
grasping patterns in most reaching trials. In fact, in many reach-
ing trials the three motor components were executed in close to
sequential order giving rise to line segments of movement trajec-
tories running almost parallel with the axes in 3D motor component
space. Ten individual reaching trials recorded during a single ses-
sion are shown in Fig. 4. Note that although no single trial is
identical to the others, trajectories from successful trials (green)
are spatially separated from failures (red) in this representation
(shadow images on the sides of the box denote one standard devi-
ation from the mean trajectory of each of the two groups).

Fig. 3. Decomposition of skilled reaching into motor components. Examples of
heuristically defined motor components of compound reaching and grasping move-
ments. The Advancement motor component (left) captures translation along the axis
ranging from the aperture of the box to the food pellet. Arpeggio (middle) captures
the pronation of the forelimb and adduction of the digits preceding grasping and
Grasp (right) is associated with changes in the angles of the joints of the paw and
digits.
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Fig. 4. Movement trajectories in motor component space. Example of reaching trials represented in motor component space. Five individual successful reaching trials (green)
are  shown together with five unsuccessful trials (red). Dots indicate the time points of paw pose estimations (5 ms  intervals) and colored shadows on box walls indicate one
SD  from the mean trajectory for each group. For ease of comparison, the plot only contains first reach attempts.

3.5. Modulation of neuronal firing correlated with actuation of
motor components

The neural recordings included single- and multiunit activ-
ity from the primary motor cortex and dorsolateral striatum. As
expected, several units displayed a wide range of different task
related firing rate modulations. This included phasic increase in
activity before, during or after the task, but also partial or total
suppression of activity during the task. Using a comparatively long
time window of −500 ms  to 200 ms  (relative to the time of max-
imal forelimb extension) when comparing firing rates to baseline
(−1500 ms  to −500 ms)  we found that the overall fraction of task
related SU neurons was 35% (29/83). The corresponding number
for MUs  was 13% (5/38). To search for neuronal modulation specif-
ically linked to the actuation of the identified motor components,
the reaching attempts were sorted with respect to the maximum
value of each component in each attempt and data were divided
into three equally sized groups (low/middle/high). That meant that
each reach attempt was assigned to either low, middle or high
three times (once for each component) so that a specific reach
attempt could be, for example, low in the advancement, middle in
the arpeggio and high in the grasp component. Group dependent
rate modulations were subsequently tested for by comparing dif-
ferences between the medians of the three groups (Kruskal–Wallis
test, 2 d.f.) in 10 ms  time steps (see Section 2.12 for details). Using
the distinction that a cell was considered significantly modulated
in relation to a given motor component if the null hypothesis that
the medians were identical could be rejected at the p = 0.05 level
in at least eight consecutive time steps, it was found that 11%,
13% and 10% of the SUs were significantly modulated in relation
to Advancement, Arpeggio and Grasp, respectively. For MUs  the
corresponding numbers were 21%, 5% and 21%. Examples of three
cells [SUs recorded in striatum (top/middle) and motor cortex (bot-
tom)] showing specific modulations in relation to actuation of the
three different motor components are presented in Fig. 5. Thus,
the system proved to allow for the correlation of neuronal record-
ings to kinematic data representing sub-components of compound

reaching movement thereby opening up for future studies on how
the central nervous system encodes motor commands.

4. Discussion

To perform detailed motion tracking of movements around mul-
tiple joints in freely moving animals using traditional semi-manual
movement tracking is a daunting task requiring many hours of
analyses by well-trained observers (Hermer-Vazquez et al., 2004;
Hyland and Jordan, 1997; Whishaw and Pellis, 1990). For some
motion tracking applications, fully automatic systems have been
developed to facilitate this procedure, typically by the use of reflec-
tive markers on concerned body parts (Peikon et al., 2009; Zakotnik
et al., 2004). However, in the case of hand pose estimation in
humans, improved motion tracking algorithms not requiring body
markers have been developed recently (Erol et al., 2007). To track
fine movements in subjects not suitable for tracking with mark-
ers such as freely behaving rodents, this latter solution is clearly
preferable. Consequently, a primary objective of the current study
was to develop a marker-less motion tracking system and evaluate
the system using reaching and grasping movements performed by
rats. A further requirement was  that the system must provide kine-
matic data on forepaw movements in this behavioral task at a level
of detail that allow us to study minor differences between reaching
trials to correlate this variability to parallel neuronal recordings in
motor control circuits.

In the data presented here, it is shown that high-resolution
tracking of fine movements involving multiple joints can be per-
formed automatically by the system from recorded video sequences
of a rat grasping food pellets, with reliable outcome. Although the
accuracy of the pose estimates generated by the system could not be
directly evaluated in the real reaching situation the control exper-
iments on a fixated paw indicated that mean errors were typically
only a few tenths of a millimeter. This precision was judged to
be sufficient for the intended purposes and compares well to sys-
tems designed for human hand tracking (Oikonomidis et al., 2010;
Nirei et al., 1996). The system also proved to be relatively robust to
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Fig. 5. Neural correlation to motor components. Examples of neurons correlated to individual motor components. Reach attempts are sorted depending on the peak value
for  a motor component during the attempt, as shown in the left column. The top row is sorted for advance so that the shortest extensions are pooled into the blue group, the
intermediate extensions into the purple group and the longest into the red group. In the same manner, the middle row is sorted for arpeggio and the bottom row is sorted
for  grasp. The middle column show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time point of maximum paw extension
and  averaged over all attempts in each group. A green line indicates a significant difference in firing rates between any of the three groups (p < 0.05). The right column shows
the  autocorrelogram and waveform for each presented neuron.

addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may  prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal  interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was  deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be
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appropriate to have a comparable rate of acquisition of images for
the behavioral tracking. In the current set-up an image acquisition
rate of 200 Hz appears to meet basic criteria, but a higher acqui-
sition rate would likely remove some of the tracking noise since
consecutive poses would be more alike.

As previously pointed out, the reaching and grasping behavior
in rodents bears many similarities to the corresponding behavior
in primates and other larger animals indicating that this model
lends itself well to translational research, although the very rapid
execution of movements in small animals obviously constitutes
an extra challenge. This difference between primate and rodent
behavior must also be taken into account when analyzing neuronal
correlates of different movement components since the neuronal
activity related to specific sub-components of the movement as
well as the potential use of sensory feedback for corrections of
ongoing movements is more limited in the latter group (typi-
cal minimum latencies of tactile cortically evoked potentials in
rat/man are ∼10/20 ms  whereas typical reaching times in this task
are ∼250/500 ms,  see; Allison and Hume, 1981; Sacrey et al., 2009).
It is also worth pointing out that while rats primarily depend on
odor cues to locate the position of the food pellets humans rely on
visual guidance in a similar reaching task when the experimental
conditions allow for it (de Bruin et al., 2008; Whishaw and Tomie,
1989). However, in spite of the overall slower actuation of reaching
and grasping movements in humans, many of the individual motor
components involved are undoubtedly executed very rapidly – thus
the automated image analysis approach developed here may  also
open up for new studies of reaching in humans. The technique could
potentially provide a new tool for more detailed movement track-
ing both in the lab (for example in studies of motor learning and
control) and in the clinic – diagnosing diseases which affect the
motor system at an early time point, giving guidance in selection
of optimal treatment strategies (Doan et al., 2010; Jenkins et al.,
2010) or helping to assess the effectiveness of rehabilitation pro-
grams after for example trauma or ischemic events affecting motor
systems (Massie et al., 2009; McCrea et al., 2005).
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Appendix A. Training protocol

1. Every day for a few days prior to the experiments, the rats were
accustomed to the food reward after 20–24 h food deprivation.
After each training session the animal received free supply of
their regular food for 1 h.

2. The teaching of the reaching behavior began by making the rats
aware that there will be food placed on the shelf. This was  done
by placing multiple pellets on the shelf nearby the aperture for
the rats to reach for in any way they can.

3. The acquisition of food was subsequently made harder by mov-
ing the pellets further away from the opening slit, forcing the
rats to use their forepaws to reach for the pellets.

4. As the rats developed a preference of paw, only one pellet was
placed in the socket contralateral to their paw of choice to further
promote the use of this paw.

5. In the next training step the rat was  taught to move to the back
of the cage after each reaching trial, this was  achieved by sim-
ply not placing any food rewards on the shelf until the rat had
reached the opposite end of the cage. This was needed to prop-
erly separate different trials.

6. To verify that the displayed behavior was indeed goal directed
reaching for food; no food pellet was placed on the shelf at certain
occasions. If the rat made a reach attempt anyhow, no pellet was
placed on the shelf the consecutive trial either, thereby forcing
the rat to identify the presence of food before attempting to reach
for it.

Appendix B. Projective geometry

B.1. The camera model

A camera matrix describes the transformation of 3D points to
2D points in a pinhole camera: X → PX , where P is a 3 × 4 camera

matrix and X =
[

X Y Z 1
]T

a 3D point represented in homoge-
neous coordinates. This transformation is expressed in the camera
equation,

�x = PX, (B.1)

where x =
[

X Y 1
]T

is the 2D image point
[

x y
]T

represented
in homogeneous coordinates, and � > 0 is the depth, i.e., the dis-
tance from the 3D object point X to the image plane (Hartley and
Zisserman, 2000). The estimation of the camera matrix P is per-
formed using Direct Linear Transformation (DLT) (Abdel-Aziz and
Karara, 1971). Using an object whose 3D coordinates are known
and manually entering the image coordinates of some points of the
object gives the user a set of 3D coordinates and their corresponding
image coordinates which is used for DLT.

B.2. Quadric surfaces

A quadric surface is a surface in a 3D space defined by a second
order implicit equation,

XT QX = 0

where X =
[

X Y Z 1
]T

is a homogenous coordinate-vector
and Q a 4 × 4 symmetric matrix. Quadrics can be used to describe
a number of geometrical shapes, where the ellipsoid and the ellip-
tical paraboloid are the ones used in the present study. In detail,
each of the phalanges, the palm of the paw, the forearm, and the
food pellet are modeled as ellipsoids, while the snout is modeled as
an elliptical paraboloid. Through defining all geometrical shapes of
the tracked objects as quadrics, analytical solutions and efficient
implementations are possible for the majority of the employed
mathematical operations. For instance, the projection of an ellip-
soid onto an image plane as well as the silhouette outline of the
projection can be computed analytically, and the quadrics Q 0 and
Q 1 occupying the same space can be detected by analyzing the
eigenvalues of Q −1

0 Q 1. This is described further by (Stenger, 2001).

Appendix C. Robustness to choice of free parameter values
and measurement noise

C.1. Assessment of algorithm robustness to variation in free
parameter values

In the first stage of the algorithm the paw is separated from
the background based on the light intensity in individual pixels
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Table C.1
Robustness to light intensity thresholding.

Threshold value Accuracy mean error (%) Precision SD of errors (%)

0.10 2.33 0.76
0.20 2.40 1.25
0.30 2.05 0.70
0.40 2.01 0.61
0.50 2.27 0.85
0.60 2.49 0.94
0.70 2.44 0.97

(Section 2.11.1).  Proper foreground/background segmentation is
therefore sensitive to choice of threshold value. In (Table C.1) the
precision (SD of the distribution of pose estimate errors) and accu-
racy (mean pose estimate error) of pose estimates compared to the
fixated reference pose (Fig. 2D) are presented for a range of thresh-
old values (10–70% of dynamic range) showing a relatively stable
performance. The error in each joint angle is normalized to the
observed full range of motion for that joint angle and the average
value over all joint angles is presented.

Because the size of the image of the paw may  vary slightly
depending on interindividual differences or changes in the cam-
era set-up, the paw model is manually scaled to the video images
for each animal. In (Table C.2) the precision and accuracy of pose
estimates compared to the fixated reference pose are similarly pre-
sented for a range of scaling values (80–120% of actual value). Note
the comparatively stable performance for sizes deviating <20% from
original size.

As described in (Section 2.11.2)  the search algorithm was based
on an iterative process consecutively searching the five parameter
subspaces. Because methods based on stepwise local optimization
run the risk of entering local minima we evaluated to what extent
different search orders generated different final pose estimates. The
video sequence of a reaching trial containing 25 multiframes was
searched iteratively using ten different randomly chosen orderings
of the five subspaces. Comparing the variation in final pose esti-
mate accuracy for the different search orders showed that choice
of search order had a measurable but in practice negligible effect on
final pose estimate quality [SD was on average only ±0.13% of full
joint movement range (corresponding to ±0.01 mm)  which should
be compared to the mean accuracy of 2.94% (or 0.31 mm)  for this
data set].

C.2. Assessment of algorithm robustness to measurement noise

Measurement noise, such as fluctuations in illumination condi-
tions, focusing errors, light reflexes and shadows will ultimately
result in errors in paw segmentation (Section 2.11.1).  Hence,
to allow for a quantitative evaluation of the robustness of the
pose estimates to acquisition noise, computer simulations were
performed where errors in segmentation were introduced in a
controlled manner through addition of artificial noise to paw
images. Synthetic silhouette images were first generated from the

Table C.2
Robustness to paw size variation.

Scaling factor Accuracy mean error (%) Precision SD of errors (%)

0.80 2.83 0.91
0.85 2.51 0.87
0.90 2.28 0.67
0.95 2.34 0.67
1.00 2.44 1.18
1.05 2.29 0.75
1.10 2.52 1.03
1.15  2.35 1.03
1.20 2.85 1.77

Table C.3
Robustness to image distortion.

Noise level (%) Accuracy mean error (%) Precision SD of errors (%)

0–5 4.9 0.51
5–10 5.3  0.72

10–15  5.9 0.81
15–20  5.9 1.50
20–25 6.2 1.22
25–30 6.7 1.87
30–35 7.2 0.62
35–40  7.6 1.16
40–45 10.1  3.25

geometric paw model by projection onto the image planes and
segmentation errors were then modeled by distortion of these
silhouette images. To simulate segmentation errors a number of
foreground pixels were chosen at random and all foreground pix-
els at a distance varying from 5 to 10 pixels from these points
were labeled as background. Similarly, areas around a number of
randomly chosen background pixels were changed to foreground
pixels. The effect on pose estimation quality as a function of degree
of distortion of the self-generated images is shown in Table C.3.
The segmentation error is expressed as the number of erroneously
labeled pixels divided by the number of foreground pixels in the
original image. The error in each pose parameter is normalized
to the observed full range of motion for that parameter and the
average value over all parameters is presented.
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Abstract: We present a method for analyzing locomotive behavior of marmo-
sets in two experimental setups used for the analysis of severity of symptoms in
a primate model of Parkinson’s disease. A characterization of changes in motor
behavior following experimental manipulations based on automatic tracking pro-
cedures is here presented.

1 Introduction

To be able to develop new therapies for the treatment of Parkinson’s disease (PD)
researchers critically depend on valid animal models of the disease that allows for
repeated testing of motor disabilities over extended time periods. Motor symp-
toms in PD typically involve rigidity, tremor and an overall reduction and slowing
of movements. However, because of the technical challenges involved in tracking
detailed motor behavior in freely moving animals the sensitivity and robustness of
the assessment methods used in characterization of motor deficits often turn out
to be a key limiting factor in this field of research. To this aim we have developed
methods for tracking of freely moving animals and present a first characterization
of a range of motor symptoms tested over several months in a primate model of
PD-marmoset monkeys (Callithrix Jacchus) that have been exposed to the neuro-
toxin 6-OHDA causing lesions to dopaminergic cell groups in the midbrain. To
validate the developed methods, scores obtained by automatic methods have also
been verified using manual scoring protocols based on the rating scales applied by
neurologists to evaluate severity of symptoms in PD patients that were here adap-
ted to suit the motor behavior of marmoset monkeys (that is so called UPDRS
scores). Importantly, through the use of automated quantitative motion tracking
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procedures we are now able to assess the severity of motor deficits in different
testing set-ups of spontaneous motor behavior in freely moving animals. In addi-
tion, the new screening methods will allow us to investigate more subtle deficits
that until now have been hard to evaluate, such as the gradual slowing of certain
movements or a reduced ability to combine a sequence of motor components into
compound actions.

A B C D E
F

G

H

I

Figure III.1: Video data in grayscale from the tower experiment (A-B). Tracking data
for two images (yellow) and tower calibration (red and black) drawn on video data
(C-D). Movement trace for the whole experiment drawn on the background image
(E). Tracking data (yellow) and box calibration (red and black) drawn on video data
for the two tower cameras (F-G). Movement trace for the whole experiment drawn
on the background images for the two cameras (H-I).

Analyses of the first set of experiments suggest that: first, the current met-
hodological approach indeed seems to generate reliable tracking data from freely
moving primates suitable for long-term analysis of motor behavior. Second, ro-
bust motor symptoms lasting for several months could be induced when using a
two-stage neurotoxic lesioning procedure involving one hemisphere of the brain
at a time, indicating that this non-human primate model of PD may be well suited
for long-term evaluation of novel therapies for treatment of PD.

Here we present the methods developed for tracking of spontaneous motor
behavior and outline ongoing and future work aimed at obtaining more detailed
and reliable characterizations of the kinematics of compound motor acts.
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Figure III.2: Characterization of motor behavior in a hemi-parkinsonian animal. Ba-
seline experiments (A,C) and after pharmacological blockade of dopamine synthesis
(B,D). In (A,B), the tracked y-coordinate is presented for the tower experiment. In
(C,D) the rotation (given in radians) of the subject is plotted over time. Notice that
the dopamine depletion affects how high the animal reaches in the tower and how
many jumps it makes. In the box experiment the animal turns both left and right in
the baseline recording, but after treatment it does not rotate as much and only to the
left.

2 Methods

The experiments in this study are comprised of two different experimental setups
to be able to observe a range of different behaviors and impairments.

The first setup, the tower experiment (Fig. III.1A-E), is designed to capture
the natural locomotive behavior of the common marmoset, including jumps. The
setup is a 2.3 meter high tower with 7 bars (levels) that are further separated at
the top of the tower. Experiments are filmed by a 640x480 pixel color camera
generating video as in Fig. III.1A-E.

The second setup, the box experiment (Fig. III.1F-I), is designed to capture
gross aspects of forelimb reaching movements, horizontal locomotion and rota-
tional behavior (which is sometimes seen in lesioned animals). The setup is a
transparent box with dimensions 45x45x45 cm. One of the walls has four shelves
attached to it, where food rewards can be placed (Fig. III.1F, H). This allows for
detailed studies of how test subjects reach out and grasp food objects when retrie-
ving the rewards (for details see [3]). The experiments are filmed by two cameras:
one placed above the box, filming straight down (top view) and one filming head
on the shelves (front view).

UPDRS scores include 16 different aspects of motor behavior that are each
scored from 0 (normal) to 3 (severely parkinsonian). Summed scores are presented
in this paper giving a total scale ranging from zero to 84.
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2.1 Extraction of kinematic parameters

Motion tracking in the two setups was performed using similar methods. Con-
stant light conditions during each recording sessions as well as a high contrast
between the subjects and the background eliminated the need for advanced back-
ground models. Hence, a simplified mixture of Gaussians model [4] was em-
ployed with two components. That is, each pixel is modeled to belong to either
one of two Gaussian distributions. After an initiation procedure, the background
is estimated by randomly selecting a number of frames, and then for each pixel in
each of the frames decide which component it most likely belongs to. The expec-
tation value of the most probable component is updated using that pixel value.
Consequently, an estimate of the video without the subject is contained in the
brighter pixels, as the animals in this set of experiments were always darker than
the experimental setup. Thus, a binary foreground image can be estimated for
each frame in the video by, for each pixel checking whether it is likely to belong
to the background component or not. The binary foreground images are used in
the shape analysis.

By assuming that the two-dimensional image of the monkey in each camera
plane is approximately elliptically shaped, the position and orientation of the ani-
mal can be estimated from the position and orientation of the ellipse that best fits
the binary foreground images. Given a binary foreground image F and a hypot-
hetical foreground image M, generated by an ellipse (x, y, θ), matching quality is
defined as the Jaccard index

q = |M∩F |
|M∪F | .

The definition means that the quality measure is given by the number of
pixels with coinciding foreground classifications divided by the total number of
pixels classified as foreground. Notice that the foreground image M is not actually
computed, but instead the quality measure is computed using the conic matrix for
the ellipse.

Movement tracking in time is then carried out by using the last known loca-
tion to initiate estimation for a given frame, followed by step-wise improvement
of the matching quality by gradual adjustment of the parameters of the estimated
ellipse. In practice, a set of hypothetical ellipses are generated randomly, and the
matching quality is computed for each of them. The ellipse yielding the highest
matching quality is chosen as the result of estimation. Due to the sometimes
relatively high movement speed of the marmoset, the empirically set values for
maximum change in position is 50 pixels in any direction and change in rotation
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is 45 degrees. These calculations are performed for every frame in the video, re-
sulting in the vectors (x, y, θ, q), each of length N, where N is the number of
frames in the video and q is the quality measure given above.

Software tools were is developed in MATLAB and includes a few mex imple-
mentations (MATLAB compiled c-code).
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Figure III.3: Evidence of bradykinesia (slowing of movements) in spontaneous motor
behavior was observed in two bilaterally lesioned animals. Data was provided by the
automatic tracking in the box testing set-up. A threshold (20 cm/s) was used to
classify movement bouts into two groups; fast and slow. The group-size quota was
modeled as a binary distribution, and a two-proportion z-test of the data showed that
there is a 0.001% significant similarity between the distributions for test subject A,
and 12% significance in subject B. The number of recording sessions pooled for each
animal and condition is denoted over each panel. In the rightmost panels the mean
± SD of UPDRS scores after lesioning are inserted (as assessed during the same days
as the box tests were performed). Note that even though these two animals were only
moderately parkinsonian a slowing of movements could still be detected.

3 Results

In the first experiment, a hemi-parkinsonian animal was experimentally dopamine
depleted through pharmacological blockade of dopamine synthesis. As expected,
the subjects movements are greatly impaired by the drug (Fig. III.2). Firstly, it
is unable to reach higher than the second level and secondly, it does not make
as many jumps as in the baseline experiment. Two animals with bilateral lesions
were then tested in the box experiment over a prolonged period involving multiple
recording sessions over many months. In these subjects, a slowing of movements
(bradykinesia) could be detected even in moderately parkinsonian animals (Fig.
III.3). It should be noted that moderate bradykinesia is particularly challenging to
detect using manual qualitative scoring procedures. In the two animals analyzed
bradykinesia was however still correlated to the total UPDRS score.
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3.1 Tracking evaluation
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Figure III.4: A comparison of tracking data to ground truth for 100 random frames.

To estimate how well the system performs, ground truth-ellipses were manu-
ally entered for 100 random frames. For each of the frames, tracking data was
compared to ground truth using the Jaccard index on the corresponding ellipses.
The results are presented in figure III.4. Furthermore, a subjective evaluation of
tracking quality was done by scoring tracking quality as 1 (good), 0.5 (decent), 0
(bad), for each of the 100 frames. The resulting total score out of the 100 frames
was 85.

4 Future work

The system works well enough in practice, although more advanced techniques
could be applied, for example condensation [1], Kalman filters, etc. Furthermore,
modelling the subjects as ellipses has proved to be a source for errors in certain
poses of the subjects.

Along with each experiment there is also a Unified Parkinson’s Disease Rating
Scale (UPDRS) score, which allows for further analysis. The primary goal is
not to replace the UPDRS score, but rather to create a method to complement
it (indeed, UPDRS assessment gives some data that cannot be measured by our
video system - for example presence of tremors). In future work the strengths and
weaknesses of the two assessment methods will be further evaluated.
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• Motor  behavior  was  quantified  through  mathematical  image  analysis  techniques.
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a  b  s  t  r  a  c  t

Research  aimed  at developing  new  therapies  for  Parkinson’s  disease  (PD)  critically  depend  on valid  animal
models  of  the  disease  that  allows  for  repeated  testing  of motor  disabilities  over  extended  time  periods.  We
here present  an  extensive  characterization  of  a wide  range  of motor  symptoms  in  the  6-OHDA  marmoset
model  of PD  when  tested  over  several  months.  The  severity  of  motor  deficits  was  quantified  in  two ways:
(i)  through  manual  scoring  protocols  appropriately  adapted  to  include  species  specific  motor  behavior
and  (ii)  using  automated  quantitative  motion  tracking  based  on  image  processing  of  the digital  video
recordings.  We  show  that  the  automated  methods  allow  for  rapid  and reliable  characterization  of  motor
dysfunctions,  thus  complementing  the manual  scoring  procedures,  and  that  robust  motor  symptoms
lasting  for several  months  could  be  induced  when  using  a two-stage  neurotoxic  lesioning  procedure
involving  one  hemisphere  at a time.  This  non-human  primate  model  of  PD  should  therefore  be well
suited  for long-term  evaluation  of novel  therapies  for  treatment  of PD.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

When investigating new therapeutic approaches for PD,
researchers crucially depend on valid animal models of the disease
and reliable methods to assess the symptoms displayed. Although
several different animal models of PD exist, the preferred choices by
many labs today are the 6-hydroxydopamine (6-OHDA) lesioned rat
or the MPTP-lesioned non-human primate [1,2], since these models
have proven to capture several important features of the disease.

∗ Corresponding author at: Medicon Village, Building 404 A2 Scheelevägen 8 223
81  Lund, Sweden. Tel.: +46 46 222 05 78; fax: +46462756011.

E-mail address: Per.Petersson@med.lu.se (P. Petersson).

However, MPTP is a severe safety hazard to the personnel handling
the animals and strict procedures and appropriate laboratory safety
equipment are an absolute requirement [3]. Consequently, there
have also been a number of studies aimed at developing a primate
model of PD based on intracerebral 6-OHDA lesions which would
minimize the risk of inadvertent toxic exposure for researchers and
animal care taking personnel that is associated with systemic MPTP
treatment [4–7]. In parallel with the ongoing efforts to improve the
reliability and validity of PD animal models, more sophisticated and
diverse methods to assess severity of PD symptoms in animals has
also been a key objective in the methodological development for
several labs [8,9]. Given that the relevance of preclinical research
ultimately is dictated not only by the validity of the model, but
also to a great extent by the reliability and sensitivity of the testing

http://dx.doi.org/10.1016/j.bbr.2015.04.037
0166-4328/© 2015 Elsevier B.V. All rights reserved.
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Fig. 1. Description of experimental procedures. (A) Timeline of experimental procedures. The two-stage 6-OHDA bilateral lesion procedure allowed for repetitive assessment
of  motor symptoms at gradually more severe stages of Parkinsonism over extended time periods. (B) Spontaneous locomotion was  evaluated in two testing chambers designed
to  capture different types of locomotive behavior, including both horizontal and vertical locomotion in both set-ups. Left: Tower – two examples of typical movement bouts
between bars locates at different heights are illustrated, blue lines denote the tracked movement traces and the red ellipses the position of the thorax as estimated by the
image  system. 3D image shows the total amount of locomotion displayed during a typical 5 min  recording period in a healthy individual (Time represented in color code
ranging from dark blue (t = 0) to red (t = 5 min), Right: Box - side and top view, respectively (color codes as in Tower).

methods used, this work aims towards further improvement of the
procedures used to assess symptoms in animal models of PD. In
particular, when evaluating new potential therapies, for example,
neuromodulatory approaches like deep brain stimulation [10,11],
or spinal cord stimulation [12,13], robust testing procedures are
needed to allow researchers to repetitively assess the severity of the
symptoms displayed over long time periods in response to changes
in therapeutic interventions.

To this end, we have here developed new methods for behav-
ioral assessment of PD symptoms in the 6-OHDA lesioned common
marmoset (Callithrix jacchus). These procedures include manual
scoring of PD symptoms according to an adapted PD motor rat-
ing scale, and automated movement tracking procedures based on
digital video recordings. Using these methods, a thorough charac-
terization of changes in motor behavior in nine 6-OHDA lesioned
marmoset monkeys were conducted over a time period of several
months. By testing the animals in four different symptomatic stages
in a step-wise lesioning procedure, different levels of motor symp-
tom severity could be characterized. The stages evaluated were:
(1) intact state prior to lesion; (2) after unilateral lesion; (3) after
bilateral lesion; and (4) after bilateral lesion plus treatment with
the dopamine synthesis blocker alpha-methyl-p-tyrosine (AMPT).
The order of successive lesions and testing procedures is shown in
Fig. 1A.

2. Material and methods

2.1. Animals and housing conditions

Nine adult male common marmosets (Callithrix jacchus)
300–550 g were used in the study. The animals were housed in pairs
in cages (1.0 × 1.0 × 2.3 m3) in a vivarium with natural light cycle
(∼12/12 h). Each cage has cover for rain and direct sun light, and the
vivarium has a mobile roof that can be opened or closed according
to weather changes such as heavy rain. Common marmosets are
endemic to Northeast Brazil where the vivarium is located; thus
ensuring suitable temperature, humidity and light conditions. To
enrich the housing environment, cages are supplemented with ele-
ments such as sticks, tubes, ropes and ladders. Each cage has a small
wooden box used as nest for protection and sleeping. Animals are
offered two  meals a day consisting of primate chow, local fruits,
vegetables, mealworm larvae, gum arabic, dairy products, grains,
eggs, and meat under the supervision of a veterinarian.

All animal procedures were carried out according to approved
protocols by AASDAP Ethics Committee and strictly in accordance
with the National Institute of Health Guide for the Care and Use of
Laboratory Animals (NIH Publications No. 80–23). This project was
approved by SISBIO/Brazilian Institute of Environment and Natural
Resources (IBAMA) (No. 20795-2).
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2.2. Procedure for 6-OHDA injections

The animals were initially sedated with ketamine (10–20 mg/kg,
i.m.) and atropine (0.05 mg/kg i.m.) followed by deep anesthesia
with isoflurane inhaled though a nose cone, to be finally intubated
with an endotracheal tube and ventilated with artificial ventilator
to be maintained with isoflurane 1–5% in oxygen at 1–1.5 L/min
during the surgery. One mL  of 6-OHDA hydrochloride (4 mg/mL
dissolved in 0.05% ascorbate/saline solution) was freshly prepared
and stored protected from light on ice before use. Five injections
(2 �L each) were made with a 32 gauge Hamilton syringe at 0.5 �L
per minute into the medial forebrain bundle (MFB) in the fol-
lowing locations (Anteroposterior/Mediolateral/Dorsoventral from
the interaural midpoint): 6.5/1.2/6.0; 6.5/1.2/7.0; 6.5/2.2/6.5;
6.5/2.2/7.5; 6.5/3.2/8.0, which corresponds to a slightly modified
version of the protocol used by Annett et al., 1992 [5]. Anteropos-
terior coordinates were corrected according to the dimensions of
the skull of each animal based on the anatomy atlas by Stephan
et al., 1980 [14]. After each infusion, the needle was  left in place
for another 3 min  to allow the spread of the solution through the
cerebral tissue at the exact area of interest.

During the 3–5 days following the surgery, the animals
received non-steroid anti-inflammatory analgesic, flunixin meglu-
mine (1 mg/kg, s.c.) and dexamethasone (0.5–1 mg/kg, i.m.), and a
supplementary high-energy liquid diet. After at least eight weeks,
the same procedures were repeated to cause a second 6-OHDA
lesion in the other hemisphere, as previously described by Mitchell
et al., 1995 [4]. The second 6-OHDA lesion was made in the con-
tralateral hemisphere to the preferred limb.

2.3. Pharmacological dopamine depletion

Nine hours prior to behavioral testing the animals received a first
injection of alpha-methyl-para-tyrosine (AMPT; 240 mg/kg, s.c. dis-
solved in physiological saline). This injection was repeated three
hours later, resulting in a total administered dose of 480 mg/kg.

2.4. Adaptation to box and tower behavioral testing set-ups

Animals were accustomed to the behavioral testing procedures
in a step-wise manner. First, while in their home cage, three times
a week for two weeks, the animals were habituated to the food
rewards used: 2 × 5 × 10 mm3 (∼60 mg)  marshmallow pieces or
mealworm (Tenebrio molitor) depending on the preference of each
marmoset. Second, animals were accustomed to the transporta-
tion box (animals were allowed to explore the transportation box
containing food baits while being free to return to their home
cage at any time). Once showing interest in the transportation box,
the animals were accustomed to a sound signaling entrance and
another sound signaling exit from the transportation box. Animals
were then trained to exit from the transportation box and explore
the two different behavioral testing set-ups used in the study–a
transparent cubic acrylic box (0.45 × 0.45 × 0.45 m3) and a vertical
tower (width × depth × height: 0.36 × 0.37 × 2.20 m3) with seven
horizontal bars located at different distances above ground (0.1, 0.2,
0.4, 0.6, 0.9, 1.25, and 1.75 m;  Fig. 1B) [15]. In this training, pieces
of marshmallows were placed on the floor of the box or on the bars
in the tower testing set-up to encourage the animal to explore the
environment. A disposable white sheet of ethylene-vinyl acetate
foam covered the floor to preventing the animal from slipping. This
training scheme was performed twice a week for two weeks (in a
parallel study animals were trained to reach and grasp food rewards
through holes in one of the walls - this behavior was  not evaluated
in the current study and the shelves were not baited). All the proce-
dures were performed either between 10:30 and 12:00 or between
14:00 and 15:30, corresponding to the natural peak of motor

activity (cf. Fig. 3C). The food rewards obtained during training of
the task replaced the juice portion that the animals would normally
receive in their home cages.

2.5. Automated assessment of motor activity in home cage

Spontaneous motor activity of two animals were collected using
actimeters (Actiwatch Mini, CamNtech) worn in custom made vests
inside theirs home cage. The actimeters collected data every two
seconds for three consecutive days (72 h) during the baseline, uni-
lateral and bilateral periods. For the panel in Fig. 3B, the average
raw motor activity of two consecutive 4am-6pm periods of the
72 h-recording session is represented in relation to the date of the
second 6-OHDA lesion (except for the unilateral lesion period of
Monkey 6 where only one 4 am–6 pm period was used, since the
data from the second period was  not available). For the graphics of
Fig. 3 C, each recording was smoothed with a one-h (1800 samples)
moving average window sliding at every sample, divided in two
full 24-h periods, and the periods finally averaged.

2.6. Manual PD scoring

To evaluate the motor disability of the parkinsonian animals,
we adapted the Unified Parkinson’s Disease Rating Scale developed
by Fahn and colleagues for the clinical setting [18] to fit aspects
of non-human primate behavior based on previously developed
procedures [16], [17].

The adapted scale consists of 16 categories scored from zero
to three, which corresponds to absence of altered state to more
intense symptomatology, respectively. Some categories involve
symptoms that were evaluated for each body part individually
(i.e., limbs, trunk, head), each receiving a maximum score of 3,
thus, these categories could reach a maximum of 15 (“Tremor at
rest” and “Tremor in motion”) or 9 points (“Fine motor skills”),
and were therefore subsequently normalized to 3 in order to facil-
itate the direct comparison of different categories of symptoms.
Hence, the maximum total score of the scale is 16 × 3 = 48 points
(Table 1).

The motor examination was performed in the animal’s home
cage. Assessments occurred at two  times of the day: in the morning
(∼9 am)  or afternoon (∼5 pm). All tests were done before meals.

The quantified categories are the following:

(i) Tremor at rest
• [0]: Absent
• [1]: Occasional or detected rarely
• [2]: Frequent or easily detected
• [3]: Continuous and intense

(ii) Tremor in motion
• [0]: Absent
• [1]: Rarely detected, present during action
• [2]: Moderate amplitude, present during action
• [3]: Moderate amplitude, can interfere with feeding

(iii) Freezing
• [0]: Unhindered to move the body and show normal use of

the limbs, e.g., in finding and grasping marshmallows in the
reaching task

• [1]: Difficulties in starting to walk, or in the initiation
of particular movements. For example, when reaching for
a marshmallow, the start of the reaching movement is
delayed. In these cases the freezing episodes are short

• [2]: Same as in [1], but the freezing episodes have a longer
duration – between 5 and 10 s

• [3]: Same as in [1], but freezing episodes last over 10 s
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Table  1
Summary of assessments performed in the nine male marmosets included in the study. Animals exposed to bilateral lesions were generally also assessed following the first
lesion  providing additional data to the hemilesioned group. When multiple tests were performed in the same animal in the Tower/Box set-up and through manual scoring,
assessments were made during the same day to facilitate direct comparisons.

Animal Lesion Manual PD assessment Tower test Box test Activity in home cage

1 - Beto Bilateral X X
2  - Dedé Bilateral X X
3  - Max Bilateral X
4 - Tom Bilateral X X
5  - Kaká Bilateral X X
6  - Pele Bilateral X X X X
7  - Zeca Bilateral X X X X
8  - Deco Unilateral X X
9  - Kadu Unilateral X X

(iv) Gait and locomotion
• [0]: Walks normally according to pre-lesion locomotion

patterns, with symmetrical limb use
• [1]: Shows reduced walking activity and walks with mild

asymmetry
• [2]: Walks slowly, with asymmetry, and occasionally drags

a limb (usually a hindlimb)
• [3]: Unable to walk

(v) Fine motor skills (scored for each arm independently)
• [0]: Normal ability to grasp marshmallows
• [1]: Grasps with difficulty
• [2]: Grasps with difficulty and requires one arm to support

the stance while using the other to grab the marshmallow
• [3]: Totally unable to grasp marshmallows

(vi) Bradykinesia (scored independently for limbs and trunk)
• [0]: No difficulty in initiating or performing rapid and pre-

cise movements.
• [1]: Difficulties in initiating movements and displays

smoother and slower movements when reaching for marsh-
mallows or moving around spontaneously

• [2]: Clear delay in initiating movements and shows a
marked slowing of movements in reaching and in sponta-
neous motor activity

• [3]: Totally immobile
(vii) Hypokinesia

• [0]: Moves freely and is alert and responsive
• [1]: Reduced activity, moves with less speed
• [2]: Low spontaneous activity, moves when provoked
• [3]: Totally immobile

(viii) Rigidity
• [0]: Moves freely; coordinated actions, absence of rigidity
• [1]: Mild rigidity or rigidity apparent only when other body

parts are moving
• [2]: Striking stiffness, yet some complete movements are

performed easily
• [3]: Severe rigidity, no movements are performed or move-

ments appear incomplete
(ix) Body balance (Spontaneous behavior)

• [0]: Normal stance and coordination
• [1]: Compromised coordination, but is able to change from

quadrupedalism to bipedalism without falling
• [2]: Compromised coordination, unstable locomotion with

occasional falls
• [3]: Face down or lying in supine position unable to main-

tain any kind of stance
(x) Body balance (Induced behavior elicited by food offering)

• [0]: Normal stance and coordination
• [1]: Compromised coordination but changes from

quadrupedalism to bipedalism, without falling
• [2]: Compromised coordination, unstable locomotion with

occasional falls

• [3]: Face down or lying in supine position unable to main-
tain any kind of stance

(xi) Posture
• [0]: Normal posture
• [1]: Somewhat altered posture when standing, such as

wider positioning of limbs. Resting with limbs and tail in
abnormal body position

• [2]: Hunched posture, abnormal trunk position; abnormal
head posture (neck flexed or inclined to one side)

• [3]: Unable to maintain posture, lying in supine or lateral
position

(xii) Startle response
• [0]: Immediate, robust threat response
• [1]: Slightly diminished or delayed response, threats with

open mouth
• [2]: Minimal or much delayed response, no open mouth

threat
• [3]: No response to provocation

(xiii) Climbing
• [0]: Normal
• [1]: Climbs with difficulty. Slow on the branches and home

cage mesh. No falling
• [2]: Very compromised. Climbs branches and cage mesh

with great effort. Falling may  occurs
• [3]: Not able to climb

(xiv) Gross motor skills (scored for each arm independently)
• [0]: Normal limb use when grasping larger objects
• [1]: Reduced ability to grasp larger objects to support body

weight
• [2]: Rarely is able to grasp larger objects to support body

weight
• [3]: Unable to grasp and hold large objects/structures

(xv) Facial expression
• [0]: Normal
• [1]: Slightly apparent decrease of facial expression

(hypomimia)
• [2]: Moderate hypomimia with lips separated during brief

moments
• [3]: Fixed face, severe or total loss of facial expression, lips

separated in 6 mm or more
(xvi) Vocalization

• [0]: Normal quantity
• [1]: Spontaneous vocalization reduced
• [2]: Induced vocalization reduced
• [3]: Absent

For the categories “Climbing”, “Bradykinesia”, “Fine Motor
Skills” and “Body Balance (Induced)”, mealworms or a piece of
marshmallow were offered with tweezers to induce the desired
motor behavior. For the evaluation of the category “Rigidity”,
a blunt forceps was presented to the animal. Since the animal
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associates the forceps with food offering, it would normally grab
it. Following grasping of the forceps, gentle ‘push and pull’ move-
ments were made to evaluate the level of stiffness of the forelimb.
The procedure was repeated for both forelimbs.

In experiments involving AMPT-treatment, manual PD-scoring
was performed six hours after the second injection.

2.7. Automated tracking procedures

Digital video recording were performed in the two testing set-
ups. Two cameras (AVT–Stingray F033C, 80 fps) were used for
digital video recordings in the acrylic box, from top and side views
whereas tower activity was  recorded using a single front view cam-
era (AVT–Stingray F033C, 80 fps) (Fig. 1B). Motion tracking in the
two setups was performed using similar methods. Software tools
were developed in MATLAB and included mex-implementations
(MATLAB compiled c-code; Mathworks Inc.). Constant light con-
ditions during each recording session eliminated the need for
advanced background models. Hence, a simple algorithm where
each pixel is modeled as belonging to one of two  Gaussian distri-
butions was employed. The two distributions were estimated for
each pixel by iterating through a sufficient number of frames of the
video and updating the estimated parameters of the most prob-
able distribution. In this case the background is contained in the
brighter distributions, as the animals’ image in these experiments
was always darker than the actual background. After subtracting
the background, the resulting foreground images were used in the
shape analysis. By assuming that the two-dimensional image of the
monkey in each camera plane is approximately elliptically shaped,
the position and orientation of the animal could be estimated by
the position and orientation of the three-dimensional ellipsoid that
best fitted the foreground images. Given a measured foreground
image F in a given camera and an estimated foreground image M
generated by projection of the ellipsoid onto the camera plane, the
matching quality is defined as

q =
∑

i,j min(F(i, j), M(i, j))∑
i,j min(F(i, j), M(i, j))

where i and j are the pixel coordinates. When multiple cameras
were used, the combined quality measure was created by multiply-
ing the individual q-scores. Note that the foreground image M is not
actually computed, but instead the quality measure was computed
using the projected quadric matrix for the ellipsoid. Movement
tracking in time was then carried out by using the last known loca-
tion to initiate estimation for a given frame followed by step-wise
improvements of the matching quality by gradual adjustments of
the parameters of the estimated ellipsoid. These calculations were
performed for every frame in the video, resulting in the vectors
(x, y, z, �x, �y, �z) describing the position and orientation of the
estimated ellipsoid. Each vector will therefore be of the length N,
where N is the number of frames in the video. Note that in the
tower experiments, the z-coordinate was fixed and not estimated
due to the use of only one camera (see http://homepages.inf.ed.ac.
uk/rbf/VAIB14PAPERS/palmer.pdf for technical details on tracking
procedures).

2.8. Automated extraction of kinematic parameters presented in
plots

Relevant metrics summarizing changes in kinematic parame-
ters over the different experimental conditions were constructed
from the tracking data. From the (x,y,z) position vectors, speed
was estimated as the Euclidean distance between (xi, yi, zi) and
(xi+k, yi+k, zi+k), divided by k, frame number difference, and multi-
plied by the time resolution. Locomotion bouts were detected by

applying a threshold on the acquired speed vectors. A locomotion
bout was  defined as the period of time where instantaneous speed
was uninterruptedly greater than the chosen threshold. To improve
robustness, multiple values of k were used for this detection, and
all different estimates of the speed at a time have to be greater than
the chosen threshold (approximately corresponding to a speed of
0.04 m/s).

From each locomotion bout, a number of different parameters
were obtained: maximum speed, average speed, distance covered,
duration and maximal acceleration.

2.9. Tyrosine-hydroxylase staining and quantification

After the period of the experiments, the animals were
sacrificed by intracardiac perfusion after deep sedation with
ketamine (40 mg/kg i.m.); (xylazine 0.04 mg/kg i.m.) and atropine
(0.05 mg/kg i.m.). Intracardiac perfusion was performed with 0.9%
saline solution and heparin at 37 ◦C, followed by 4% paraformalde-
hyde in phosphate buffer, 0.1 M (pH 7.4), cooled to 4 ◦C. The brains
were removed and postfixed in the same solution for 2 h, washed
in 0.1 M phosphate buffer (pH 7.4) at 4 ◦C for 24 h, cryoprotected
in 20% following 30% sucrose solution at 4 ◦C, and finally rapidly
frozen for cryostat embedding in Tissue-Tek medium. The brains
were kept in a freezer at −80 ◦C until sectioned coronally at 50 �m
in a cryostat.

Immunohistochemical staining was  performed free-floating or
on sections mounted directly on electrically charged glass slides.
The sections were processed for immunohistochemical detection of
tyrosine hydroxylase (TH) in substantia nigra and in striatal regions
using modifications of the protocol of Eslamboli et al. (2003) [19].

The sections were washed in 0.1 M phosphate buffer (PB) for
5 minutes. Then, incubated in 1% hydrogen peroxide/methanol
solution for 20 minutes to remove endogenous peroxidase activ-
ity, and rinsed in 0.05% phosphate buffer-Tween 0.05% (PB-T) for
5 minutes. Thereafter, the sections were confined with the aid
of a hydrophobic PAP pen and incubated in 10% goat normal
serum diluted in 0,1 PB for 30 minutes. Excess serum was  removed
and sections were incubated in the primary anti-TH (rabbit poly-
clonal antibody; 1:500; diluted in normal serum/PB) overnight at
room temperature in a humidity chamber to prevent air-drying of
the tissue sections. The sections were washed with PB-T (5 min)
and incubated in biotinylated goat anti-rabbit secondary antibody
(1:200, diluted in PB; Vector Labs) for two  hours. After that, the
sections were washed again with PB-T (5 min) and incubated in
avidin-biotin-peroxidase solution (Vectastain Standard ABC kit,
Vector Laboratories) for one hour.

After removal of the ABC solution, the sections were washed
in PB (5 min) and placed in a solution containing 0.03% 3,3′-
diaminobenzidine tetrahydrochloride hydrate (DAB) (Sigma) and
0.001% hydrogen peroxide in 0.1 M PB. The reaction was monitored
in a light microscope. The sections were washed and slides were left
to dry overnight. After dehydration through a series of graded alco-
hols and clearance in xylene, the slides were cover-slipped using
Entellan mounting medium.

2.10. Quantification of striatal and nigral tyrosine hydroxylase
immunoreactivity

The tissue samples were mounted and photographed using a
microscope with the same camera configuration and under identi-
cal illumination conditions. TH reactivity in both striatum (caudate
and putamen) and in substantia nigra pars compacta (SNc) was
assessed by computer densitometry using digital images captured
from a camera (CX9000, MBF  Bioscience) attached to the micro-
scope (light field Nikon Eclipse 80i - 10x and 20x objectives). TH-
reactivity across the striatum was  assessed by optical densitometry
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using ImageJ software (NIH, http://rsb.info.nih.gov/ij/). Measure-
ments were obtained using a 0.2 mm2 square window positioned
in different regions throughout the striatum (60 samples per stri-
atum and animal). To reduce the effects of within-group variability,
a normalized scale based on the reactivity for TH of the internal cap-
sule (white matter) was adopted (average over measurements of 10
different sites using the same window). For each animal, a contrast
index was calculated according to the equation: C = (G − W)/(G  + W)
[20], in which G is the average optical density of striatal tissue, and
W is the optical density of the white matter (internal capsule). To
count TH-labeled cells, we used at least three sections per animal.
For the different positions along the rostral-caudal axis (rostral,
central and caudal area), the boundaries of the SNc were defined in
each section according to the atlas by Paxinos et al. [21] and the area
of the SNc was calculated using the sections from control animals
(it was not possible to identify the SNc contours in the lesioned
animals because of the substantial loss of dopaminergic neurons
from 6-OHDA treatment). Cells labeled with TH within the defined
areas were subsequently counted (StereoInvestigator system, MBF
Bioscience Inc) and the resulting cell densities were expressed as
TH+ cells/mm2.

2.11. Statistical analyses

The statistical tests used in the study are specified in the
main text and in the figure legends together with the data
used for the respective test. Analyses of significance were per-
formed using either Matlab functions or GraphPad Prism 5.01
software.

3. Results

3.1. Acute effects of 6-OHDA lesions

Immediately following the first lesion, animals showed rigid-
ity in the limbs and visuospatial neglect contralateral to the
lesioned hemisphere and ipsilateral head position deviation. In
addition, animals showed ipsilateral body rotation while trying
to ambulate, and difficulty to use the forelimb contralateral to
the lesioned hemisphere. In agreement with earlier studies, these
symptoms, which were observed already the first days after the
lesioning surgery, spontaneously recovered almost completely
during the first two weeks [5], [19]. In spite of these evident
motor symptoms the animals were still able to feed themselves
in their home cages (as indicated by a < 10% weight loss fol-
lowing surgeries). At least eight weeks later, the animals were
exposed to a second injection of 6-OHDA in the opposite hemi-
sphere (Fig. 1A). Directly following this second lesion, animals
generally showed similar but more severe motor impairments,
requiring special care in some cases when animals had difficul-
ties feeding themselves, to ensure weight loss would not exceed
10% of total body weight during the first two  weeks following
surgery [22]. Animals were allowed to recover for two weeks before
assessments of PD symptoms in the box and tower behavioral
testing set-ups commenced, both after the first and the second
lesion.

3.2. Evaluation of motor symptoms using an adapted PD motor
disability rating scale

In the manual assessment of PD-symptoms a total of 16 dif-
ferent categories were evaluated: (1) resting tremor, which was
not observed in this model; (2) tremor in motion and sporadic
postural tremor; (3) episodes of freezing – brief periods of sud-
den immobility when initiating quadripedal locomotion or goal

directed reaching; (4) uncoordinated gait – inaccurate position-
ing of the limbs and wobbling of the trunk during locomotion (in
the literature referred to as clumsy, poor-balanced gait; Eslamboli,
2003); (5) deficits in fine motor skills – difficulty using arms to grab
any food offered (in some animals the weakness was  exacerbated
by a worsening of gross motor skills, see below); (6) bradykinesia
- noticeable slowing of the execution of movements; (7) hypoki-
nesia – a general reduction in motor activity (motility, grooming,
climbing); (8) rigidity – particularly noticeable in forelimbs during
extension; (9 and 10) body balance – abnormal body positions and
difficulty to rest on branches; (11) hunched posture; (12) a slowed
startle response – animals would not respond to alarm vocal sig-
nals from mates; (13) slowed climbing; (14) loss of gross motor
skills – for example, inability to grasp branches; (15) episodes
of hypomimia – reduction of the marmoset’s typical behavior of
maintaining eye contact and impaired inability to display facial
expression in response to interaction with care givers; and (16) lack
or decrease of vocalizations (marmosets use vocalizations abun-
dantly to communicate between them).

For each of these 16 categories, the severity of motor disability
was repeatedly evaluated in every individual in a total of eight ani-
mals under different degrees of Parkinsonism. Following the first
lesion, stable parkinsonian symptoms were observed in all individ-
uals over a testing period spanning at least 8 weeks after lesioning
surgery (average score [mean ± SEM], week 1–8: 6.9 ± 1.0; Fig. 2A,
left). After the second lesion, symptoms were on average more
severe compared to the first unilateral lesion during the corre-
sponding assessment period (average score week 1–8: 12.6 ± 0.7,
Fig. 2A, right). Animals were then monitored for another few
months and persistent symptoms were confirmed. However, dur-
ing these extended testing periods a certain degree of spontaneous
recovery was  observed resulting in a gradual decline of the total
PD score over a 32 week period (Fig. 2A). However, severe Parkin-
sonism could always be transiently reinstated for ∼18 h through
systemic treatment with the dopamine synthesis blocker AMPT
(average score under AMPT effect for week 1–16: 24.6 ± 1.8; week
17–32: 19.7 ± 1.0). Interestingly, the degree of functional recovery
varied substantially between different types of motor symptoms.
When analyzing the PD-scores for each category of symptoms
divided into 8-week periods following the second lesion it became
evident that for example symptoms related to locomotion and body
balance during spontaneous behavior showed negligible improve-
ments over time (Fig. 2B). These findings indicate that quantitative
assessments of spontaneous locomotor behavior could be partic-
ularly useful in experiments where testing periods lasting over
several months are required.

3.3. Twenty-four hour recordings of motility in the home cage

As a complement to the detailed manual assessments of dys-
functions in motor behavior, the overall spontaneous motor activity
during 72 h periods in the home cage was also recorded in two
animals. It was found that the absolute amount of motor activity
was clearly decreased following the first and second lesion, with
a relative decrease after unilateral lesion corresponding to: -44%
and −39%, and after bilateral lesion: −78% and −36% for the two
monkeys, respectively (Fig. 3A and B). At the same time, the charac-
teristic variations in the relative amount of motor activity displayed
throughout the day-night cycle was comparatively preserved also
in the parkinsonian state (Fig. 3C).

3.4. Automatic assessment of locomotive activity in the Tower
testing set-up

The spontaneous locomotion of the animal was recorded for
5 min  in each session, in a total of 120 testing sessions in
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Fig. 2. Manual scoring of motor impairments. (A) Total motor disability score of individual animals during ten weeks following the first lesion (n = 4, yellow), 32 weeks
following the second lesion (n = 6), and under additional treatment with the dopamine synthesis inhibitor AMPT (2 × 240 mg/kg AMPT administered 6 and 9 h prior to testing;
n  = 6). On the y-axis, 48 points represents the highest possible total score when the partial scores of the 16 categories are added, and zero corresponds to pre-lesion behavior
for  each individual. The average score during each testing period and condition is represented by the thick horizontal lines. (B) Normalized scores of motor impairment after
the  second lesion divided by symptom category and testing period, week: 1–8, 9–16, and 17–24 after lesion, and under the additional effect of AMPT (week 1-32 after lesion;
mean  values shown, error bars represents S.E.M.). Significant differences in average scores were found week [1–8] vs. [9–16] (˛, p < 0.01), [1–8] vs. [17–24] (ˇ, p < 0.01), [1–8]
vs.  [AMPT] (*, p < 0.05), [9–16] vs. [AMPT] (#, p < 0.01), and [17–24] vs. [AMPT] (d, p < 0.05; ANOVA for repeated measures (p < 0.05) with post hoc Bonferroni-corected paired
tests).

7 animals. The distance travelled during the testing session was
subdivided into vertical and horizontal translation (Fig. 4A). It
was evident that intact animals were considerably more active
than lesioned animals and that the distance travelled succes-
sively declined in the more severe PD models (Fig. 4B). On
average the distance traveled (horizontal/vertical) in meters per
minutes for animals in the four different stages of Parkinso-
nism was (mean ± SD), intact: 1.51 ± 0.52/2.54 ± 1.41, hemilesion:
0.81 ± 0.41/1.16 ± 0.85, bilateral: 0.50 ± 0.28/0.49 ± 0.29, bilat-
eral + AMPT: 0.17 ± 0.06/0.18 ± 0.08 (Fig. 4B; showing a statistical
group difference, p < 0.05, Kruskal-Wallis). These motor deficits
were consistent across animals (Fig. A.1). Furthermore, healthy
individuals preferred staying on the bars positioned relatively
higher up in the tower in contrast to the parkinsonian animals
resulting in significant differences in mean expectation values in
height over ground for the four groups (Fig. 4C; p < 0.05, Kruskal-
Wallis). Finally, we also observed that when moving between
different heights, healthy individuals often displayed longer unin-
terrupted movement bouts involving multiple transitions between
different levels, whereas the lesioned animals moved more fre-
quently one level at a time (fraction of multi-level transitions for the
four groups were: 0.23 ± 0.14, 0.09 ± 0.07, 0.03 ± 0.03, 0.05 ± 0.10;
p < 0.05, Kruskal-Wallis Fig. 4D).

3.5. Automatic assessment of locomotive activity in the Box
testing set-up

Spontaneous locomotion in the transparent cubical box was
quantified from ∼5 min  recordings in a total of 120 testing sessions
in 4 animals. Similarly to the tower test, the distance travelled was
subdivided into vertical and horizontal translation and in agree-
ment with the behavior in the tower, the distance travelled was
clearly reduced in the more severe PD models. On average the
distance travelled (horizontal/vertical) per minute for the four
groups was  (mean ± SD), intact: 2.34 ± 0.86/0.55 ± 0.39, hemile-
sion: 0.96 ± 0.40/0.36 ± 0.41, bilateral: 0.23 ± 0.12/0.04 ± 0.03,
bilateral + AMPT: 0.14 ± 0.10/0.04 ± 0.05 (Fig. 5A; showing a sta-
tistical group difference, p < 0.01 for both horizontal and vertical
distance, Kruskal-Wallis). These motor deficits were consistent
across animals (Fig. A.2). A more detailed analysis of the locomo-
tion bouts revealed further differences in the pattern of locomotion.
We found that (1) bout duration, (2) bout maximum speed, (3)
bout distance, as well as (4) frequency by which bouts of loco-
motion were displayed were all reduced in parkinsonian animals
(Fig. 5B). Finally, in order to verify that the motor deficits observed
were stable over extended time periods, the individual experi-
ments were ordered and analyzed with respect to the time of
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Fig. 3. General activity in home cage before and after 6-OHDA lesions, measured in two animals during 72h-recordings using actimeters. (A) Green panels show data collected
during  baseline conditions prior to lesioning surgery, yellow and red panels represent the activity displayed after unilateral and bilateral lesions, respectively. (B) Average
activity  recorded during the active periods of the day (4am–6pm) during the three different conditions (baseline, unilateral and bilateral lesion). On the x-axis, day zero
corresponds to the day of the second lesion, days −50 to 0 to unilateral lesion, and earlier than day −50 represents baseline recordings. (C) The average activity displayed
during circadian cycle for baseline and bilateral lesion conditions.

Fig. 4. Behavioral testing in Tower. Quantification of spontaneous horizontal and vertical locomotion in the tower testing set-up reveals clearly different behavior in the four
different stages of Parkinsonism. (A) Example of vertical (green trace) and horizontal (brown trace) displacement of the animal during a 5 min  recording session (height over
ground  for the different bars are denoted on the axis to the left, tracking data quantized to the levels are shown in the thick lines and the original tracking data are shown
as  thinner lines). (B) Summary of the average horizontal and vertical distance travelled in all recordings (median, 25% and 75% percentiles shown in boxes, whiskers denote
range). Note the successive decrease in distance travelled in the more severe PD models [green = intact (I), yellow = hemilesion (H), red = bilateral lesion (B), black = bilateral
lesion  + AMPT (A)]. Kruskal-Wallis, p < 0.05, post tests showed significant differences for: [Horizontal: I vs. H, B and A; H vs. A; B vs. A] and [Vertical: I vs. B, A; H vs. A],
p  < 0.05 Wilcoxon rank-sum test). (C) A change in the preference for bars located relatively higher up to bars at lower levels with increasing severity of Parkinsonism. The
relative amount of time spent on the respective level is indicated by colored bars. (D) Transition matrices describing the probability that the animal will move from a certain
level  (row) to another level (column). Levels are denoted from G to 7, where G is ground and 7 is the highest bar, each treatment group is normalized to the total number
of  transitions observed in that condition. It can be noted that animals move less frequently more than one level at a time and between the higher bars with more severe
parkinsonian symptoms.
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Fig. 5. Behavioral testing in Box. Quantification of spontaneous locomotive behavior in the box set-up reveals marked differences between the different degrees of Parkinso-
nism. (A) The average horizontal and vertical distance travelled per minute for animals grouped according to severity of Parkinsonism showed a gradual decline. Kruskal-Wallis,
p  < 0.05, post tests showed significant differences for: [Horizontal: I vs. H, B and A; H vs. A] and [Vertical: I vs. B], p < 0.05 Wilcoxon rank-sum test). (B) Differences in bout
duration, distance, speed and frequency, shown for the different groups in histograms representing the relative frequency of the observed parameter values in four equally
sized  intervals of the full range for the respective parameters. (C) Bout frequency and total distance travelled shown for all recorded sessions divided according to lesion
group  (mean and SD indicated by horizontal line and box, respectively). Note the robust reductions following both the first and second lesion which persist throughout each
>8  week long testing period. [Color code: green = intact (I), yellow = hemilesion (H), red = bilateral lesion (B), black = bilateral lesion + AMPT (A)].

assessment in relation to the two lesion procedures. To eliminate
any inter-individual variability, all the analyzed features of the
locomotive behavior were normalized to the motor behavior dis-
played by each individual during baseline conditions. While slight
variations were found between different recording sessions dur-
ing each of the three conditions, a much greater difference was
observed between intact, hemilesioned and bilaterally lesioned
animals. Notably, these differences persisted over several months
and were found to be particularly evident for bout distance and the
frequency by which bouts of locomotion were displayed (data from
all recordings in all four animals, normalized to the intact activity
level of each individual, are shown in Fig. 5C; see also Fig. A2).

3.6. Immunohistochemical verification of 6-OHDA lesions

Subsequent to these extensive characterizations of behav-
ioral changes during parkinsonian conditions, post mortem tissue
analyzes were performed. Immunohistochemistry for tyrosine
hydroxylase (TH) was used to quantify the extent of the lesions
(Fig. 6A and B). A reduction in the number of TH-positive cells of the
midbrain dopaminergic neurons projecting to the forebrain in the
lesioned hemispheres was confirmed. The cell densities (number of
cells/mm2) were (mean ± SEM), 57.66 ± 6.23 and 139.01 ± 12.13 in
bilaterally lesioned and control animals, respectively (P < 0.0001,
U = 28, Mann-Whitney U-test; Fig. 6C, bottom panel). The axonal
terminal density of TH positive cells projecting to the caudate-
putamen was also quantified. A contrast index was used to quantify
the TH-staining in relation to background staining (see Methods
for detail) showing a significant reduction of TH-immunoreactivity
in lesioned animals vs. controls in both the caudate nucleus
(0.155 ± 0.01 vs. 0.254 ± 0.02; P < 0.05, U = 112, Mann-Whitney U-
test) and in putamen (0.135 ± 0.02 vs. 0.213 ± 0.02; P < 0.05, U = 109,
Mann-Whitney U-test; Fig. 6C, top panel). Taken together, the
average staining intensity of terminals in the caudate-putamen of
lesioned animals was 44%, and the density of stained midbrain cells
41% compared to intact animals.

4. Discussion

Non-human primate models have a key role in PD-research
aimed at understanding the underlying pathophysiology of the

disease, as well as for the development of new treatment strate-
gies. Whereas experiments in rodents in many cases can provide
important insights in the early phase of basic PD-research, results
are not always transferable to humans. In particular, the large dif-
ference in overall neuroanatomical complexity between the rodent
and primate central nervous system can sometimes make findings
in rats and mice less clinically relevant. The possibility to perform
large scale experiments in the MPTP-treated macaque – which by
many researchers is regarded as the most valid model of PD – is on
the other hand very limited due to the high costs associated with
housing and treating these larger primates and the safety precau-
tions required for safe handling of these animals in order to avoid
inadvertent neurotoxic exposure. In this perspective the 6-OHDA
marmoset model of PD, which we here thoroughly characterized,
may  present a valuable complement.

Investigations aimed at developing prospective treatments for
PD generally demand long evaluation periods, it was  therefore
important to systematically evaluate the marmosets with respect
to a range of motor deficits over a time period of several months fol-
lowing lesions. To facilitate comparisons with other primate studies
using systemic MPTP treatment and to allow for rapid behavioral
assessments of bilateral motor symptoms that affect the pattern
of locomotion, the majority of the monkeys (7/9) in our study
were exposed to bilateral lesions. It should be noted however, that
for other experimental paradigms (involving for example tests of
asymmetrical limb use, forelimb dexterity etc.) unilateral lesions
may  be preferable since they induce less severe symptoms and,
hence, also demand less post-surgical care efforts by researchers
and veterinaries.

While a recovery of certain motor functions was  observed after
about three months in the detailed manual PD-scoring assessments
(including for example, vocalization, startle response, rigidity and
posture), other symptoms remained relatively stable (such as fine
motor skills, locomotion, body balance in spontaneous locomo-
tion and bradykinesia) also after more than six months following
lesions, indicating that this model may indeed be useful for the
purpose of evaluating novel PD therapies under chronic disease
conditions. Moreover, in experimental situations where severe
Parkinsonism is desired, the additional pharmacological treatment
with the dopamine synthesis inhibitor AMPT reproducibly induced
marked motor disability in all animals tested. In spite of the
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Fig. 6. Histological confirmation of dopaminergic lesions. (A) Examples of tyrosine hydroxylase (TH) immunolabeling in the caudate (Cd), putamen (Put). Immunohisto-
chemistry of TH showed intense labeling of Cd-Put in both hemispheres in control animals (top panel). Lesions performed in the left hemisphere induced a pronounced loss
of  labeling in Cd/Put on this side (middle panel). In bilaterally lesioned animals, both sides of Cd/Put were strongly affected, showing much weaker TH-staining (bottom
panels)  compared to controls. (B) Examples of TH immunolabeling in the substantia nigra (SN). In SN, TH-labelling of cell bodies of midbrain dopaminergic neurons in the
intact  brain is evident but is strongly reduced in lesioned hemispheres. (C) Quantitative summary of TH-immunolabeling of terminals in the caudate-putamen (top) and of
cell-bodies in substantia nigra (bottom) confirming extensive dopaminergic lesions.

comparatively severe symptoms that are transiently induced under
such conditions, these tests were well tolerated and could be
repeated multiple times in all animals.

The use of automated procedures for the analysis of sponta-
neous locomotive behavior provided important information on
motor dysfunctions complementing the outcome of the manual
scoring of PD symptoms. Both in 24 h home cage recordings and
in the shorter testing sessions in the Tower and Box set-ups, con-
sistent differences between the different parkinsonian states were
observed. In fact, even though behavior was only recorded for
a few minutes in each testing session, a persistent reduction in

locomotor-related kinematic parameters such as bout frequency
and total distance travelled could reliably be detected and was con-
firmed in consecutive testing sessions over very long time periods
following the second lesion. In addition, quantitative measure-
ments of bradykinesia (a main symptom in PD) which is very
challenging to characterize using manual procedures was  reli-
ably obtained in all testing sessions. The speed an ease by which
these assessments can be performed is particularly valuable for
experimental paradigms where a rapid evaluation of an experimen-
tal treatment paradigm is required, such as for neuromodulatory
approaches using electrical stimulation of neuronal structures.
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To attain a closer link to the assessment procedures used in
the clinic, we here also adapted the unified Parkinson’s disease
rating scale [18] to the marmoset model of PD. Out of the 16 cat-
egories of the adapted rating scale, 11 categories were judged to
be more reliably assessed using manual scoring than automated
measures (i.e., all symptoms that were not directly linked to aspects
of locomotion). Consequently, manual PD-scoring was  shown to
be particularly helpful in providing a broad characterization of
motor dysfunctions using methods closely resembling those used
in Parkinson patients.

Taken together, because the automated procedures have the
advantage of providing rapid and robust measures of certain motor
symptoms, while the manual scoring procedures on the other hand,
can provide a more complete view of complex patterns of symp-
toms involving a broader range of motor behavior, it is advisable
that the methods used are selected based on the behavioral tasks
that are most appropriate in any given study.

It can be concluded that, using the methods developed herein,
the two-stage 6-OHDA marmoset model of PD provides a robust
and reliable primate model of PD lasting for periods of months that
can potentially have an important role in the future development
of novel therapies.
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Appendix A.

The average amount of locomotion displayed for each of the
recorded individuals in the four different stages of Parkinsonism
is summarized in Figs A.1 and A.2 illustrating that the results pre-
sented Figs. 4 and 5, are representative also for each individual. The
total manual PD score is shown in Fig. A.3 for comparison (intact
score is zero for all animals).
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Abstract: There is significant interest from the medical and neuroscience com-
munities for studying the behavior of zebrafish larvae, particularly in the context
of drug testing. In this paper, we propose a method for analyzing the behavior
of zebrafish larvae in a high-throughput system using automatic image analysis.
Specifically, algorithms for estimating the poses of the larvae in video recordings
are presented. The pose estimation results are subsequently used to estimate ki-
nematic parameters, segment the discretized movement into swim bouts (short
bursts of movement) and to categorize the swim bouts into a number of classes.
The distributions of bout classes are analyzed over time for different doses of amp-
hetamine and apomorphine and compared to control groups. Preliminary results
are presented indicating that the proposed method is able to measure the effects
of pharmacological manipulations in the zebrafish larvae.

1 Introduction

Automatic image analysis for the purpose of analyzing the behavior of animals is
a commonly used tool in for example medicine and biology [1, 2, 3, 4, 6, 7, 8, 9,
10, 11]. When used appropriately, it has the potential of greatly improving upon
the quantity and/or quality of data gathering.

Zebrafish is a popular model animal in the field of medicine, but up until re-
cently the commercially available automatic tracking softwares have tracked only
one position per fish, consequently greatly limiting the behavioral analysis. Ho-
wever, some papers present more advanced whole-body tracking and analysis of
curvature and bending motion of the fish. Fontaine et al. proposes a method
for tracking zebrafish using a geometrical model of the fish [5], applied on videos
recorded at 1500 fps with 1024 × 1024 pixels resolution. Tian et al. presents a
method for tracking a single zebrafish in two cameras recording up to 250 fps at
640× 480 pixels resolution [10].

Here, however, we choose a compromise between quantity and quality of
tracking. A high-throughput system for automatic tracking and analysis of zebra-
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fish larvae behavior is presented, using a skeleton-based model of the larvae. A
single camera recording 300 fps at 640 × 480 pixels resolution is used for recor-
ding the behavior of 48 spatially separated larvae. The high frame rate enables
the detection of quick movements and a higher temporal consistency than lower
frame rates would, while the large number of animals makes the system practically
useful for evaluating the effects of various stimuli.

2 Equipment and video data

The behavioral setup consisted of a 300 fps digital camera with a resolution
of 640x480 pixels (Genie HM640, Teledyne DALSA, Waterloo, Canada) con-
nected to a computer with video recording software (CamExpert v7.00.00.0912,
Teledyne DALSA, Waterloo, Canada; LabVIEWâĎć 2011 v11.0, National In-
struments, Austin, TX). In each experiment, 48 zebrafish larvae where placed in
separate wells in two 24-well microtiter plates (Cat. No. 303002; Porvair Scien-
ces, Leatherhead, UK) that were milled to a depth of 9 mm to reduce shadow and
perspective artifacts. The output of the video recording system was typically as
presented in Fig V.1.

3 Pose estimation

In this section, the procedure of estimating the poses of the zebrafish larvae from
the input video files is described. First, the possible regions of movement of the
larvae and a static background image are estimated. Then the poses of the larva
are estimated in each regions using difference images created by subtracting the
estimated background from the current frame.

3.1 Calibration

Each zebrafish larva is placed in a well in one of the microtiter plates and is con-
strained to move within the bounds of the well. Consequently, the tracking pro-
blem can be formulated as the independent tracking of 48 larvae. Furthermore,
the fact that the wells are identically shaped is used for subsequent analysis of ze-
brafish larvae behavior, where the center of each of the wells is used to define a
local coordinate system for each larvae.

The positions of the wells are estimated as follows. First, geometrical models
of the microtiter plates are created using the known radii of the wells and the dis-
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3. Pose estimation

Figure V.1: An image from the video where zebrafish larvae have been placed in two
24 well microtiter plates. Superimposed projections of the geometric model of the
microtiter plates are plotted in red and blue.

tances between them. Secondly, a thresholding procedure provides a number of
circular blobs corresponding to the wells. Thirdly, affine transformations A1 and
A2 from the models of the microtiter plates to the center of the blobs are estima-
ted using RANSAC and linear least squares. Lastly, the regions that are subject
to tracking is found by projecting the well-regions in the geometrical models of
the microtiter plates. An example of calibration results is shown in Fig V.1. Ad-
ditionally, tracked pixel coordinates of larvae can be transformed to the units in
the geometrical model (e.g. millimeters) by applying the inverse of the estimated
transformations.

3.2 Background estimation

The static background is estimated by first modeling each pixel (i, j) as belonging
to one of two Gaussian distributions (with expected values Fij and Bij) and
subsequently estimating the distributions. The distributions are estimated in an
iterative procedure defined as follows. Initialization is provided by computing the
mean value Mij of each pixel (i, j) over a set of randomly selected frames. The
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Figure V.2: Tracking and data. (A) shows a subsection of a video frame displaying
the well of one larva, with the estimated larva pose superimposed in red. (B) shows
the image in (A) after subtracting the background image. (C) shows a subsection
of (B) with the larva pose superimposed in red. (D) shows the trajectory of the
head position a larva superimposed on an image from the video. The trajectory is
colored green at the points belonging to a swim bout, and red elsewhere. The blue
asterisks represent the start of a swim bout numbered according to the number next
to it. (E) shows the robustified speed function (see equation (V.3)) for the larva in
blue and the threshold used for swim bout detection as the straight line in black.
(F) shows the speed measure vk(t) from Eq (V.4) at the time around swim bout
number 7 for k = 12, 24, 48. (G) shows the tracked x and y-coordinates of the head
independently for a section of the time. Note the oscillatory noise that is successfully
classified as not being part of an actual movement.

darker distributions are assigned the mean minus ε and the brighter distributions

are assigned the mean plus ε, i.e. F (0)
ij = Mij − ε and B(0)

ij = Mij + ε, for some
small ε > 0. For a random image I and for each pixel, the distance from the
brighter distribution to the image and from the darker distribution to the image
is compared, and the closest distribution is updated using moving average. After
N = 1000 iterations, the estimates have usually converged and the procedure is
finished. Since the larvae are dark and the background is bright, the background
is defined as the estimated brighter distribution.
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4. Behavioral analysis

3.3 Pose estimation

The pose of a zebrafish larva is estimated by first finding the head position and
then tracing the tail by adding points that are incrementally more distant from
the head. Each point is estimated in sub-pixel resolution by linear (the tail) or
quadratic interpolation (the head).

For this purpose, a Gaussian smoothing is applied on the difference image
F = I −B and the position of the maximal value provides an initial estimate of
the head position in pixel-resolution. The use of the position of the maximum as
the head position works sufficiently well due to the quality of the difference images
(cf. Fig V.2(B-C)) and the shape of the larva. The initial estimate is improved
upon in the x and y-directions independently by fitting quadratic polynomials to
5x1 and 1x5 neighborhoods around the initial position estimate. The sub-pixel
estimate of the head position (x0, y0) is defined as the position of maximal value
of the fitted polynomials.

The tail of the larva is traced by finding the maximal values in a set ofNpoints

circles of increasing radii centered at (x0, y0), i.e.

(xk, yk) = argmax
(x,y)∈Ω(x0,y0;rk)

F (x, y), k = 1, ..., Npoints − 1, (V.1)

where F (x, y) is evaluated by linear interpolation of F using the four neighboring
pixels of the point (x, y), Ω(x0, y0; rk) is the set containing all points on the circle
of radius rk centered at (x0, y0) and Npoints − 1 is the number of sought points
on the tail.

Additionally, the foreground pixel intensities (qk = F (xk, yk)) at the estima-
ted points are stored and used as a quality measure. This means that for each larva
and frame, there are 3Npoints values stored:

(x0, y0, q0, ..., xNpoints−1, yNpoints−1, qNpoints−1). (V.2)

The pose estimation procedure is repeated for each larva in every frame, creating
data on the form (xi,j,k, yi,j,k, qi,j,k), where i ∈ [0, Npoints − 1] is the point
index, j ∈ [1, Nframes] is the frame number and k ∈ [1, Nlarvae] is the larva
number.

4 Behavioral analysis

The zebrafish larvae move in discrete movements referred to as swim bouts. This
section describes how the swim bouts are detected and normalized and resampled
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Figure V.3: Swim bouts and classification thereof. (A) shows the trajectories of 20
randomly selected swim bouts, with class numbers printed next to them. (B) shows
the trajectories of the swim bouts from (A) after normalization and resampling (see
Section 4.2). The element-wise logarithm of the density image of the full set of
normalized and resampled trajectories is presented in (C), with the mean trajectories
from (D) superimposed. (D) and (E) shows the (x, y) and (x, t) coordinates, re-
spectively, of the mean trajectories (see Section 4.2). Note that the scale of (B), (C)
and (D) are equal and the other scales are different.
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Figure V.4: Distribution of bout class observations. The top row shows the time-
average distributions of bout classifications in each experiment (see Section 5). In
the bottom row, bout class distributions are plotted in 150s non-overlapping time
bins. The bars in the top row that are visualized over time in the bottom row have
different colors, while the rest of the bars are black. In addition, the selected classes
have a marker below their respective bars that is the same as in the time-dependent
plot. The dotted lines denote the time during which drugs are induced. Note that
the classes and their numbers are the same as in Fig V.3, but the colors are in general
not the same.

to enable meaningful comparisons of different swim bouts. A clustering method
is then applied on the data in order to create a set of cluster centers later used for
classifying swim bouts. The classification results are used in Section 5 to analyze
the behavior of the zebrafish larvae.
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4. Behavioral analysis

4.1 Swim bouts

A swim bout is defined as the time interval where the speed of the larva is gre-
ater than some threshold. Due to the presence of oscillatory tracking noise (see
Fig V.2(G)), a speed measure that is robust to such noise is necessary. For this
purpose, the robustified speed measure v̂(t) is defined as

v̂(t) = min
k∈S

vk(t), (V.3)

where vk(t) is the average speed over a time window of width k and centered at
t, i.e.

vk(t) =
FPS

k

∥∥∥∥
[
x(t+ k/2)− x(t− k/2)
y(t+ k/2)− y(t− k/2)

]∥∥∥∥
2

(V.4)

where FPS is the frame rate (FPS = 300 in this case). In this paper, the
set of window sizes S = 12, 24, 48 provides a qualitatively good compromise
between detecting true swim bouts and rejecting false swim bouts. Visualizations
of Eq (V.3) and Eq (V.4) on real data are presented in Fig V.2(E) and Fig V.2(F).

A potential swim bout interval is defined as the time interval where the es-
timated robustified speed v̂(x, y, t) is larger than a threshold vthr = 0.2 · 10−4

mm/frame. An example of the activity function and threshold can be seen in
Fig V.2(E). This clearly supports the idea of treating the behavior of the zebrafish
larvae as discrete swim bouts.

The potential swim bout intervals are post-processed by a combination of
dilation, erosion and removing intervals that have low likelihood values (the q-
value that was introduced in Section 3.3). This procedure has the effect that
intervals that are close enough are merged and intervals that are too short or where
the estimated tracking quality is too low are removed. Some potential swim bout
intervals that are removed during post-processing can be seen in Fig V.2(E).

4.2 Swim bout classification

In order to compare different swim bouts, a way of measuring distances between
swim bouts with different numbers of frames is needed. To achieve this, the
trajectory of the swim bouts were equidistantly (in space) subsampled with K
samples and time was added as a dimension. Thus the trajectory of each swim
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bout was represented on the form

SBi : X(i) =
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1 x
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 (V.5)

Thus data for all swim bouts can be represented by column stacking the resampled
swim bouts in the matrix X = [X(1)X(2)...X(Nbouts)].

As indicated by Fig V.3(C), the space of swim bouts appears to be continuous
without any apparent clusters. However, it is still meaningful to somehow bin the
data. For this purpose, a clustering method (k-means is used in this paper) is app-
lied to separate the data into groups. Before applying the k-means method on X ,
the data is normalized to remove the effect of the starting position and direction.
Therefore, each swim bout is transformed by a rigid transformation with the ef-
fect that it starts in the origin and is headed to the right, as shown in Fig V.3. The
k-means method subsequently produces K = 15 (defined empirically) groups
that can be used for classification of swim bouts.

5 Experiments and results

The data set used in this paper contains three experiments on Amphetamine, two
on Apomorphine and one control experiment.

Drug experiments were conducted on 10 days post fertilization (dpf ) zebrafish
larvae which were first placed in the wells and video recorded for 5 minutes, then
drugs or placebo were injected in the wells followed by recording of videos for
50 or 60 minutes. In order to study the effects induced by various doses, the
48 larvae where split into 4 equally populated groups: a control group and low,
medium and high dose groups.

Similarly, the control experiment was conducted on 10 dpf zebrafish larvae by
recording for 60 minutes but without any interference in any subgroup of larvae.

A subset of the data is visualized in Fig V.4 by plotting the distributions of
swim bout classifications over time (bottom row) and on average (top row). The
time-dependent plots are created by splitting up time into a number of non-
overlapping intervals of length 150 seconds. The distribution of swim bout clas-
sifications is computed for all swim bouts in each such interval. To increase reada-
bility of the figure, a subset of 5 swim bout classes has been selected for plotting.
Here, only the data generated by the 48 larvae in the control experiment, the 36
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larvae given the highest dose (10µM ) of Amphetamine, and the 24 larvae given
the highest dose (50µM ) of Apomorphine, is presented.

6 Discussion

The preliminary data presented in Fig V.4 clearly shows that the proposed method
is able to show the difference in behavior induced by Apomorphine and Ampheta-
mine in the zebrafish larvae. For example, the Amphetamine-treated larvae tends
to increasingly favor shorter movements (class 1). Furthermore, it is shown that
there is a time-dependency in the induced drug effects, for example the sharp rig-
htwards turn (class 8) is not very common in the pre-drug control time interval
but is observed a lot more for a period directly after inducing Apomorphine.
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Abstract: All motile organisms need to organize their motor output to obtain
functional goals. In vertebrates, natural behaviors are generally composed of a
relatively large set of motor components which in turn are combined into a rich
repertoire of complex actions. It is therefore an experimental challenge to in-
vestigate the organizational principles of natural behaviors. Using the relatively
simple locomotion pattern of 10 days old zebrafish larvae we have here characte-
rized the basic organizational principles governing the swimming behavior. Our
results show that transitions between different behavioral states can be described
by a model combining a stochastic component with a control signal. By dividing
swimming bouts into a limited number of categories, we show that similar ty-
pes of swimming behavior as well as stand-stills between bouts were temporally
clustered, indicating a basic level of action sequencing. Finally, we show that
pharmacological manipulations known to induce alterations in the organization
of motor behavior in mammals, mainly through basal ganglia interactions, have
related effects in zebrafish larvae. This latter finding may be of specific relevance to
the field of drug development given the growing importance of zebrafish larvae in
phenotypic screening for novel drug candidates acting on central nervous system
targets.
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1 Introduction

In natural behavior, motor patterns are arranged into longer action sequences
with different compositions depending on factors like the internal brain state of
the subject, the behavioral context of the motor act or the functional goal of the
behavior. It is not known how such action sequences are constructed and control-
led by the nervous system but neuronal circuits of the basal ganglia are thought to
play an important role [17, 29, 32]. Support for this notion comes for example
from studies of locomotive behavior in fish where supraspinal structures invol-
ved in controlling different aspects of swimming behavior have been studied in
some detail. In these investigations, a regulatory function of the basal ganglia has
been identified upstream of regions in the mesencephalon and the more caudal
brainstem, which in turn strongly influence locomotor output through descen-
ding pathways to spinal cord locomotor circuits (see e.g. [18, 23]). The basal
ganglia are known to be highly evolutionary conserved across vertebrate species,
and may in fact even have homologies with brain structures in arthropods. In-
terestingly, neurochemical similarities have also been established among different
vertebrates. For example, the well-known modulatory role of monoamines in ba-
sal ganglia circuits in mammals has been shown to have a counterpart in fish [12,
13, 18]. Consequently, many of the basic anatomical, neurophysiological and
neurochemical features of the central control of locomotor behavior appear to be
very much alike across vertebrate species.

In mammals, natural behaviors typically involve smooth transitions between
different motor patterns making it experimentally very challenging to analyze the
higher order organization and sequencing of different movement components in
any greater detail. In this respect, the locomotor patterns of fish larvae offers a
special advantage, as their swimming behavior is highly discretized into isolated
relatively brief bouts of locomotive activity. Thus, in order to study different
patterns of action sequencing, we have here explored the discretized swimming
behavior in zebrafish larvae. For this purpose we have developed an automated
image analysis system that lets us analyze the spontaneous swimming behavior in
larger groups of larvae in parallel with a level of detail that has previously only
been possible in smaller groups using existing motion tracking systems [8, 22, 30,
39, 42]. Using this technology platform, we have here studied the swimming be-
havior in larvae at post fertilization day 10 (dpf 10) and show that the discretized
locomotor behavior in fact has a higher order organization which is characteri-
zed by the sequencing of swimming bouts of a certain types. We also show that
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pharmacological interventions that are known to alter the sequencing of motor
behavior in mammals [26, 27], in part through interference with basal ganglia
circuits [24, 31], have an analogous dose-dependent effect in zebrafish larvae.

2 Results

A novel method for automated tracking of spontaneous swimming Swimming
behavior was first characterized based on a 65-min recording under dark light-
conditions (using IR-illumination which is invisible to the larvae) in 10 days old
zebrafish larvae. In the recording session, 48 larvae were placed in two polystyrene
24-well plates and greyscale digital images were captured at 300 frames per second
with a spatial resolution of ∼ 16 pixels per mm2. For every image, the curvature
and position of the body was estimated through a two-step process. First, the
area corresponding to the 2D projection of the body in the horizontal plane was
estimated based on an algorithm classifying foreground objects from the statio-
nary background by fitting of a bimodal Gaussian distribution of light intensities
for each pixel throughout the recording period. Second, eight coordinate points
spanning from head to tail tip, were fitted to the foreground area through an in-
terpolation procedure based on the pixel intensity of concentric circles centered
on the head (Figure VI.1A-C; see Materials and methods for details). By tracking
of the body coordinate positions over a swimming episode, a 2 × 8 × N matrix
was generated (where N corresponds to the number of frames collected over the
duration of the swimming bout) which captures several detailed aspects of the
motor behavior. These data were, in the following analyses, used to produce ro-
bust descriptions of the whole-body changes observed in horizontal position (∆r)
and head angle (∆ψ; Figure VI.1D during the swimming episode. An example
of normal swimming behavior as represented by these measures are shown for a
15s time sequence containing eight discrete swimming bouts in Figure VI.1E-G.
A highly discretized locomotor behavior is evident in these representations. It is
also apparent that although swimming episodes may give the impression of being
quite stereotypic on a gross scale, more detailed analyses of speed and angle chan-
ges in individual bouts reveal that a wide range of different bout types appear to
be present
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2.1 Characterization of individual swimming bouts

High-resolution tracking of swimming behavior in several individuals in parallel
makes it possible to quantitatively compare kinematic features in large populati-
ons where several thousands of events are analyzed to attain a sensitivity sufficient
to reveal minor alterations in motor patterns associated with specific conditions.
Building on the developed technology, ∼ 35000 swimming bouts recorded in 48
larvae were therefore next analyzed in further detail with respect to their kinematic
features. As a first step, distributions of the most elementary kinematic measu-
res, such as bout duration, distance and the cumulative angle change in either
turning direction were plotted. These distributions, given the richness of the
data sets, could potentially shed some light on aspects of the underlying control
mechanisms. For example, if the likelihood of terminating a swimming event is
unchanged throughout the execution of a bout (as modelled by a Poisson process
where the neuronal network can be thought of as having no memory of when the
ongoing bout was initiated) this would result in distributions that are close to ex-
ponential. If, on the other hand, the control mechanisms underlying termination
of behavior instead resembles a random-walk process (that is, a gradual change in
network state as modeled by stepwise movements towards or away from an event
threshold denoting the network transition point which causes the termination of
the ongoing behavior), distributions will deviate somewhat from strictly expo-
nential distributions and display a relatively higher proportion of long-duration
events (typically generated by bouts where the state of the network, as modelled by
the random walk, has moved far away from the event threshold). Finally, overlaid
on such random processes, motor commands could act to drive the state of the
network towards behavioral transition, for example to achieve given behavioral
goals. This type of combined process is schematically described in Figure VI.2A
and can be mathematically modelled as an Ornstein-Uhlenbeck (OU) process
[16, 40]. Indeed, fitting an OU model to the observed distance, duration and cu-
mulative turning angle distributions proved to reproduce the observed behavior
much better than a Poisson process or a pure random-walk model (Figure VI.2B-
D and quantitative comparison in Supplementary Table VI.1). For duration,
distance and angle change, respectively the driver parameters in the OU model
were found to be 0.0069, 0.0021 and 0.0007/0.0006 (L/R), suggesting that the
duration/distance of the swimming bout has a relatively stronger command com-
ponent than the extent of turning which more resembles a random-walk process.
This relatedness to random-walk processes observed for the control of the dura-
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tion of these motor behaviors is intriguing, since it suggests that the swimming
behavior of zebrafish larvae in certain aspect resembles the swimming behavior
observed on a much larger scale in several species of adult marine predators [34].
In adult fish, this type of random walk or Brownian motion-like swimming beha-
vior is often complemented with occasional very long straight swimming episodes,
referred to as Levy flights [15]. If present in zebrafish larvae, Levy flights would
however not be detectable in our recording set-up due to the limited size of each
well (a necessary restriction to allow for high throughput).

To get a more in depth understanding of the joint translational and rotational
behavior during swimming, the bout trajectories were subsequently analyzed in
further detail. In agreement with previous reports (e.g. [6, 30]) we could con-
firm, via manual observation of the high-speed video recordings, that a few easily
recognizable bout types were present and that some of these were observed much
more frequently than others (e.g. scoots and routine turns compared to escape-
like swims). However, larvae clearly displayed a much richer repertoire of mo-
vements than what could be summarized by only a few bout types. We therefore
performed an automated classification of all the swimming trajectories recorded
during a 65 minutes long control experiment in 48 larvae where trajectories were
described in a coordinate system that was aligned to the starting position/body
angle of the larva at the onset of each bout. Dividing the swimming behavior into
15 separate bout classes based on the shape of the trajectory in three dimensions
(the two spatial dimensions of the horizontal plane and time) proved to result
in a reasonable trade-off between adequate differentiation of observed differences
in motor patterns and granularity of the data (Figure VI.2E-G; Bayesian infor-
mation criterion suggested a model order selection in the range of 5-20 classes
would be suitable, see Supplementary Figure VI.1). It should be noted however
that these trajectory classes did not represent isolated behavioral types but rather
sub-groups sampled from a rather smooth distribution (cf. Supplementary Fi-
gure VI.2; see Material and Methods for details on mathematical procedures). As
expected, some bout classes were much more common than others - in particular
short bouts with minor turning (Figure VI.2G). It is also worth noting that for
the majority of the identified bout classes, a rapid early swimming phase was fol-
lowed by a gliding phase containing relatively few active motor adjustments, in
effect putting rather tight temporal constrains on the time window during which
the network state can be actively modulated to control the total duration of the
initiated behavior.
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2.2 The higher order organization of swimming events

Having analyzed the detailed characteristics of individual bouts and modeled pos-
sible state transition mechanisms underlying the termination of motor behavior
of each bout we next analyzed the inverse transition – that is, from immobility to
locomotion. Also in this case, an OU process proved to model the observed dis-
tributions rather accurately (Figure VI.3A and Supplementary Table VI.1). Ho-
wever, compared to transitions from active to passive states the driver component
in the OU model that helps controlling the duration of pauses between bouts of
activity turned out to be an order of magnitude weaker (0.0001) indicating that
neuronal state transitions responsible for initiation of swimming have a relatively
stronger stochastic component.

Over more extended time periods, organisms generally cycle through diffe-
rent states of activity/alertness and sometimes display periods of rest [33, 36].
This would result in a change in the duration of stand-stills between bouts exten-
ding over a set of bouts. To search for higher order organization of stand-stills
between bouts we investigated if larvae had a tendency to switch between either
long (top 50% of the total distribution) or short (bottom 50%) waiting-times in
a non-random manner. By analyzing the probability of observing waiting-times
of the same type (long vs. short) in sequences of waiting-times it became evident
that such a mechanism indeed seems to be at play – for example, after observing
ten consecutive waiting-times of the same type the probability of switching to the
opposite type in the next waiting episode is less than 0.2 (Figure VI.3B). Over-
all however, larvae frequently switch between long and short waiting times and
the probability of repeating the previous type of waiting time for any observed
consecutive pair of pauses was found to be close to chance level (50%).

Taken together these data suggest that an OU model with a relatively weak
drive component can largely reproduce the observed statistical distributions. At
the same time, similar waiting-times (long/short) have a tendency to cluster in
time. Thus, for a more complete model of the swimming behavior a higher orga-
nization of stand-stills between swimming events will eventually have to be incor-
porated (for example by assuming that the starting point of each random walk in
the OU model is determined by a slower secondary process).
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2.3 The higher order organization of bout types

As mentioned in the introduction, a key rationale for the current study was to
explore if action sequencing exists also in the comparatively simple locomotor
behavior of zebrafish larvae. For example, in a similar way that pauses between
swimming events appears to display a higher order organization different types
of swimming bouts may also be changing in a state dependent manner. Indeed,
Dunn and co-workers recently showed that younger zebrafish larvae (5-9 dpf )
often display chains of either left or right turns and suggested that a specific neu-
ronal population in the rhombencephalon may be responsible for this transitory
bias towards one of the turning directions [10]. We could here confirm a pr-
opensity for repetitive turning pattern also in 10 days old larvae, as shown in
Figure VI.4A, where the probability of observing a given degree of turning is
plotted as a conditioned probability based on the direction of the previous turn
(excluding bout pairs where the first turn is <10 degree [which make up∼ 15% of
the total number of bouts]). This turning bias equates to an observed probability
of about 0.65 compared to 0.5 at chance. More importantly however, when we
analyzed the probability of observing a repetition of anyone of the 15 bout classes
defined above (Figure VI.2E-F) we observed an even stronger bias (probability=
0.22 compared to 0.16 at chance). To exemplify the widely differing probabilities
of observing action sequences consisting of certain bout types, all permutations of
pairs of bouts composed of class 1, 3 and 11 are shown in Figure VI.4B. Notably,
all types of pairs made up of the same bout type were observed with a probabi-
lity above chance level whereas several other unique permutations were observed
much less frequently than what would be expected based on the probability of
observing each of the two components independently. In fact, the tendency to
repeat bouts of the same type is even more pronounced in the analysis of lon-
ger action sequences. For example if the same type of bout has been repeated
ten times in a row the probability of observing the same type of bout out of the
15 possible classes is >0.8 (Figure VI.4C; chance level is indicated by the dashed
line). Finally, although the bout classes defining the different bout types were ar-
bitrarily chosen in our data-set and may not be directly transferable to other data,
it is nevertheless interesting to note that certain action sequences are much more
commonly observed than others also for some bout pairs involving different bout
types (see e.g. 1->11 vs. 11->1 in Figure VI.4B).

Hence, we conclude that the swimming behavior of zebrafish larvae appears
to be organized into longer sequences of actions where different bouts of motor
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activity are performed consecutively. In particular, the same type of motor pro-
gram is frequently concatenated into longer stereotypic action chains - apparently
reflecting specific states of the motor control networks.

2.4 Pharmacological manipulations reveal mammalian-like motor con-
trol principles

The intricate arrangement of locomotion components revealed in the current ana-
lyses, involving parsing of motor behavior into complex sequences, clearly sugge-
sts that the seemingly simple swimming behavior of zebrafish larvae most likely
contain the basic components needed to allow for comparisons to action sequen-
cing in mammalian species. This finding may have important implications, as
zebrafish larvae could therefore become a valuable model system for translational
research aimed at developing new therapeutic strategies to treat motor dysfuncti-
ons in humans. Following the characterization of normal swimming behavior
we therefore next performed a second set of experiments aimed at detecting and
describing the changes in motor behavior induced by systemic pharmacological
manipulations. To this end, three different drugs which are comparatively well-
characterized with respect to their behavioral effects in mammals were evaluated.
Two of these drugs were selected to target the monoaminergic system (apomor-
phine and amphetamine). Monoamines are believed to have a key role in the
regulation of goal directed behavior, partly through action on neurophysiological
processes of the basal ganglia. Apomorphine is a non-selective dopamine agonist
which principally activates dopamine receptors of both the D1 and D2 sub-type.
Amphetamine, on the other hand, has a broader effect on monoaminergic sig-
naling but is thought to primarily stimulate the dopaminergic and noradrenergic
system by various mechanisms that contribute to an increase in the synaptic levels
of these transmitter substances. The third drug, MK-801, instead directly targets
the glutamatergic system by acting as a non-competitive antagonist on NMDA-
receptors. This drug is relevant in the context of motor control for the reason
that NMDA-antagonists, when administered in lower doses, has been shown in
rodents to induce a moderate form of hyperactivity that includes a shift in the
pattern of locomotion towards longer uninterrupted bouts of movements (see e.g.
[7, 14]).

All experiments were repeated either two or three times in different groups
of animals resulting in a total of 24 or 36 larvae in each treatment group. In
the case of apomorphine two different dose regiments were explored based on the
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previously reported complex dose-response patterns [11]. For MK-801, slightly
older larvae were used (15 dpf ) since contradictory responses have previously been
reported for this drug in younger animals [25, 28].

All drugs resulted in dose dependent changes in swimming behavior. For ex-
ample, the number of bouts displayed per unit time decreased throughout the
experiments, except for high dose apomorphine which showed a more complex
biphasic pattern (as previously reported by e.g. Irons et al. [20] and Ek et al.
[11]; Figure VI.5A-D). Notably, for MK-801 the observed reduced locomotive
activity (swimming distance per bout was also reduced, by approximately 1/3 at
the highest dose) clearly contradicts the previously reported effects in rodents and
instead bears a resemblance to the motor effects reported in primates [4]. More
interestingly, the sequencing of motor behavior was also found to be altered in a
drug and dose dependent manner. An example of this is shown in Figure VI.5E-
H, where the relative overrepresentation of a specific bout pair is plotted as a
function of time for the different experiments (i.e. the increased probability of
observing that specific bout pair in relation to the expected number of observati-
ons based on the overall observation frequency of the constituent bout type, i.e.
P (i, j)− P (i)P (j)).

Because more complex combinations of kinematic features could be affected
by the pharmacological manipulations we next expanded our analyses to include a
multivariate approach for evaluating the behavioral changes induced by the diffe-
rent drugs. Accordingly, all the different measures presented above (Figure VI.1–
VI.4), were used to construct a large kinematic space based on a total of 435 featu-
res extracted from the swimming behavior (for a complete summary of these 435
features and estimates of their relative interdependency see Supplementary Ta-
ble VI.2 and Supplementary Figure VI.3). First, to get an intuitive understanding
of the data, visualizations were constructed showing the global behavioral state of
each treatment group as a function of time through principal component analysis
(In Figure VI.5I-K this is exemplified by the projection of the 435-dimensional
state vector onto the first three principal components [explaining 76% of the total
variance]). The relatively smooth trajectories showing gradual rather than abrupt
state changes between data sets sampled at adjacent time points suggest that this
approach generates robust state descriptions. Moreover, the test sensitivity also
appears to be good since the different treatment groups are distinguishable even
when the space is reduced to only four dimensions. Second, in order to more di-
rectly compare the specific effects of individual drugs, dose-response relations were
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analyzed for each drug. To this aim, the projection of each sample point in time
in the 435-dimensional state space onto the vector defining the mean difference
between the behavior of the group of animals that had received the highest dose of
each drug and the saline treated control group in the same experiment, <highest
dose – control> were calculated (cf. [5]). In this metric, the normal swimming
behavior of the control group will on average correspond to the value zero whe-
reas the average behavior displayed by the group of larvae treated with the highest
dose will correspond to the value one, regardless of what type of behavioral chan-
ges that are induced by each specific drug (Figure VI.5L-O; cross-validations of
these data are summarized in Supplementary Table VI.3). It was evident that ro-
bust and stable dose-dependent alterations of swimming behavior was induced by
each of the drugs evaluated, further corroborating the methodological approach.
However, the changes observed in global swimming behavior involve complex
combinations of kinematic features and therefore provide limited information on
the specific physiological changes underlying the unique behavioral states. As a
final step we therefore summarized to what extent the 435 different features were
affected by the various pharmacological manipulations by plotting their relative
contribution to the difference vector <highest dose – control> (Figure VI.5P-S;
in this representation the relative contribution of each feature is denoted by the
distance from zero). Interestingly, and as noted for the example features above,
both very basic changes in swimming behavior - such as the average speed and
duration of bouts - and several more complex changes in the pattern of action
sequencing - such as the relative frequency of observation of specific waiting ti-
mes or bouts pairs – proved to be sensitive to the pharmacological manipulations.
Hence, potentially allowing for also more in depth qualitative analyses of behavi-
oral alterations.

3 Discussion

The highly discretized swimming behavior of zebrafish larvae provides a unique
opportunity to study patterns of action sequencing. It is however a significant ex-
perimental challenge to document and describe the motor repertoire of hundreds
of freely behaving millimeter-size individuals. Through the development of an
automated high-resolution tracking system we have here managed to overcome
this complication and have characterized the swimming behavior with a greater
precision in larger groups of zebra fish larvae than what has been obtained with
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previously existing systems. Based on these larger data sets it was possible to eva-
luate how well theoretical models of possible network mechanisms underlying
behavioral transitions could reproduce actual swimming behavior. Most impor-
tantly, we could also provide direct evidence for action sequencing which opens
up for further studies on more complex aspects of motor control in this species.
Finally, our results clearly show that zebrafish larvae are sensitive to pharmaco-
logical manipulations of motor control networks in the same way as mammals
and hint at an important role of the basal ganglia in the control of motor beha-
vior given the clear sensitivity to monoaminergic manipulations with respect to
sequencing of actions [9, 41].

Linking mechanisms of motor control and the selection and sequencing of
actions in mammals to the zebrafish potentially opens up for new studies on ge-
netic influences on behavior since zebrafish is a very widely used genetic model
system. The findings in the present study, showing evidence of complex sequen-
cing of actions, support such a link between vertebrate species and points to a
key role of the basal ganglia in action sequencing (cf. [1, 35]). In addition, a
more general use of the technology developed herein could have a great value also
outside the field of basic neuroscientific research as zebrafish is becoming more
frequently used for in vivo screening in drug discovery assays [2, 3, 19, 37]. Dise-
ases affecting the central nervous system (CNS) is a rapidly growing concern for
societies all around the world. At the same time, the rate of progress in the search
for new treatment options is currently disappointingly slow. It has been argued
that a major reason behind this troublesome situation is the fact that early screen-
ing of new drug candidates has only to a limited extent been carried out in intact
animals, while reduced model systems such as in vitro assays have so far shown low
predictive value for clinical treatment of CNS disease [38]. On the other hand,
assays based on in vivo screening have proven somewhat more successful in terms
of the number of new drugs developed but the very high costs associated with
large scale studies in standard laboratory animals like rats and mice unfortunately
limits the practical value of this approach. For this reason, simpler animal models
have been evaluated with the aim of partially substituting experiments in mam-
mals. In particular zebrafish larvae have attracted attention as a possible in vivo
model, allowing for behavioral monitoring of relatively large groups of animals,
in parallel, following pharmacological interventions.

A potential limitation when using fish larvae instead of rodents in behavioral
analyses is, however, a somewhat reduced complexity in the motor repertoire. It is
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also important to keep in mind that environmental factors, including for example
the size and color of the individual wells, can influence the behavior displayed.
Consequently, the primary behavioral read-out, to date, has been relatively gross
measures of general swimming activity displayed per unit time [21].

In this study we show how more advanced procedures for imaging and tracking
of motor behavior enables a much more detailed analysis of movement compo-
nents in swimming bouts and the characterization of higher order organization of
swimming bouts in different behavioral states.

From observations in humans and in mammalian models systems of disease, it
is known that a wide range of behavioral changes are associated with disease con-
ditions or may occur as a consequence of exposure to drugs acting on the CNS.
Various types of abnormal motor behaviors and motor dysfunctions can be cate-
gorized as for example: bradykinesia, dystonia, dyskinesia, chorea, stereotopies,
ataxia, tremor, myoclonus etc. Clearly, this wide range of different types of mo-
tor symptoms cannot be accurately quantified by a single measure of the overall
amount of motility displayed. Instead, it is the relative frequency by which certain
behaviors are performed over others, or more detailed changes in in the organiza-
tion of sub-components of the motor repertoire that need to be assessed in order
to distinguish these types of abnormalities in the motor behavior. Consequently, if
behavioral screening in zebrafish is to become a useful tool for drug development
it is important to provide more sensitive techniques for screening of behavioral
changes using a system for automatic tracking of swimming behavior. The sen-
sitivity and reliability of our developed tracking system that was here evaluated
under diverse experimental conditions, including pharmacological manipulations
applying substances that are known to induce changes in the organization of beha-
vior in humans, proves the feasibility of this approach. We therefore believe that
the technology and biological findings presented herein should have important
implications both for future studies of motor control systems and for researchers
interested in improving the technology for in vivo screening of novel compounds
in drug development.

4 Materials and methods

4.1 Animals

This study was conducted in accordance with the national legislation of Sweden
and the European Community guidelines for animal studies. All procedures were
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approved by the ethical committee in Malmö-Lund (Permit, M116-12).
The zebrafish larvae used in this study were from intercrosses of the wild-type

AB strain. Embryos were collected and raised in a 14:10-hour light/dark cycle
at 28.5◦C on petri dishes containing E3 embryo medium (5 mM NaCl, 0.17
mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4) in an incubator to 5 days
post-fertilization (dpf ). At the age of 5 dpf, the larvae were transferred into 0.8 L
aquaria and placed in a recirculating system held at 26±1.5◦C (Aquaneering, Inc.,
San Diego, CA) where feeding was initiated. Larvae were fed with a commercial
larval diet, ZM000 (ZM Fish Food & Equipment, Winchester, UK), three times
daily until the age of 10 dpf. Behavioral experiments were conducted at 10 dpf
(and 15 for MK-801 experiments). The age of the zebrafish larvae was chosen
to ensure a developed blood-brain barrier, which is an important feature when
evaluating potential pharmaceuticals for CNS diseases.

4.2 Experimental setup and video recordings

Each individual experiment was performed using 48 zebrafish larvae, 2x24 well
microtiter plates (Cat. No. 303002; Porvair Sciences, Leatherhead, UK) milled
to a depth of 9 mm to reduce shadow artifacts and with white walls to increase
contrast between larvae and background and to prevent larvae in adjacent wells
from acting as visual stimuli. The behavioral chamber consisted of a 300 fps digi-
tal camera (Genie HM640, Teledyne DALSA, Waterloo, Canada) connected to a
computer set up with video recording software (CamExpert v7.00.00.0912, Tele-
dyne DALSA, Waterloo, Canada; Labview™ 2011 v11.0, National Instruments,
Austin, TX. To maintain the environment in the wells at 28◦C the microtiter
plates were placed parallel to each other in a water bath containing a tempera-
ture control unit (Neoheater 25 W thermostat, AQUAEL, Warsaw, Poland). The
microtiter plates were positioned on top of a light box, containing LED strips
(SMD5050 flexible infrared 850 nm tri-chip). Prior to each experiment, larvae
were transferred to the microtiter plates containing 1 ml of E3 medium and all
individuals were observed for abnormal swimming behavior and body deformi-
ties. Damaged individuals were removed and replaced. The experiments were
performed in darkness (using IR-illumination). The zebrafish larvae were habitu-
ated for 45 min before the experiment. During the experiment, video recordings
were obtained in 5 min time periods in order to be able handle the large amount
of data (>5GB/min), creating brief interruptions (∼ 1s) during data transfer to
storage devices.
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4.3 Pharmacology

For the amphetamine experiments, larvae were analyzed in 4 treatment groups
(0.1, 1.0, 10 µM and control). The experiment was performed in triplicate
including in total 36 larvae per group. For drug preparation compound (D-
amphetamine sulfate, 2813, Tocris Bioscience) was first dissolved in 100% di-
methyl sulfoxide to generate a stock solution (10 mM). The stock solution was
then diluted in E3 medium to 500 µM, 50 µM and 5 µM and 20 µL of these
solutions were added to the wells. The control group was given 20 µL of a 5%
DMSO solution corresponding to a final concentration of 0.1% DMSO in the
well. For the MK-801 experiments, larvae were analyzed in 4 treatment groups
(1, 5, 20 µM and age matched control). The experiment was performed in dupli-
cate including in total 24 larvae per group. For drug preparation compound ((+)
MK-801 hydrogen maleate, M107) was first dissolved in 100% dimethyl sulfox-
ide to generate a stock solution (10 mM). The stock solution was then diluted in
E3 medium to 1000 µM, 250 µM and 50 µM and 20 µL of these solutions were
added to the wells. The control group was given 20 µL of a 5% DMSO solution
corresponding to a final concentration of 0.1% DMSO in the well. For the apo-
morphine experiments, larvae were analyzed in 8 treatment groups divided in a
high dose (10, 25 and 50 µM) and a low dose (0.1, 0.2 and 0.5 µM) treatment
paradigm. The high dose paradigm was performed in duplicate and the low dose
paradigm in triplicate experiments including in total 24 and 36 larvae, respecti-
vely. For drug preparation compound (A4393, Sigma-Aldrich, St. Louis, MO)
was first dissolved in 100% dimethyl sulfoxide to generate a stock solution (10
mM). The stock solution was then diluted in E3 medium to 2.5 mM, 1.25 mM,
and 500 µM (high), or 25 µM, 10 µM, and 5 µM (low).

4.4 Tracking of swimming behavior

The swimming behavior of the zebrafish larvae was analyzed by first tracking the
positions of the larvae in video recordings by an automatic image analysis al-
gorithm and then inputting the tracking results into the behavioral analysis al-
gorithms described below. This section describes the automatic image analysis
application.

Given a video sequence of zebrafish larvae recorded using a static camera and
static lighting conditions, the static background is computed by modelling each
pixel at each point in time as belonging to one of two Gaussian distributions,
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where the brighter distribution defines background and the darker distribution
defines foreground. The distributions are estimated using a moving average es-
timation algorithm, described in the following. Background and foreground are
modeled using normal distributions for each pixel with expected values B and
variances S for the background and B̂ and Ŝ for the foreground. The model pa-
rameters are initialized by drawing 100 randomly selected frames and computing
the meanM and variance V of them for each pixel, then settingB(0) = M+

√
V ,

B̂(0) = M −
√
V and S(0) = Ŝ(0) = V . For 1000 additional randomly selected

frames I(k), the probability that I(k)
ij ∈ N (B(k), S(k)) is compared to the proba-

bility that I(k)
ij ∈ N (B(k), S(k)). All pixels (i, j) that are estimated to be more

probable to belong to the background and the corresponding elements of B and
S are updated with the updating coefficient α as follows

B
(k+1)
ij = αB

(k)
ij + (1− α)I

(k)
ij ,

S
(k+1)
ij = αS

(k)
ij + (1− α)(B

(k+1)
ij − I(k)

ij )2.
(VI.1)

The foreground parameters B(k) and S(k) are updated analogously for the pixels
that are estimated to be more probable to belong to the foreground. The resulting
expected value of the background distributions define the background image.

Given an image I and the estimated background image B, the difference
imageD = B−I is computed. Since the pixels corresponding to zebrafish larvae
are darker than the background, D is an image in which higher values are more
likely to correspond to zebrafish larvae. The larva head is assumed to be at the
position of the maximal value (robustly measured given a Gaussian kernel of size
5 × 5 pixels) of D in each well. An initial value of the head position is given by
finding the position of the maximum of D after applying a Gaussian filter. The
initial value is improved to subpixel-precision by quadratic interpolation. Given
the estimated head position, the tail of the larva is found by the positions of
maximal intensity at 7 circles of increasing radii, centered at the head.

4.5 Extraction of swim bouts

As previously shown, the zebrafish larvae appear to move in short bursts of mo-
vement (denoted swim bouts; see Figure VI.1E, F). Therefore, an important task
in the analysis of zebrafish larvae behavior is to segment the tracking data that
corresponds to swim bouts.
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This is done by estimating the speed of the larvae and defining the time in-
tervals in which the larvae is moving faster than some threshold as swim bouts. In
order to make the swim bout segmentation robust to oscillatory tracking errors,
the following speed measure is used

v(t) = min
k
vk(t) (VI.2)

where

vk(t) =
‖(x(t+ k), y(t+ k))− (x(t), y(t))‖2

k
(VI.3)

In other words, the average speeds over various time windows k are first esti-
mated, and then the minimal value over all time windows is used in subsequent
swim bout segmentation. In this particular application (framerate, resolution, fish
size, error size, etc.), the time window sizes k = 1, 12, 24, 48 have been defined
empirically.

An example of applying this robust speed function on tracking data is shown
in Figure VI.1F. An initial segmentation of swim bouts can be performed by sim-
ply applying a threshold value (vthreshold) on the robust speed estimates, i.e. the
points in time t for which v(t) > vthreshold are classified as swim bouts. As
is common in this type of application and segmentation applications in general,
there are sometimes uncertainties to resolve after applying the threshold and per-
forming the initial segmentation. Firstly, initial swim bouts that are too short
(< 0.03 s) are removed and secondly, swim bouts that contain an estimated speed
component that is too large (> 5 m/s) are removed. Thus a set of swim bouts can
be constructed, each on the form (x1k, y1k, . . . , x8k, y8k, k), where k is the frame
number. In this notation, (x1k, y1k) corresponds to the head and (x8k, y8k) cor-
responds to the end of the tail.

4.6 Classification of swim bouts

The process of classifying swim bouts as belonging to one ofK classes is described
here. First, swim bouts from a control experiment are normalized and subsam-
pled. Secondly, the k-means algorithm is applied to separate the data into K
groups and compute the group centers (i.e. the mean trajectories of the classes).
Thirdly, a swim bout is classified as belonging to the class for which the distance
from the corresponding mean trajectory to the normalized and subsampled swim
bout is minimized.
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To enable meaningful comparison of swim bouts, swim bouts are normalized
with respect to starting position, direction and time. The tracking data of each
swim bout is rotated and translated such that it starts at the origin at time zero
and is facing towards the positive x-axis. In practice, this means that a rigid trans-
formation T is sought such that the transformed head coordinate, x̂11 = Tx11,
of the first frame in the swim bout is at the origin and the transformed tail coor-
dinates, x̂i1 = Txi1, i = 2, . . . , 8, lies approximately (minimizing the sum of
squared distances) on the positive x-axis. Then all subsequent frames are transfor-
med using the estimated T . In the current analyses, body curvature was not speci-
fically analyzed. As a consequence, the tail positions were discarded after this step
keeping solely the head position. Due to the variety in duration of swim bouts,
a method for measuring similarities between tracking data of different lengths is
necessary. This is provided by subsampling each swim bout by M = 20 (empi-
rically defined) points that are equidistant in space, which effectively removes the
time-dependency of the space dimensions while keeping it in the time-dimension.
Note that the velocity information is not removed by this interpolation since the
time-dimension is kept intact. Thereby, each swim bout is transformed to the nor-
malized and subsampled form {(x̂k, ŷk, tk), k = 1, . . . ,M} from which they are
compared.

The trajectories of N normalized and subsampled swim bouts are stacked in
a matrix

X =
[
X1 . . . XN

]
(VI.4)

where each Xi is the column stacked coordinates from swim bout i, i.e.

Xi =
[
x1 y1 t1 . . . xM yM tM

]>
(VI.5)

To enable meaningful comparisons in the multidimensional space of different
quantities (time and space), the matrixX is normalized as follows. All x-coordinates
are normalized by subtracting the mean and dividing by the estimated standard
deviation of all measured x-coordinates. The y and t-dimensions are normalized
analogously.

The k-means algorithm with the Euclidean norm as metric is then applied on
the normalized X to separate the data into K groups, and the mean trajectory of
each group is then computed and reshaped back to the form {(xk, yk, tk), k =
1, . . . ,M}. The created mean trajectories are subsequently used for classification
of swim bouts by measuring the Euclidean distance from each normalized and
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subsampled swim bout to the mean trajectories. A swim bout is then classified as
belonging to the class with the closest mean trajectory. An example of estimated
mean trajectories for K = 15 is shown in Figure VI.2E-F, and the distribution of
the population of classes is shown in Figure VI.2G.

4.7 Extraction of kinematic features and higher order organization fe-
atures

The definitions of the kinematic features presented in Figure VI.2B-D are in-
troduced here. The distance of a swim bout is defined as the sum of Euclidean
distances between all consecutive pairs of frames in the swim bout, i.e.

d =

n−1∑

k=1

‖(xk+1, yk+1)− (xk, yk)‖2. (VI.6)

Note that to increase robustness to noise, (xk, yk) is pre-filtered using a median
filter of length 5 (empirically defined). The duration of a swim bout is defined as
the length of the interval in which the larva travels from 5% of the total distance
to 95% of the total distance, where the method of measuring distance introduced
above is used. The angular change of a swim bout is defined as the second en-
countered extreme angle minus the first encountered extreme angle, i.e. a swim
bout in which the minimal angle -34 degrees is attained at t = 0.15s and the
maximal angle +13 degrees at t = 0.05s is considered to have an angular change
of -47 degrees.

The bout classes introduced in the previous subsection are also used for ana-
lyzing swimming behavior. Tracking data for each zebrafish larva is converted to
the form {(ck, t0,k, t1,k), k = 1, . . . , N} where ck is the estimated class of swim
bout k, t0,k and t1,k are the start and end times of the swim bout, respectively,
and N is the number of swim bouts. The vector wk = t0,k+1 − t1,k defines
the inter-bout waiting times for k = 1, . . . , N , and the distribution of waiting
times for a control experiment is presented in Figure VI.3A. A threshold wshort
is applied on the vector w to classify each waiting time as short or long. Here, the
threshold is individually set to the median of wk for each larva and thus creates
equally populated groups of short and long waiting times for each larva. Higher
order organization of waiting times can be analyzed by considering the conditio-
nal probability that wk is short given that the previousN waiting times have been
short, i.e. pNshort = P (wk < wshort|wk−1 < wshort, . . . , wk−N < wshort) Fi-
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gure VI.3B shows an estimate of pNshort as a function of N together with the
theoretical probability for the memoryless process wk.

The sequencing of swim bouts is analyzed in Figure VI.4B-C. The probability
that an observed swim bout subsequence (ck, ck−1) consists of movement classA
followed by movement class B, i.e. P (ck = B, ck−1 = A), is shown for a few
examples of (A,B) in Figure VI.4B. Also the probability that both swim bouts in
a subsequence (ck, ck−1) are of the same class is shown as (X,X) in the figure.
The conditional probability that a swim bout is of the same class as all the N
previous swim bouts, given that all N previous are of the same class, is presented
in Figure VI.4C.

4.8 Dose-response tests

The behavioral alterations induced by drug administration is investigated by quan-
tizing the kinematic features and higher order organization features presented
above. Each of the features that follows is evaluated independently for each ze-
brafish larva and each time period. The values given by the following features
are entered into a feature matrix F of size M × N × K, where M is the num-
ber of unique features, N is the number of time bins and K is the number of
fish. First, the distributions of swim bout duration, distance, turning, inter-swim
bouts waiting times and swim bouts classes are estimated and normalized in 10,
10, 20, 15 and 10 bins, respectively. The sequencing of inter-swim bout waiting
times is represented by all possible conditional probabilities of order 5 or lower.
The sequencing of swim bout classes is entered as the conditional probabilities
of order 2. For each drug type, the mean vector from the control group to the
highest group was computed and subsequently used to define the dose-response
vector. For each dose in the drug group and each time bin, the mean vector was
computed and projected on the dose-response vector. The results are shown in
Figure VI.5L-O.

5 Statistical tests

Statistical tests used are specified in the main text in the context they were used.
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Figure VI.1: Automated procedures reveal detailed kinematics of the highly discreti-
zed swimming behavior.
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Figure VI.5: Pharmacological manipulations induce specific changes in swimming
behavior involving both simple kinematic features and action sequencing.
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Figure VI.1

[ht!] Automated procedures reveal detailed kinematics of the highly discretized
swimming behavior. (A) Example image frame from high-speed video recording
of spontaneous swimming behavior. Each of the 48 larva, recorded in parallel, is
kept isolated in a 15mm well (red pixels overlaid in the gray scale image denote
the body of the larva as automatically classified by the system). (B) The corre-
sponding image as shown in (A) after background subtraction of pixels lacking
temporal dynamics. (C) Close-up of the foreground image with superimposed
tracking data, where the large dot marks the putative head. Note the improved
contrast compared to (A) following background subtraction. (D) Example epi-
sode of spontaneous swimming illustrated by the tracked trajectory of the head
position during a 15s time interval (first frame in the sequence is shown as back-
ground). The trajectories of single swimming bouts are colored in green. The
blue asterisks represent the starting point of each detected bout during the 15s
period (numbered from 1 to 8; red pixels mark a section of the trajectory where
movement speed was below the threshold used for classification of swimming be-
havior and thus not considered part of a bout). (E) Swimming speed plotted as a
function of time for the 15s period shown in (D), [numbering of individual bouts
as in (D); only swimming episodes with a speed above threshold level (black line)
above a minimum duration were classified as bouts (#1-8)]. Note that there are
some time intervals that are not classified as swim bouts even though the estima-
ted movement speed is larger than the threshold. This is because of the removal of
intervals shorter than 0.03s. (F) Allocentric head angle (East = 0 degrees) plotted
as a function of time during the 15s period shown in (D). Bout numbering as in
D-E.

Figure VI.2

[ht!] Characterization of swimming bouts based on kinematic features. (A) Sche-
matic representation of the underlying assumptions of the Ornstein–Uhlenbeck
model. Transitions in behavior occur when the state of the network controlling
the behavior passes a certain threshold (upper line). The state of the network is at
any point described by a random-walk process which will eventually lead to spon-
taneous transitions events. In addition, a command signal that actively pushes the
state towards the threshold may be present (indicated by the dashed lines). (B-D)
Distributions of kinematic features extracted for each bout (total n ≈ 120000),
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(B) bout duration, (C) bout distance and (D) turning angle. Yellow lines denote
fitting of the Ornstein–Uhlenbeck model to experimental data and asterisks show
binning density. (E-F) Classification of swimming trajectories reveals differen-
ces between swimming behavior observed in individual bouts. (E) Trajectories
representing the mean trajectories of 15 bout types identified by the algorithm
are shown in the horizontal plane (x-y). (F) The trajectories in (E) shown with
time from bout on-set on the y-axis (x-t). The apparent earlier onset of type 15
is caused by data subsampling (see Methods). (G) The relative frequency of the
number of observed bouts of each type (class code as in E-F; showing that shorter
and straight bouts tend to be more common). Whiskers denote mean and SD of
the distribution over all individuals – note the relatively small SD and that the
pooled probability (bars) closely matches the average over individuals (asterisks)
indicating a small inter-individual variance.

Figure VI.3

[ht!] The organization of inter-bout waiting times. (A) The distribution of
inter-bout waiting times (total n ≈ 120000), yellow line denotes fitting of the
Ornstein-Uhlenbeck model to experimental data and asterisks show binning den-
sity. (B) The probability of observing a short waiting time, given that the previous
waiting times were also short increases with the number of similar waiting times
observed in a row (short= the shortest 50% of the total amount of waiting times
observed in each larva). Error bars denote SEM.

Figure VI.4

[ht!] The organization of swimming behavior. Conditioned turning probabilities
reveals a tendency to repeat turning in the same direction. Blue curve shows the
total turning angle of bouts that directly follow a left turn >10 degrees and red
curves the corresponding data for right turns. (B) Examples of how different types
of bouts are preferentially performed in certain combinations and orders. Blue
crosses denoted the actual probability of observing a given bout pair sequence
and black dots represent the expected probability based on the overall frequency
of observation of the two bout types making up the pair (constructed from 100
shuffled swimming sequences – note the clear separation between the observed
randomized data for several of the pairs; The (X-X) sub-chain (top row) is the
sum of probabilities for (1-1), (2-2), (3-3), etc.). (C) Swimming bouts of a given
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type tend to be concatenated into longer sequences of repetitive actions. The
probability of observing one of the 15 types of swimming bouts is shown as a
function of the number of previous observations of the same bout in a row. The
theoretical probabilities of the corresponding memoryless system with the same
bout class distributions as the actual data are plotted as a dashed line. Error bars
represent SEM.

Figure VI.5

[ht!] Pharmacological manipulations induce specific changes in swimming be-
havior involving both simple kinematic features and action sequencing. (A-D)
Example of pharmacological effects on a single kinematic feature: Changes in the
average number of bouts displayed per second following different pharmacologi-
cal manipulations throughout the recording period reveal drug and dose specific
effects (shaded area denotes period of drug administration). (E-H) Example of
pharmacological effects on higher order organization of behavior: Changes in the
relative overrepresentation of one specific bout pair (type1-type 1, cf. Figure VI.2)
following different pharmacological manipulations throughout the recording pe-
riod reveal drug and dose specific effects. Note that the value presented represents
the probability (in %) of observing the pair [1, 1] minus the theoretical probabi-
lity based on the overall observed frequency of the constituent bout type during
the same time period (thereby correcting for changes in the relative frequency of
single bouts of this type). (I-K) Global changes in swimming behavior shown for
each of the treatment groups for the first three dimension in a PCA sub-space
constructed from the larger 435-dimensional feature space. Note the relative se-
paration of the different drug treated groups in certain dimensions and the relative
smoothness of the curves indicating gradual rather than abrupt changes in the glo-
bal motor behavior of each treatment group over time. (L-O) Dose dependence
of the specific behavioral changes induced by each drug. The average behavior
displayed by the group receiving the highest dose minus the behavior of the con-
trol group represents the specific direction and size (=1) of the vector in feature
space that represents the effect of each drug. Geometrical projection of the feature
vectors obtained for the different doses/time points are plotted for each set of ex-
periments. Note that lower doses generally show intermediate behavioral changes
and that all treatment groups show a robust effect over time (x-axis represent con-
secutive non-overlapping sample points in the time interval from 0 to 65 min).
(P-S) The relative contribution of the different kinematic features to the global
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representation of the behavioral changes characterizing each of the four drugs.
Deviations from zero indicate a difference in this kinematic feature between each
drug-treated group and the corresponding control group (e.g. the blue dot with
feature #435 marks the reduced activity shown in A-D) . Note that a substantial
fraction of all the features measured show clear drug-induced changes. Whiskers
denote SEM.
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Supplementary information

Number of clusters
0 10 20 30 40 50 60 70 80 90 100

× 107

-1.15

-1.1

-1.05

-1

-0.95

-0.9
AIC

Number of clusters
0 10 20 30 40 50 60 70 80 90 100

× 106

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5
BIC

Supplementary Figure VI.1

Supplementary Figure VI.1

Plots of the Akaike Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) values used for deciding the number of clusters to use for the clustering
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of swim bouts.

Supplementary Figure VI.2

Logarithmic density images of the data used for defining the swim bout classes.
The x and y-coordinates of all points on the subsampled trajectories of normalized
swim bouts (as described in the text) are used in the left column, and only the
end points are used in the right column. The top row shows only the logarithmic
density images while the bottom row show the same images with the computed
swim bout-classes superimposed.
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Supplementary Figure VI.3

The estimated correlation matrix of the 435-dimensional feature matrix indicates
that the interdependence of the selected features is relatively limited.

Supplementary Table VI.1A-E

Quantitative comparison of goodness-of-fit to experimental data for five different
models (cf. Figure VI.2 and VI.3) in terms of Negative log-likelihood, Akaike
information criterion (AIC) and Bayesian information criterion (BIC).
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Name Negative log-
likelihood

Number of
parameters

AIC BIC

O-U -57857.3 2 -115710.6 -115693.7
Random
walk

-24993.0 1 -49984.1 -49975.7

Poisson -55242.4 2 -110480.8 -110463.9
Exponential -34998.4 1 -69994.9 -69986.5
Normal -52862.5 2 -105721.1 -105704.1

(a) Duration. Estimated O-U drive: 0.0069

Name Negative log-
likelihood

Number of
parameters

AIC BIC

O-U 42000.8 2 84005.7 84022.7
Random
walk

58244.7 1 116491.5 116500.0

Poisson 48438.8 2 96881.7 96898.6
Exponential 50680.6 1 101363.3 101371.7
Normal 52505.8 2 105015.7 105032.7

(b) Distance. Estimated O-U drive: 0.0021

Name Negative log-
likelihood

Number of
parameters

AIC BIC

O-U 3552.8 2 7109.7 7125.5
Random
walk

6558.0 1 13118.0 13125.9

Poisson 11229.3 2 22462.7 22478.5
Exponential 5353.1 1 10708.2 10716.1
Normal 14683.1 2 29370.3 29386.0

(c) Positive angles. Estimated O-U drive: 0.0007

Supplementary Table VI.1: Quantitative comparison of goodness-of-fit to experi-
mental data.
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Name Negative log-
likelihood

Number of
parameters

AIC BIC

O-U 4846.5 2 9697.0 9712.3
Random
walk

7094.8 1 14191.6 14199.2

Poisson 10062.9 2 20129.9 20145.2
Exponential 5928.7 1 11859.4 11867.0
Normal 12507.9 2 25019.8 25035.1

(d) Negative angles. Estimated O-U drive: 0.0006

Name Negative log-
likelihood

Number of
parameters

AIC BIC

O-U 80715.9 2 161435.8 161452.7
Random
walk

81342.7 1 162687.4 162695.8

Poisson 104435.2 2 208874.5 208891.4
Exponential 83921.4 1 167844.9 167853.4
Normal 117529.9 2 235063.8 235080.6

(e) Inter-bout waiting time. Estimated O-U drive: 0.0001

Supplementary Table VI.1: Quantitative comparison of goodness-of-fit to experi-
mental data.

Supplementary Table VI.2

List of features.

Supplementary Table VI.3A-D

Cross-validation of dose response data shown in Figure VI.5M-P. Half of the data
set was used to construct the <highest dose - control> vector and the remaining
part of the data set was projected onto this vector.

The measures of separation used in the tables are defined as follows.

1 Ratio of highest dose projections significantly larger (p < 0.01) than cont-
rol.
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Feature name Feature description for a given zebrafish
larvae and a time interval.

Number
of va-
lues

Distribution of bout
classes

The fraction of swim bouts that are of
class X.

1-15

Distribution of
second order bout
classes chains

The fraction of pairs of consecutive swim
bouts where the first is of class X and the
second of class Y.

16-
240

Distribution of
inter-bout waiting
times

The fraction of waiting times that are
among the k/N and (k+1)/N shortest
waiting times (by the all-time waiting
time distribution of the current zebrafish
larvae). N is the number of bins and k
goes from 0 to N-1. Here, N=9 is used.

241-
249

Distribution of
second, third and
fourth order inter-
bout waiting time
chains

The fraction of (two/three/four)-pairs of
consecutive waiting times where the first
is of type X, the second of type Y, etc.
Here the waiting times are binned by N
= 3.

250-
366

Distribution of
swim bout durati-
ons

The fraction of swim bouts with du-
rations between 0.05k seconds and
0.05(k+1) seconds, where k goes from 0
to 19. Longer swim bouts are placed in
bin number 21.

367-
387

Distribution of
swim bout distances

The fraction of swim bouts with distan-
ces between 0.1k mm and 0.1 (k+1) mm,
where k goes from 0 to 19. Longer swim
bouts are placed in bin number 21.

388-
408

Supplementary Table VI.2: List of features

2 Ratio of highest dose projections significantly larger (p < 0.01) than the
lowest dose (excluding control).

3 Ratio of highest dose projections significantly larger (p < 0.01) than the
middle dose.
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Distribution of
swim bout cumula-
tive turning

The fraction of swim bouts with cumu-
lative turning between 15k degrees and
15(k+1) degrees, where k goes from -12
to 11. Swim bouts with cumulative tur-
ning less than -180 degrees are placed
in bin number 1 and swim bouts with
cumulative turning greater than 180 de-
grees are placed in bin number 26.

409-
434

Number of bouts
per second

The number of bouts per second. 435

Supplementary Table VI.2: List of features

4 Ratio of highest dose projections significantly larger (p < 0.01) than all
other doses (including control) simultaneously.
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AMP 10 µM Apo 0.5 µM APO 50µM MK 20 µM
1 100.0% 100.0% 83.3% 100.0%
2 100.0% 100.0% 16.7% 100.0%
3 100.0% 83.3% 33.3% 16.7%
4 100.0% 83.3% 16.7% 16.7%

(a) Dose response vectors defined on subset 1 and evaluated on subset 1

AMP 10 µM Apo 0.5 µM APO 50µM MK 20 µM
1 100.0% 100.0% 33.3% 100.0%
2 100.0% 50.0% 0.0% 100.0%
3 100.0% 16.7% 0.0% 33.3%
4 100.0% 16.7% 0.0% 33.3%

(b) Dose response vectors defined on subset 1 and evaluated on subset 2

AMP 10 µM Apo 0.5 µM APO 50µM MK 20 µM
1 100.0% 100.0% 16.7% 100.0%
2 100.0% 100.0% 33.3% 66.7%
3 100.0% 0.0% 0.0% 16.7%
4 100.0% 0.0% 0.0% 16.7%

(c) Dose response vectors defined on subset 2 and evaluated on subset 1

AMP 10 µM Apo 0.5 µM APO 50µM MK 20 µM
1 100.0% 100.0% 50.0% 100.0%
2 100.0% 100.0% 66.7% 100.0%
3 100.0% 83.3% 16.7% 50.0%
4 100.0% 83.3% 0.0% 50.0%

(d) Dose response vectors defined on subset 2 and evaluated on subset 2

Supplementary Table VI.3: Cross-validation of dose response data
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Tracking the Motion of Box Jellyfish
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Abstract: In this paper we investigate a system for tracking the motion of box
jellyfish tripedalia cystophora in a special test setup. The goal is to measure the
motor response of the animal given certain visual stimuli. The approach is based
on tracking the special sensory structures – the rhopalia – of the box jellyfish from
high-speed video sequences. We have focused on a real-time system with simple
building blocks in our system. However, using a combination of simple intensity
based detection and model based tracking we achieve promising tracking results
with up to 95% accuracy.

1 Introduction

Box jellyfish, or cubomedusae, have very special visual systems, [1, 3]. The visual
system is based on four identical sensory structures, which are called rhopalia.
Each rhopalia consists of six different eyes: the upper and lower lens eyes, the pit
eyes, and the slit eyes [5, 7, 11, 12, 15, 18]. The lens eyes have image-forming
optics and resemble vertebrate and cephalopod eyes [10, 13, 14].

The role of vision in box jellyfish is known to involve phototaxis, obstacle
avoidance, control of swim-pulse rate and advanced visually guided behaviour [2,
6, 8]. Most known species of box jellyfish are found in shallow water habitats
where obstacles are abundant [4]. Medusae of the studied species, T. cystophora,
live between the prop roots in Caribbean mangrove swamps [19, 21]. They stay
close to the surface [19] where they prey on a phototactic copepod that gathers
in high densities in the light shafts formed by openings in the mangrove canopy.
The medusae are not found in the open lagoons, where they risk starvation [2].
The overall goal of this project is to learn more about the visual system and the
neural processes involved. One interesting problem is the study of the connection
between visual stimuli presented to the animals and the motor response of the ani-
mal. However, tracking free-swimming jellyfish poses a very demanding tracking
problem. Instead we look at a special experimental setup where the animals are
tethered whilst they are submitted to different light stimuli. The goal is then to
track how the animals direct themselves, i.e. how they would like to move. In

209



Paper VII
Chapter 1. Introduction 3

Figure 1.1: The Tripedalia Cystophora viewed from the side where Rh marks the
location of one rhopalium

body seen in fig 1.1. In this thesis there are 15 different film sequences to be analyzed,

each with different box jellyfishes, light conditions and artefacts, forcing the solution to

be more of a generic detection-algorithm. The method used to find the pacemakers in

the film sequences is divided into three steps; detecting, clustering and selection which

will be described thoroughly later in the thesis. The aim of this master’s thesis is to:

• find all the rhopalia in every film sequence.

• focus on evaluating different detection-methods since this is the crucial step.

• doing the above in almost-realtime.

1.4 The jellyfish - Tripedalia cystophora

Tripedalia cystophora is a roughly 1 cm sized box jellyfish whose habitat is in the

mangrove swamps. It preys on small copepods that swarm between the roots of the

mangrove trees. The copepods gather in light shafts created by the canopy above. The

box jellyfish uses its visual system to detect those light shafts but it cannot see the

copepods themselves. The interesting part in this thesis is their visual systems which

is distributed at four sensory organs, the rhopalia. Each rhopalium is carrying six eyes

were three of them are looking upwards and the other three looking downwards. The

ones looking downwards are also directed inwards towards the bell which results in the

box jellyfish to “look through” its own bell. This unique visual system enable the box

jellyfish to display visually guided behaviours that appear remarkable for such “simple”

box jellyfish.

Figure VII.1: Left: The box jellyfish tripedalia cystophora is only a couple of mm large
and almost completely transparent. Right: A close-up of the rhopalia from one frame
recorded in the experimental setup.

order to do this, an initial goal which we discuss in this paper is how to track the
four rhopalia. These appear as four dark discs, situated on the perimeter of the
bell, see figure VII.2. There have been a number of previous studies on motor
response from controlled visual stimuli, see e.g. [16, 17].

2 Experimental setup

In this study we used in total 33 animals, with sizes ranging from 0.43 to 0.89 cm.
The animals were tethered by the top of the bell during the experiments, using a
glass pipette with gentle suction, and placed in a Plexiglas tank with inside dimen-
sions of 5× 5× 5 cm. The vertical walls of the tank were covered with diffusing
paper and a neutral density filter. Each vertical wall was illuminated from the
outside by four blue-green LEDs. The diffuser was used to make a plane light
source, while the neutral density filter was used to increase the contrast between
lit and dark panels and switching one or more panels off was used as the behavi-
oural trigger. The colour of the LEDs matched the maximum spectral sensitivity
of the animals and had a peak emission at 500 nm. During the experiments a
box was placed over the set-up in order to eliminate visual cues coming from out-
side. Image sequences were recorded with a high-speed camera operated at 150
frames per second. The dataset consists of 15 video sequences, each with around
100 greyscale frames. Each greyscale frame has a resolution of 800 × 864 pixels.
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black and 255 being white. This condenses the pixel to have one value between 0 and

255. The 15 film sequences has a lot of features in common but still each film sequence

differentiates from the others in one or more aspects. Depending how the jellyfish is set

up the light and shadows form differently which will make each film sequence different

from the each other. These differences can be observed in fig 1.3 below.

Figure 1.3: Example of how different the film sequences can be.

Even though great measure has been done in order to minimize artefacts in the film

sequences the difference between them can be quite large. Some of the film sequences

are brighter, making it easier to find the rhopalia while some are darker and thus making

it hard to distinguish the rhopalia from the background (figure 1.4 and 1.5). An artefact

that is visible in all film sequences is a smudge on the camera lens that looks like an

elongated rhopalium (A in figure 1.6). The large resemblance between the smudge and

Figure VII.2: Example input frames from a number of different sequences. Notice
the high variance in lighting conditions. In some frames the rhopalia are barely
discernible and in many frames there are structures that have an appearance very
similar to the rhopalia.
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Depending on how the jellyfish is set up, the light and shadows form differently
which will make the video sequences different from each other, see figure VII.2.
Even though great measure has been done in order to minimize artefacts in the
film sequences the difference between them can be quite large. Some of the film
sequences are brighter, making it easier to find the rhopalia while some are darker
and thus making it hard to distinguish the rhopalia from the background. The
tethering of the animal is also visible in all sequences. This tether-shadow cau-
ses problem when the jellyfish is contracting and the rhopalia is moving over the
tether-shadow. Since the box jellyfish is moving in every video sequence some
parts of the jellyfish are moving in and out of focus. The physical nature of the
jellyfish, i.e. being transparent, also affects the appearance and causes refraction
on the surroundings.

The rhopalia in each frame in each video sequence has been manually anno-
tated in order to perform evaluation and testing of algorithms.

3 System overview

In this section we will describe our system. Since the focus is on real-time, the
chosen building blocks are quite simple in nature, especially the first steps. In
figure VII.3 an overview of the system is shown. We have divided it into three
parts. For every frame i, a first detection step – which only uses the local intensity
distribution around a point – produces a large number of detections, Xdi. These
points are then clustered into a set of points Xci, in order to remove multiple
detections, as well as for improved positional accuracy in the detected points.
Finally these clustered positions are sent to the tracking step, which also gets as
input the previous frame’s four detected points, Xti−1. The output is the four
detected points Xti. In the following subsections we will describe the different
steps in more detail.

3.1 Detection

The rhopalia appear as dark discs on a brighter background in the images that are
quite consistent in size and appearance in the images. See figure VII.4 for a close-
up view. For this reason we have tested a number of template based approaches
for detection. The template is based on the assumption that we have a number
of pixels near the rhopalia that are dark. Further outside the rhopalia we should
have pixels that are brighter. Figure VII.4 shows some example templates that

212



3. System overview

DETECTION	  

CLUSTERING	  

TRACKING	  

Ii	  

Xdi	  

Xci	  

Xti	  Xti-‐1	  

Figure VII.3: An overview of the system. For each input frame Ii we run the de-
tection algorithm. This produces a number of tentative points Xdi. This set of
points is then sent to the clustering algorithm, which then outputs a smaller number
of refined positions Xci. These points are fed into the tracking algorithm, alongside
the four point positions from the previous frame, Xti−1. The final output is then
the four detected points Xti.

we have tried. For speed we have adopted quite sparse templates. Top row shows
pixels that should be inside the rhopalia, and hence should be darker. Bottom row
shows the pixels that are assumed to be outside the rhopalia. For each pointXi(j)
in the input image Ii, we can then define a number of inside and outside points,
Ωin(j) and Ωout(j). Examples of these point sets can be seen in figure VII.4.
We have looked at two types of measures, one absolute and one relative. For the
absolute measure we define a threshold for the inner pixels, tin and one for the
outer pixels, tout. We then count the number of inside and outside pixels that
fulfil the constraints, i.e.

Nabs(j) =
∑

Γ(Ωin(j) ≤ tin) +
∑

Γ(Ωout(j) ≥ tout), (VII.1)

where Γ(x) = 1 if x is true and zero otherwise, and

Xdi = {Xi(j)|Nabs(j) > Ndet}, (VII.2)

where Ndet is some bound.
For the relative measure we randomly compare n inside and outside pixels,

and count how many of the inside pixels are darker than the outside pixels. So if
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(c) Inside pattern 1. (d) Inside pattern 2.

(e) Inside pattern 3. (f) Outside pattern 1.

(g) Outside pattern 2. (h) Outside pattern 3.

(i) Outside pattern 4.

Figure 3.5: The different patterns used in detection method 5.
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(c) Inside pattern 1. (d) Inside pattern 2.

(e) Inside pattern 3. (f) Outside pattern 1.

(g) Outside pattern 2. (h) Outside pattern 3.

(i) Outside pattern 4.

Figure 3.5: The different patterns used in detection method 5.

Figure VII.4: A number of templates for the detection step. Top row shows pixels
that should be inside the rhopalia, and hence should be darker. Bottom row shows
the pixels that are assumed to be outside the rhopalia.

we let R(Ω) denote a function that randomly chooses a point from the set Ω we
have,

Nrel(j) =
n∑

k=1

Γ(R(Ωin(j)) < R(Ωout(j)), (VII.3)

and

Xdi = {Xi(j)|Nrel(j) > Ndet}. (VII.4)

We have evaluated our whole system in order to find templates that generate
enough possible detections, i.e. that in most cases at least generates the four
correct points, but that do not generate excessive amounts of false positives. In
figure VII.5 a typical detection result is shown. Since there are many rhopalia-like
structures in the images we get a large number of false positives, but these will be
eliminated in the following clustering and tracking steps.

3.2 Clustering

We take a scale space approach for clustering the detections; by smoothing the
input image Ii isotropically with a Gaussian kernel we get a low scale version
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Figure 2.2: Original picture.

Figure 2.3: The detections.

One idea could be to create an algorithm that checks that each pixel inside a circle

is less than a specific value, meaning darker, and in the same manner checks some number

of pixels outside the circle if they are greater than a certain value, meaning brighter.

This will probably result in a time consuming algorithm with not that good accuracy.

The problem with this algorithm is that there are a lot of points inside the circle, about

500 pixels, that need to be checked which takes a lot of time and by comparing to fix

values we won’t account for the film sequences with darker or brighter light settings.

In the film sequences with different light settings many false positives will emerge as

well. This forces our detection algorithm to have more breadth thus not only finding

the rhopalia but false positives as well. So the goal here is to create a detection method

which minimizes the false positives but still manages to find all the rhopalia and does

this within reasonable time, i.e minimize the amount of data to check.
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One idea could be to create an algorithm that checks that each pixel inside a circle

is less than a specific value, meaning darker, and in the same manner checks some number

of pixels outside the circle if they are greater than a certain value, meaning brighter.

This will probably result in a time consuming algorithm with not that good accuracy.

The problem with this algorithm is that there are a lot of points inside the circle, about

500 pixels, that need to be checked which takes a lot of time and by comparing to fix

values we won’t account for the film sequences with darker or brighter light settings.

In the film sequences with different light settings many false positives will emerge as

well. This forces our detection algorithm to have more breadth thus not only finding

the rhopalia but false positives as well. So the goal here is to create a detection method

which minimizes the false positives but still manages to find all the rhopalia and does

this within reasonable time, i.e minimize the amount of data to check.

Figure VII.5: A typical detection result is shown. Since there are many rhopalia-like
structures in the images we get a large number of false positives, but these will be
eliminated in the following clustering and tracking steps.

Ism. We then find all local minima Xloc of Ism. The reason for this is the
appearance of the rhopalia as dark spots in the images. We then calculate how
many detections we have within a vicinity of each Xloc,

Nloc(j) =

Nd∑

k=1

Γ(||Xloc(j)−Xd(k)||2 < εcluster), (VII.5)

and if there are a minimum number Nmin of detections, then we add this local
minimum to our clustered points Xci,

Xci = {Xloc(j)|Nloc(j) ≥ Nmin}. (VII.6)

This gives a fast, accurate and quite robust way of clustering the detections. See
figure VII.6b for an example result of the clustering.

3.3 Tracking

For the tracking step we have looked at a number of simple algorithms. The
input consists of the four points from the previous frame, Xti−1 and a number
of possible candidate points Xci. In our model we could also look at the scenario
where the general statistical distribution of the four points is given in some form.
Arguably the most simple tracking is just choosing as new points, the four closest
points from the candidate points to the points from the previous frame, i.e.

Xti(j) = argmin
Xci(k)

||Xti−1(j)−Xci(k)||2, j = 1, . . . , 4. (VII.7)
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Figure 2.4: The detections.

Figure 2.5: The clusters formed from the detections.

2.3 Clustering step

Here the goal is to reduce the amount of detections to a much smaller amounts of clusters.

This particular clustering method first smoothen the image by using Gaussian blur [3]

to get rid of all noise and then correlating the detections together with the local minima

in the blurred image. The reason for correlating the detections with the local minima

is because a rhopalium should present itself as a dark spot in the blurred image, i.e a

local minima. And if there are three or more detections in five pixels distance from a

local minima it will be marked as a cluster. The resulting cluster from detections can

be seen in figure 2.5
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Figure 2.6: The clusters.

Figure 2.7: The final four coordinates.

2.4 Tracking step

The tracking step is the step where the final four coordinates are chosen from the clusters

which can be seen in figure 2.6 and 2.7. The first input to the tracking algorithm in each

film sequence is the ground truth for the first image. In the next picture the previous

tracked coordinates is used as the ground truth and the closest clusters within 20 pixels

will be the next tracked coordinates. There is a flaw having this sort of algorithm,

which takes the previous tracked coordinates as input. It will produce false positives

when no detections are found because this means that the tracked positions will be static

until close by detections and clusters are found. This will mean that, even though no

detections are found, the rhopalia will eventually overlap with with the static tracked

coordinates and be marked as found.

Figure VII.6: The figure shows the output of the three steps of our system for an
example input image. Left all the detected points are shown in red. These are fed
into the clustering which outputs the resulting yellow clustered points in the middle.
Finally the tracking outputs the four points to the right, depicted in green.

We have also looked at learning an affine shape model of the four points. In
this case we can fix a canonical coordinate system by placing the first three points
at (0, 0), (0, 1) and (1, 0). The final points will then be placed at some pointXa.
Using a large number of ground truth positions we can estimate the meanXm and
covariance matrix Σ for Xa. This gives us a way of finding the four points that
statistically most resemble a four-point configuration, given affine deformations.
For all possible subsets of four points Yi of Xdi we change coordinate system so
that the first three points are at (0, 0), (0, 1) and (1, 0) and the fourth point at
Ya. If there are n such subsets we find the best subset by

kopt = argmin
k

(Ya(k)−Xm)TΣ−1(Ya(k)−Xm), (VII.8)

and

Xti = Yi(kopt). (VII.9)

For both equation (VII.7) and (VII.8) we can choose Xti = Xti−1 if the
optimal value is to large, i.e. if the best clustered points are too far away from the
previous frame’s points we choose the previous frame’s point positions for the new
frame. See figure VII.6c for an example result of the tracking.

We have not yet focused on the tracking, and more complex motion models
are of course possible and quite easy to implement into the framework, such as
e.g. Kalman filters [20] or Particle filters [9].

216



4. Experimental results

4 Experimental results

In total we have in our test setup 1469 frames, and we have manually marked the
true coordinates of the rhopalia in each frame. We have tested our system on the
video sequences and compared it to ground truth in the following way. For the
detection accuracy we count for each of the four rhopalia in the images if there
are N or more detections within a circle with radius of 10 pixels around the true
coordinate. We have used N = 10 and N = 20. For the cluster accuracy we
have counted the percentage of rhopalia that have a cluster within a circle of 10
pixels around the correct coordinate, and likewise for the tracking accuracy we
count the percentage of rhopalia with a tracked point within 10 pixels. We do
this for all the 1469 frames, with four rhopalia in each frame. We have mainly
tested different detection parameters and settings. In figure VII.7 the resulting
accuracy percentages can be seen. We see that the best performing systems have a
tracking accuracy of 95%.

5 Conclusions

We have in this paper investigated how a system for detection of the special eyes
– the rhopalia – of box jellyfish can be constructed. We have shown that using a
low-level detection method in combination with clustering and tracking we can
get very good performance on a varying dataset. The system can be run in real-
time. The basic idea is that the system should be used in order to learn more
about the visual system and neural processes of box jellyfish. The next step would
be to, from the tracking of the rhopalia, measure the motion of the whole bell of
the jellyfish in order to measure the motor response of the animal given certain
visual stimuli.
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(c) Cluster accuracy.
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(d) Tracked accuracy.

Figure 5.1: Mean number of detection in relation to the different accuracies. These
four diagrams present the number of detections related to the accuracy. The difference

between those measures is how it’s calculated which can be seen in 4.1.
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Figure 5.2: Mean cluster accuracy in relation to mean number of detections. The
mean cluster accuracy within each detection method with outliers removed.

Figure VII.7: Evaluation of a number of different detection parameters and settings.
The accuracy for the different steps in the system is shown. The best performing
systems have a tracking accuracy of 95%.
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Abstract: We propose a framework for calibration, positioning and tracking in
a scene viewed by multiple cameras, through a flat refractive surface and one or
several flat reflective walls. Refractions are explicitly modeled by Snell’s law and
reflections are handled using virtual points. A novel bundle adjustment frame-
work is introduced for solving the nonlinear equations of refractions and the li-
near equations of reflections, which in addition enables optimization for calibra-
tion and positioning. The numerical accuracy of the solutions is investigated on
synthetic data, and the influence of noise in image points for several settings of
refractive and reflective planes is presented. The performance of the framework is
evaluated on real data and confirms the validity of the physical model. Examples
of how to use the framework to back-project image coordinates, forward-project
scene points and estimate the refractive and reflective planes are presented. Lastly,
an application of the system on real data from a biological experiment on small
aquatic organisms is presented.

1 Introduction

There has been a lot of interest in the computer vision society on the subject of
using and modeling cameras whose line of sight is somehow disturbed by refracti-
ons [1, 7, 10, 12, 17]. There are many different problems that can be posed by
assuming different configurations of known relationships between refractive pla-
nes, cameras, scene points etc. In the case where the presence of refractions is due
to the camera being under water, there are additional radiometric effects that al-
ters the imagery [11, 14, 15, 16]. Modeling of refractions has also been combined
with reflections. For example, the recovery of refractive and reflective objects has
been studied by light-path triangulation [5, 13], assuming known scene points.
Furthermore, the problem of reconstruction or pose estimation has been studied
in the case of flat reflections [18] and catadioptric cameras with parabolic reflecti-
ons [8, 9].
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However, positioning and tracking of objects within a scene where there are
both refractions and reflections present has to our knowledge not been considered
in previous research. This is an important application in for example biological
sciences, where it is common to study the behavior of objects (e.g. animals) inside
of an aquarium while viewing the scene from the outside [2, 4, 6]. An equivalent
problem is to estimate structure inside a refractive (and possibly reflective) scene.
We therefore present theory and methods for the calibration of refractive and
reflective scene parameters, assuming pre-calibrated cameras. We describe the
subsequent use of methods for finding the positions of objects within the scene.
A framework is created for this purpose and is applied for a study on the behavior
of small aquatic organisms.

In Section 2, we explain how refractions and reflections are modeled, using
Snell’s law and virtual points. In Section 3, we show how the models are ap-
plied to create a residual vector and how to minimize it efficiently by bundle
adjustment. Examples of how to use the framework to forward-project a scene
point (Section 3.4), back-project an image point (Section 3.4) and estimate the
refractive and reflective planes (Section 4) are presented. The numerical accuracy
of the method is thoroughly tested on synthetic data in Section 5.1, and the vali-
dity of the framework on real data is tested using images of a calibration pattern
submerged in an aquarium in Section 5.2. Lastly, an actual application of the
system is presented in Section 6, providing a qualitative evaluation of the system
on real data.

1.1 Related work

In [1], Agrawal et al. presents theory of flat refractive geometry, deriving e.g. that
a pinhole camera viewing a scene through (multiple) parallel flat refractive surfaces
corresponds to an axial camera. It is also shown that the case of double refractions
in the case of air-glass-water, where the glass is thin, is well approximated by
disregarding the glass. This result is also reported in [10].

A method for structure-from-motion in underwater settings where the camera-
refractive plane pose is known is presented by Jordt-Sedlazeck and Koch in [12],
deriving an error function for virtual cameras for use in bundle adjustment. Here,
the standard methods for bundle adjustment in refractive structure-from-motion
are deemed infeasible.

The problem of estimating the absolute pose of a calibrated camera viewing a
refractive scene is solved minimally and near-minimally for a few different settings
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Figure VIII.1: Snell’s law. A ray originating from the camera center C with direction
u undergoes a change of direction according to ρ1 sin θ1 = ρ2 sin θ2. This causes
the usually linear equations for projections, for example, to become nonlinear and
much harder to solve.

of assumptions, by Haner and Åström [10].
Concerning reflections and ray-tracing, Sturm and Bonfort considered the

task of computing the pose of an object without a direct view [18], viewing a cali-
bration pattern through a flat reflective surface. In [5], Chari and Sturm use both
reflections and refractions for estimating the structure of transparent refractive
objects. In the case of catadioptric cameras, i.e. cameras with parabolic mirrors,
Geyer and Daniilidis derive epipolar constraints and use them for structure and
motion in [8, 9].

In the field of biology, Ekvall et al. studied the movement of small aquatic
organisms [6] inside a rectangular aquarium using four cameras, positioned pai-
rwise and orthogonal to two of the surfaces and approximating the cameras as
orthogonal.

2 Theory of refractions and reflections

In this section, we introduce the equations for modeling refractions and reflections
that are later used for defining the error functions in Section 3.2. Note that some
indices of variables, later introduced in Section 3.1, are omitted here.

2.1 Refractions (Snell’s law)

Snell’s law describes how the angle θ1 of an impinging ray u, with respect to the
refractive plane normal, is related to the angle θ2 of the outgoing ray v by

ρ1 sin(θ1) = ρ2 sin(θ2), (VIII.1)
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where ρ1 and ρ2 are the refractive indices of the surfaces. A visualization of this is
given in Fig VIII.1. This nonlinear relation is the main source of the challenges
encountered in underwater structure-from-motion. Another issue is ambiguity in
Eq (VIII.1) that gives rise to false solutions.

In order to express Snell’s law as a function of the ray directions and plane
normal, a property of the cross product is applied:

u× n = ‖u‖‖n‖ sin(θ1)w, (VIII.2)

where w is a unit vector orthogonal to both u and n, and θ1 is the angle bet-
ween u and n. Since any vector orthogonal to u and n is also orthogonal to n,
Eq (VIII.2) can be used to reformulate Eq (VIII.1) to

ρ1
u× n
‖u‖‖n‖ = ρ2

v × n
‖v‖‖n‖ , (VIII.3)

where u and v are the previously defined ray directions. Assuming that ‖n‖ = 1
and multiplying by ‖u‖ and ‖v‖ gives the expression

ρ1‖v‖(u× n) = ρ2‖u‖(v × n). (VIII.4)

Squaring both sides of the equation element-wise gives expressions that are poly-
nomial in all variables, of which only two are independent (ref e.g. [10]). Solu-
tions to this equation will later be sought for the purpose of computing forward
projections.

Note that in the case where u and n are known, solving for v gives the
expression

v = ru+ (r cos θ1 − sign(cos θ1) cos(θ2))n, (VIII.5)

where

cos θ1 = −n · u,
cos θ2 =

√
1− r2(1− cos2 θ1),

(VIII.6)

and r = ρ1/ρ2. This provides a convenient method for computing the refraction
of directions and will later be used for back-projections.
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Figure VIII.2: Reflections. A ray with direction u originating from a point P inter-
sects a reflective plane (n, d) at a pointR, where the ray changes direction to v and
subsequently intersects a point U . Note that the ray segment from R to U is the
mirror image of the virtual ray segment fromR toQ.

2.2 Reflections

The law of reflection states that the angle θ1 of an impinging ray is related to the
angle θ2 of the outgoing ray as

θ1 = θ2, (VIII.7)

with respect to the normal of the reflective surface at the point of reflection, as
depicted in Fig VIII.2. This relation can be reformulated on vector form as a linear
transformation from the incoming ray direction v to the outgoing ray direction
w as

w = (I − 2nn>)v, (VIII.8)

where n is the normal direction of the surface at the point of intersection.
An equivalent way to model reflections is to reflect points instead of directi-

ons. The observation of a point U that is reflected in a surface appears the same
as the observation of a virtual point Q that is the mirror image of U and travels
straight through the surface. Adapting Eq VIII.8 for points gives the following
linear transformation for the reflection of a point U in π:

[
Q
1

]
=

[
(I − 2nn>) −2nd

0> 1

] [
U
1

]
. (VIII.9)

This property of modeling the reflection of rays provides a convenient method for
computing forward projections through one or multiple reflections.
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Figure VIII.3: The refraction and reflections of two pairs of rays from two camera
focal points Ci , all corresponding to the same scene point Uk. All of the rays
intersect the plane of refraction (n1, d1) where they change direction, resulting in
second linear pieces of the ray originating at the points of refraction Pijk. Two of
the rays also intersect a plane of reflection (nj , dj), j > 1, resulting in additional
linear pieces of the ray originating at the points of reflection Rijk. In the case of
forward projection, computing the points of reflection is conveniently avoided by
instead forward projecting the virtual point Qjk that is the reflection of the scene
point in zero, one or several planes of reflection.

3 Method

In this section, we describe how the theory of reflections and refractions intro-
duced in Section 2 can be applied. First the notation is introduced, then the
equations of refractions and reflections are adapted for use in a residual vector,
and lastly initialization and practical application is presented.
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3.1 Data structure and notation

The modeling of a ray subject to refraction and reflection is based on the use of
a help point at the refractive plane and a virtual point that is the reflected scene
point, as shown in Fig VIII.3. Scene point k is denoted Uk and the reflection
of Uk in reflective plane configuration j ∈ N is denoted Qjk. A reflective plane
configuration can be for example reflection in π2, followed by reflection in π4.
By defining j = 1 as the empty reflection,Qjk denotes an end point that is either
the scene point for j = 1 or a virtual point for j > 1. The observation of an end
point by camera i corresponds to a ray in two linear pieces - from Qjk to Pijk
and from Pijk to Ci, where Ci is the focal point and Pijk is a help point. The
help point Pijk lies on the refractive plane and is defined such that the angles of
the vectors u = Pijk −Ci and v = Qjk − Pijk satisfies Eq (VIII.4).

A ray corresponding to the observation of an end point Qjk by camera i is
represented by the points it interpolates as

(Ci,Pijk,Qjk) , (VIII.10)

where Pijk is the help point. The normalized image coordinates in camera i
relating to an end point Qjk are denoted uijk and are given by the projection
of the help point Pijk.

Note that in the notation used throughout the paper, it is assumed that all
scene points are subject to a single refraction and that the plane of refraction
separates the end points from the camera focal points.

3.2 Bundle adjustment

Equations describing refractions and reflections, as introduced in Section 2.1 and
Section 2.2, together with the data structures introduced in Section 3.1 are used
to create a residual vector r.

The error function for the refraction of a ray (Ci,Pijk,Qjk) is adapted from
Eq (VIII.4) and defined as

rrefr(Ci,Pijk,Qjk,µ,n1) =

µ2
1 ((Ci − Pijk)× n1)2 ‖Qjk − Pijk‖2

2

− µ2
2 ((Qjk − Pijk)× n1)2 ‖Ci − Pijk‖2

2 ,

(VIII.11)
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where the square of the cross product is computed element-wise. The refractive
error function is complemented by an error function constraining the help points
to lie on the plane of refraction.

The error function for the reflection of a scene point Uk to a virtual point
Qjk is adapted from Eq (VIII.9) as

rrefl(Uk,Qjk,πj) =
(
I − 2njn

>
j

)
Qjk −Uk − 2njdj .

(VIII.12)

Also, error functions for the re-projections of help pointsPijk to image points
uijk, rproj(Pijk,uijk), and constraints ‖nj‖ = 1 for the plane normal vectors
nj , rn(nj), are added.

3.3 Using the Schur complement

Given an end pointQjk and a camera centerCi, there is always a help pointPijk
such that the ray (Ci,Pijk,Qjk) satisfies Snell’s law. Finding the help points is
computationally very cheap - each help point is subject to four constraints and
only a few iterations using Gauss-Newton’s method are enough to find it accura-
tely. Furthermore, all help points are independent from other help points. The
existence of Pijk and the computational efficiency in estimation can be leveraged
to increase effiency in the estimation of other variables as follows.

First, the residual vector and variables are partitioned as

r =
[
r1 r2

]>
,

x =
[
xA xB

]>
,

(VIII.13)

where r1 are the residuals for refractions and reflections, r2 the residuals for pro-
jections and plane normalization, xA is the vector containing help points and xB
contains some other disjoint subset of x, for example the reflective plane parame-
ters. The linearization of the problem at x is

{
δr1 = J1AδxA + J1BδxB,

δr2 = J2AδxA + J2BδxB.
(VIII.14)

where J1A is the matrix of partial derivatives of r1 with respect to xA and J1B ,
J2A, J2B are defined analogously. First solving for help points with respect to
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refractions and reflections gives (approximately) ‖r1‖ = 0. Inserting r1 into
Eq (VIII.14) and solving the first line for δxA gives δxA as a function of δxB .
Inserting the solution δxA into the second equation, and solving the second equa-
tion for δxB results in

{
δxA = −J−1

1AJ1BδxB,

δxB = −(J2AJ
−1
1AJ1B + J2B)−1δr2,

(VIII.15)

where J2AJ
−1
1AJ1B + J2B is known as the Schur-complement. This is applied

in the estimation of e.g. the refractive plane, by first optimizing the help points,
then optimizing in the direction δx obtained by solving Eq (VIII.15) for δxA and
δxB . The procedure is repeated from the newly obtained x until some stopping
criteria is met.

3.4 Computing the back-projections and forward projections

The bundle adjustment methods assumes that there is an initial value for each va-
riable, thus there is need for methods of initializing those variables. In this section,
initialization for forward projections and backward projections are explained.

In the case of forward-projections, a scene point Uk is known and the set
of image points uijk that corresponds to Uk are sought. This amounts to fin-
ding and then projecting the point of refraction Pijk for any end point, i.e. for
the scene point or any reflection Qjk of it. For this purpose, the scene point is
reflected in some set of plane configurations, resulting in the set of end points
{Qjk}. For each such end point Qjk and camera center Ci, an initial value
for the corresponding help point Pijk is given by the intersection of the straight
line from Qjk to Ci and the refractive plane π1. For each camera i and plane
configuration j, the error of refraction for the ray rrefr(Ci,Pijk,Qjk,µ,n1) is
subsequently minimized with respect to the help points Pijk. The help points are
then projected by their corresponding camera matrix to provide the sought image
coordinates uijk.

In the case of back-projecting an image point, assuming that the refractive
and reflective planes are known, the help point and refracted ray direction can be
obtained by tracing the ray from the camera focal point to the plane of refraction
and computing the new direction by Eq (VIII.5). The process is analogous for the
reflective planes using Eq (VIII.8). Note that the bundle adjustment framework
is not used for this task.
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In the case of back-projecting a set of image points uijk corresponding to the
same scene point Uk, assuming knowledge of the reflective plane configuration j
each ray undergoes, the scene pointUk is sought. Help points Pijk and refracted
and reflected ray directions are computed as was presented in the case of single
back-projection. This results in a set of points and directions whose intersection
is used as an initial value for the scene point Uk. Note that in the case where
there are at least two rays unaffected by reflections, the initial value is more con-
veniently computed using only those rays. The virtual points are then initialized
by reflectingUk in the specified reflective plane configurations using Eq (VIII.9),
Thus the ray (Ci,Pijk,Qjk) is known for each end point. The residual vector for
this estimation is composed of rrefl(Uk,Qjk,πj), rrefr(Ci,Pijk,Qjk,µ,n1)
and rproj(Pijk,uijk), and is subsequently minimized with respect to the virtual
pointsQjk and scene points Uk.

An issue in tracking applications is that the configuration of reflections that
each ray undergoes on its way to the end point can not always be assumed to be
known. However, the above methods can be combined to create a method that
can be used to find the configurations. Given a putative pair of image point corre-
spondences and assume that their corresponding rays do not undergo reflections
before meeting their common end point. Then the end point can be estimated
by back-projection as previously explained. If the estimated end point is located
outside of the scene (e.g. in the case of an aquarium), the estimate is discarded. A
set of reprojected points are given by reflecting the end point in several reflection
configurations and forward projecting each of the resulting virtual points. Each
such forward projection is feasible only if the help point is located inside of the
bounded refractive plane. Lastly, the distances to detected image points are evalu-
ated and points sufficiently close to the re-projections are assumed to correspond
to the same scene point. If additional image point correspondences are found, the
position of the scene point can subsequently be further optimized.

4 Calibrating the scene

The calibration process is divided in two steps - pre-calibration and refractive
scene calibration. The pre-calibration is, in this case, composed of estimating
the intrinsic parameters of each camera and the relative poses of the cameras, i.e.
radial distortion, skew, focal length, etc. and position and orientation. This is
done using the standard methods with a moving checkerboard [3, 19].
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The refractive scene calibration consists of estimating the parameters of the
planes of refraction and reflections in the scene, i.e. (π1, π2, ...), and is done using
a set of observed image points. It is assumed that the plane configurations that
each of the corresponding rays are reflected in before they meet their scene points
are known, and that there are sufficiently small errors in the initial values of the
scene parameters. The method for back-projection explained in Section 3.4 is
used to find a ray (Ci,Pijk,Qjk) for each image point. Each ray is entered into
the framework and the corresponding residual vector of refractions, reflections
and projections is minimized with respect to the help points, end points and
planes. The estimated planes are the results of calibration.

In the experimental evaluation (section 5.2), the refractive scene calibration
was performed using a checkerboard submerged in a water tank and the chec-
kerboard points were found using the same checkerboard-detection algorithms as
for the pre-calibration. In this case, heuristics for deciding the refractive/reflective
configuration that each ray undergoes could be easily decided due to the scene-
geometry of this particular application. A close-enough initial calibration was
attained by manually selecting the points in the corners of the tank for which the
geometry was known.

5 Experiments

The performance of the system is evaluated on both real data and synthetic data.
The accuracy and robustness in estimates of image points, scene points and re-
fractive and reflective planes is analyzed in Section 5.1. Real images are analyzed
in Section 5.2, where a checkerboard is submerged in an aquarium.

5.1 Synthetic experiments

The method for forward-projection is evaluated by simulating 1000 random sce-
nes, each consisting of a refractive plane, a reflective plane and two camera poses.
Scene points are generated and subsequently forward-projected to image points
in the cameras, as explained in Section 3.4. The difference in θ2 given by solving
‖n‖‖v‖ cos(θ2) = n>v and Eq (VIII.1) for θ2, using the estimated θ1, is evalu-
ated and presented in Fig VIII.4. This shows that the forward projections of the
synthetic data are accurate, thereby proving the validity of the synthetic data that
the following analyses are based on.
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Figure VIII.4: Left: the distribution of angular errors with respect to Snell’s law
for forward-projection in 1000 random synthetic problem instances with no added
noise. Right: The distribution of error in position, defined as the euclidean distance
from an estimate to ground truth, for back-projection in 1000 random synthetic
problem instances with no added noise. Points were simulated at distances approxi-
mately 200 mm from the camera focal points.

The numerical accuracy of the method for back-projection (introduced in
Section 3.4) is tested by back-projecting simulated image points and estimating
the 3d positions that corresponding pairs of image points are observations of.
The estimated 3d points are compared to the ground truth 3d points, and the
distribution of distances between the points is presented in Fig VIII.4. Sensitivity
to noise was tested by adding zero mean normal distribution noise with increasing
variance to the image points, resulting in the distribution of distances shown in
Fig VIII.5.

The numerical accuracy of the method for estimating refractive and reflective
planes, as introduced in Section 4, is tested on 1000 random simulated problem
instances. Each instance consists of the observed image coordinates of 3 scene
points (the minimal case) in a fixed, simulated scene with two cameras and planes
similar to the real scene analyzed in Section 6. The performance of the plane
estimation method is tested by perturbing the initial plane parameters slightly
and using the image points to estimate the planes. Fig VIII.5 presents the re-
sults of plane estimation with respect to estimating the position of the refractive
plane, where the position of the plane is defined as the point at the center of the
plane, computed using the ground truth planes for all other planes. Additionally,
sensitivity to noise in image coordinates is tested by adding zero-mean normal dis-
tributed noise to the image coordinates and subsequently estimating the planes.
The result of estimating the refractive plane position as a function of added noise
variance is presented in Fig VIII.6.
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Figure VIII.5: Distribution of errors in estimated plane positions compared to
ground truth for three scene settings, given slightly perturbed initial plane parame-
ters. Note that the distributions in the top row and the left column shows the errors
in position of the refractive plane, and the bottom right shows the distribution of
errors in position of both reflective planes.
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Figure VIII.6: The median of error in position of the refractive plane for three scene
settings as a function of the noise variance σ2. For each σ, zero-mean Gaussian noise
with variance σ2 is added to the normalized image coordinates, and the planes are
estimated given slightly perturbed initial plane parameters. Note that the difference
between one and two reflective planes is small.
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Figure VIII.7: The distribution of re-projection errors (left) and estimated scene
points position errors (right) for a real experiment using a checkerboard.

5.2 Real checkerboard experiments

The setup presented in Section 6 was used for testing the performance of the
method on real data. A checkerboard of known dimensions was submerged in the
water in an aquarium overlooked by four cameras, as presented in Fig VIII.8, in
order to evaluate the performance of the system. The checkerboard was moved
in a range of approximately 200 mm to 400 mm from the cameras. The cameras
have been pre-calibrated and initial estimates of the planes of the aquarium are
used. The method of optimizing the refractive and reflective planes, presented
in Section 4 and synthetically evaluated in Section 5.1, was applied to observed
image points from the scene.

The re-projection errors obtained during the estimation are presented in Fig.
VIII.7. In addition, the relative positions of the estimated scene points are ana-
lyzed as follows. Since the absolute pose of the checkerboard is unknown, the
estimated scene points are transformed by an euclidean transformation to the lo-
cal coordinate system of the checkerboard. The distribution of distances between
the transformed estimated scene points and the checkerboard points is presented
in Fig VIII.7.

6 Application – tracking small aquatic organisms

The proposed system is applied for a biological experiment on Daphnias (small
aquatic organisms), where the behavioral response to e.g. ultraviolet radiation
is studied. A setup consisting of an aquarium overlooked by four cameras ar-
ranged as vertical stacked stereo-pairs was used to acquire videos, as depicted in
Fig VIII.8. The cameras were pre-calibrated and the refractive plane was esti-
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Figure VIII.8: (a) and (b): Side and top view of the experimental setup, composed of
an aquarium and four cameras arranged as vertical stacked stereo-pairs that overlook
the entire aquarium from the side. (c): The track of one Daphnia, the model of the
aquarium and the four cameras.

mated, as described in Section 4. Note that since the cameras approximately lie
in a plane which is approximately parallel to the refractive surface, a good initial
estimate of the refractive surface normal can be made. Measuring the distance
from the refractive plane to the cameras by ruler enables initiation of the fourth
parameter of the refractive plane. Since the aquarium is rectangular and distances
between parallel surfaces are known, initial values of all planes can be made with
sufficient precision.

Videos of Daphnia were recorded and the Daphnia were subsequently de-
tected. The Daphnia’s image points were input into the framework and their cor-
responding 3-d positions were estimated as explained in Section 3.4. The track of
one Daphnia is shown in Fig VIII.8.

7 Conclusion

We have presented a method that can be used for the tracking of objects within
a scene where both flat refractions and flat reflections are present. Evaluations
on both synthetic data and real data have confirmed that the information that is
found in the reflections can be used to improve the performance of estimating
the refractive and reflective planes and the position of objects in the scene. Lastly,
we have presented an application of the system that produces qualitatively good
results.
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Abstract: Organisms are often faced with multiple threats, which may induce
both behavioral and morphological responses. One such behavior is diel verti-
cal migration of zooplankton (DVM), which may be induced by several drivers,
including predation, temperature, food availability and also ultraviolet radiation
(UVR). In order to disentangle the relative importance of predation risk and UVR
for this global phenomenon, we exposed two species of the freshwater cladoceran
Daphnia to both UVR and a predation threat in the form of either a fish or an
invertebrate predator to investigate how Daphnia handle these two threats simul-
taneously. We were unable to identify any significant anti-predator responses in
either of the two Daphnia species, but both species showed a strong response in
both vertical position and speed when exposed to UVR. Our data lends support
for the recent transparency-regulator hypothesis arguing that UVR is a stronger
driver of DVM than predation in clearwater systems.

1 Introduction

All organisms on Earth are faced with various threats during their lifetime and
how these threats are perceived and handled have large effects on the fitness of
the organism. Moreover, the threats organisms face often occur simultaneously
but can vary both spatially and temporally. In order to maximize the likelihood
of surviving, an organism needs to be able to perceive the present threat level
and also respond accordingly. A common threat is predation, and in order to
avoid being eaten an organism has to recognize the presence of a predator and
then respond in a way that reduces the probability of being consumed [9]. Such
behavioral responses include e.g. hiding or altering of speed [13].

Zooplankton in the world’s lakes and oceans are known for their large ver-
tical migrations that occur on a daily basis, the so-called diel vertical migration
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(DVM). Originally this behavior was assigned as a response to the threat of pre-
dation, where organisms moved away from the well-lit surface waters during day,
migrating into deeper and darker waters where the risk posed from visual preda-
tors is reduced (see e.g. [5, 15, 19, 22]). During recent years the importance
of detrimental ultraviolet radiation (UVR) has also been proposed as a proximate
cue driving the diel vertical migration (reviewed in [3, 21]). As UVR attenuates
with depth [8, 14] downward migration provides a refuge that protects the or-
ganisms from the dangerous radiation. The freshwater zooplankter Daphnia has
been shown to respond behaviorally both to UVR (e.g. [7, 12, 16]) and preda-
tion [1, 4]. Dodson [1] early on showed that some Daphnia species are able to
distinguish between different predators and respond differently to the presence of
these. Hence, as both the predator evasion hypothesis and UV avoidance hypot-
hesis may explain the DVM of Daphnia we here aim at quantifying the behavioral
response of Daphnia when exposed to these two threats simultaneously. Presence
of visual predators (e.g. fish) have been shown to induce downward migration
in zooplankton, whereas invertebrate predators may induce reversed migration
where the organisms favor surface waters during daytime and migrate down du-
ring night (e.g. [10]). In this study we expose Daphnia magna and Daphnia pulex
to UVR alone and in presence of a pelagic (fish) or a benthic (invertebrate) pre-
dator, respectively, in order to quantify potential trade-offs in the response when
faced with simultaneous threats from different directions. We did this by tracking
the individual Daphnia responses using a recently developed nanoparticle labe-
ling technique [2]. We hypothesized that Daphnia will migrate downward when
exposed to UVR alone and in combination with a fish predator. However, when
exposed to UVR and a benthic invertebrate predator we hypothesize that Daphnia
may reduce the migration in order to minimize exposure to the predator.

2 Materials and methods

Daphnia magna originating from Lake Bysjön (55.6753 latitude, 13.5452 longi-
tude) and Daphnia pulex originating from Lake Dalby quarry (55.6666 latitude,
13.3500 longitude) were used throughout the experiment. Cultures of both D.
magna and D. pulex were kept in separate 30 L plastic aquaria with a light:dark
cycle of 14:10 hours and fed ad libitum three times per week with an algal sus-
pension dominated by Scenedesmus sp.

To quantify the potential trade-off in Daphnia threat response we exposed
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them to UVR in the absence and presence of both a benthic invertebrate predator
or a fish predator. As invertebrate predator we used damselfly larvae (Calopteryx
sp.) collected in an artificial stream in Lund, southern Sweden. Damselfly larvae
were kept in a 20 L aquarium and fed with a mixture of D. magna and D. pulex.
A preliminary 24h feeding trial experiment conducted in 1L glass jars revealed
that per capita ingestion rate of damselfly larvae were 4.60 ± 2.89 (mean ± SD,
n = 5) D. magna. In the fish predator treatment we used a ninespine stickleback
(Pungitius pungitius) caught in the same stream as the damselfly larvae. Stickle-
backs were kept in a 20 L aquaria and fed ∼ 50 D. magna and 25 D. pulex per
individual three times per week.

Prior to the trials we labeled three D. magna and three D. pulex with flu-
orescent nanoparticles (quantum dots) according to Ekvall et al. [2]. Labeling
using fluorescent nanoparticles makes it possible to track the movements of the
Daphniids through the fluorescence emitted from the nanoparticles upon excita-
tion. In order to separate the two species we used nanoparticles fluorescent at 585
nm (yellow) and 655 nm (red) wavelength. Labeling color was switched between
trials using a randomized block design. All experiments were performed in an
aquarium with the dimensions (L×W ×H) 0.2×0.2×0.85 m, filled with 30 L
of water, resulting in a 0.75 m water column. In order to minimize reflections in
the aquaria walls, the bottom and three walls were made of sanded black Plexiglas
whereas the fourth wall was made of transparent Plexiglas. The nanoparticles were
excited by integrating eight light-emitting diodes (LED) array with peak emission
at 465 nm (VANQ Technology) in a custom-made aquaria top (0.3× 0.3 m).

To ensure the presence of predator cues in the water we pre-treated the water
by leaving either one damselfly larva or a stickleback in a 25 L holding tank 24
hours prior to the start of the experiments. Throughout the trials a live predator
was put at the bottom of the tank using a small plastic net cage (70 × 50 ×
50 mm) that was lowered down just before the start of the experiment. The
experiments were video recorded using four synchronized digital cameras (Pike
F-210C, Allied Vision Technologies GmbH) equipped with 8 mm focal length
lens (SPACE Inc. VHF8MK) and arranged as two stereo-pairs along one side of
the aquarium. Each experiment lasted for a total of six minutes and was built up
by two phases each lasting three minutes. Daphniids were allowed to acclimatize
in the aquaria with the excitation light turned on during 15 minutes prior to the
start of video the recording. During phase one only the top mounted excitation
light used for exciting the nanoparticles was switched on, this was then followed
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by three minutes where a UVR threat was added by switching on a UVR LED
array (peak emission at 380 nm, VANQ Technology) mounted at the top of the
aquarium. As control we used the same design as described above with the removal
of the predator (i.e. UVR exposure only). Each treatment was replicated six times
with new inexperienced Daphniids and the videos were tracked to obtain three-
dimensional (3D) information regarding the position and speed of the organisms.

The vertical position and speed of the Daphnia was evaluated using linear
mixed effect models (nlme package [11]) with UVR phase (before or during UVR
exposure), predator (No predator, Fish or Damselfly) and species (D. magna or D.
pulex) as fixed factors and the respective response variable as dependent variable.
The model was reduced to the minimum adequate model using stepwise bac-
kward deletion. To control for individual and replicate we added individual ID as
a random factor nested under replicate ID. All statistics were calculated based on
median values for the two UVR phases using R, version 3.1.2 [17].

3 Results

By analyzing the vertical position data using a linear mixed effect model we found
that UVR had a strong effect on the vertical position of both species of Daphnia
(F1, 83=39.55, p<0.001) and that the vertical response did not differ between the
two Daphnia species (F1, 74=0.624, p=0.4319) nor between predator treatments
(F2, 15=0.232, p=0.7959), Fig. IX.1. The final model using stepwise backward
deletion contained only species and UV as explanatory factors.

Speed differed between the two species (F1, 74=57.24, p<0.001), with D.
magna being much faster than the smaller D. pulex, Fig. IX.2. Speed was also
affected by UVR (F1, 83=4.035, p=0.0478), but not significantly by the presence
of any of the predators (F2, 15=2.510, p=0.1147).

4 Discussion

Although previous studies have found that Daphnia species are able to perceive
and respond to the presence of predators in the surrounding (e.g. [1, 20]) and re-
spond behaviorally [3, 5] we found no significant effects of the presence of neither
a fish nor an invertebrate predator when it comes to the vertical position and speed
of D. magna and D. pulex (Fig. IX.1 and Fig. IX.2), possibly caused by large in-
dividual variance with respect to predator response. However, in contrast to the
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Figure IX.1: Vertical position of D. magna (left) and D. pulex (right) before and
during exposure to ultraviolet radiation (UVR Threat). Different colors identify the
different predator threats: No predator (white), Fish (light grey) and Damselfly (dark
grey). Bars and whiskers denote mean +/- SE.

effects from predators, the response to UV radiation was immediate and strong for
both Daphnia species and both with respect to vertical position and speed. These
results are in line with the results presented by Hylander [6] who evaluated the
behavioral response of zooplankton after exposing zooplankton communities to
UVR and predator cues during a five months mesocosm experiment. The authors
found that Daphnia responded strongly to an UVR threat but found no response
to the presence of predator cues from fish [6]. However, it was shown very early
by e.g. Dodson [1] that Daphnia are able to respond differently to different pre-
dators and that they responded more to predators which they co-occurred in their
lake of origin. Our D. magna culture has been kept as a laboratory culture for
more than 100 generations and hence the animals have not experienced preda-
tors during this time, suggesting that they might now be less reactive to predator
scent. On the other hand, the D. pulex clone was brought in directly from a na-
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Figure IX.2: Speed of D. magna (left) and D. pulex (right) before and during exposure
to ultraviolet radiation (UVR Threat). Different colors identify the different predator
threats: No predator (white), Fish (light grey) and Damselfly (dark grey). Bars and
whiskers denote mean +/- SE.

tural system, and may, accordingly, be expected to have a more recent experience
of predation, which was also the case (Fig. IX.1 and Fig. IX.2). The observed
difference in speed between the two Daphnia species is likely attributed to the size
difference of the two species where the larger D. magna have a higher capacity for
reaching higher speeds compared to the smaller D. pulex.

Our results do to some extent confirm the proposed transparency-regulator
hypothesis [20], which state that UVR is the strongest structural driver for DVM
in clearwater systems. All our experiments were conducted in clear water and
based on the transparency-regulator hypothesis we would expect to find a strong
response to UVR but not to predation, which is in line with the observed re-
sponses. Evidence for this was also presented by Tiberti and Iacobuzio[18] who
compared zooplankton distribution in clearwater alpine lakes with and without
predators. They observed that the distribution did not differ between lakes with
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and without predators and that the observed patterns where likely driven by UVR.
In conclusion we here show that Daphnia magna without experience from

predators did not respond behaviorally to the presence of neither a fish nor an
invertebrate predator, whereas D. pulex derived directly from a natural system
with predators, showed a tendency for diving deeper and swimming slower in the
presence of fish than when exposed to a benthic predator (damselfly). However,
when also exposed to UVR all tendencies for a predator response was erased and
both species immediately escaped to the bottom-water refuge. These laboratory
results support the proposed transparency-regulator hypothesis, which argues that
predation is a less important cue for DVM compared to UVR in clearwater sys-
tems.
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Abstract: There is a significant interest in scene reconstruction from underwater
images given its utility for oceanic research and for recreational image manipu-
lation. In this paper we propose a novel algorithm for two view camera motion
estimation for underwater imagery. Our method leverages the constraints provi-
ded by the attenuation properties of water and its effects on the appearance of
the color to determine the depth difference of a point with respect to the two ob-
serving views of the underwater cameras. Additionally, we propose an algorithm,
leveraging the depth differences of three such observed points, to estimate the rela-
tive pose of the cameras. Given the unknown underwater attenuation coefficients,
our method estimates the relative motion up to scale. The results are represented
as a generalized camera. We evaluate our method on both real data and simulated
data.

1 Introduction

The recovery of 3D scene geometry from images has always been one of the core
goals of computer vision and has progressed significantly over the last decade [1,
3, 6, 16]. One essential building block of all these system is the ability to success-
fully estimate the two-view geometry between two overlapping cameras under the
assumption of a central perspective camera. This camera model though is only
valid for cameras taking photos through air. Hence, this mode of reconstruction
is not valid for cameras submerged in water. However, 71% of the earth’s surface
is covered by oceans and with both the scientific interest in underwater imagery
and the now ubiquitous availability of underwater cameras to users, for example
through GoPro cameras, performing structure from motion in underwater envi-
ronments moves into the focus of research [9, 14]. In this paper we target the
successful estimation of two-view geometry for underwater cameras, which due
to their imaging conditions do not comply with the traditionally used pinhole ca-
mera model [14]. In this paper we propose a novel method to enable SFM under
such circumstances. In particular we propose a novel minimal solver to enable
two-view geometry estimation and a method for relative point depth estimation.

Our proposed method leverages the observation that when looking at photos
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for example of an under water ship-wreck, one can get a sense of depth. The
reason for this is the easily observable depth dependent attenuation of light un-
der water, which is more significant than in air and weakens as well as distorts an
object’s color [12, 13]. We leverage this observation along with the 2D correspon-
dences of the projections of the same 3D scene point into two different images to
deduce a novel constraint on the relative depth change of the point with respect to
the two capturing cameras (see Section 2.3). Given the relative depth changes we
then propose a novel three point algorithm that leverages these changes in order
to infer the relative camera motion up to scale (see Section 3). In combination
this enables us to obtain the two view geometry under a generalized camera mo-
del between two images of calibrated underwater cameras. Next we discuss the
related work in the area of underwater image based pose estimation.

1.1 Related work

Agrawal et al. [2] present theory and methods for multi-layer flat refractive sce-
nes, using an arbitrary number of interfaces. A method for calibrating such a
system is presented, and multi-layer systems are shown to be well approxima-
ted by single/two layer systems. A few special cases encountered in flat refractive
geometry are solved using polynomial solvers and geometric algebra [4]. They
develop near-minimal solvers for the general calibrated and unknown focal length
absolute pose cases, i.e. for cases where the scene coordinates are assumed to
be known. In this paper we use similar polynomial solving techniques but with
unknown scene points.

In the field of underwater structure from motion, Sedlazeck et al. [15] have
created a system for simulating deep sea underwater images using physical mo-
dels for light attenuation, scattering and refraction. Furthermore, Sedlazeck et
al. have shown that approximating underwater structure from motion by pinhole
cameras produces a systematic error [14]. They propose a method for underwa-
ter structure from motion using a virtual camera model [8, 9]. Jordt-Sedlazeck
[8] provides a broader overview of the theory and the field of underwater SFM.
Their proposed methods uses at least five points for pose estimation (assuming
the camera is calibrated) while our method only uses three.

Schechner et.al. [12] propose to recover the scene object radiance, and as a
by-product the relative distances in the scene are estimated and yield range maps
for the scene. These relative distances are used as a ratio of improvement of the
visibility range achieved by the recovery method. Furthermore, Schechner et.al.
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[13] reconstruct dense 3-D images of the scene using the depth map and the
recovered image. Their approach treats depth maps as a by-product of estimating
the scene radiance, whereas our proposed method provides a fusion of their two
separate methods.

Queiroz et al.[11] uses the same physical imaging model as in this paper, and
leverages color information to improve dense stereo maps. However, they assume
a manual pre-calibration of all underwater imagery parameters as well as both
geometric and radiometric pre-calibration. The physical imaging model is only
used for adding an automated penalty function for the depth map estimation.
The algorithm is later automatized by Nascimento et al. [10], but the physical
imaging model is still not used for camera pose estimation. Our method, however,
automatically estimates the underwater imagery parameters and uses the physical
imaging model for pose estimation.

To our knowledge, optimal two-view structure-and-motion using three points
and known depth differences has not been solved to date. Neither has the problem
of two-view generalized camera structure-and-motion using three points and their
colors.

1.2 Innovations

In particular, we propose the following methods:

• We present a novel minimal solver, the Three Point Delta algorithm (TPD),
for estimating the relative motion of a generalized camera given three pairs
of point correspondences and differences in depth for each such correspon-
dence.

• We present a novel method, the Three Colors Depth Difference algorithm
(TCDD), for using a physical model of light propagation under water to
estimate relative depth differences.

• We present a novel method, the Misty Three Point algorithm (MTP), for
estimating the relative motion of a generalized camera given three pairs of
point-and-color correspondences.

Moreover, we show that the methods perform very well numerically and are stable
to large amounts of outliers when implemented within a RANSAC-framework,
which is enabled by the fact that it only requires 3 points for estimating the relative
motion.
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1.3 Additional applications

Although the presented minimal solver (TPD) is applied on underwater images
in this paper, we note a few more potential areas of application.

• Estimating relative motion using both images and sound.

• Estimating relative motion of cameras in foggy conditions.

• Estimating relative motion from any other pseudo-depth camera.

• Estimating relative orientation of two microphone arrays.

2 Estimating relative depth in underwater imagery

The physical conditions for imaging under water are significantly different than
in air leading to a distinct set of challenges for computer vision methods.

One of the main differences is the nonlinear geometry [2, 8, 9] - as cameras
usually need to be enclosed in protective housing, which changes the direction of
the light rays. In air, rays from the source travel in straight lines to the camera
lens. In water, rays are refracted at the surface of the (usually flat) port of the
underwater housing. Given that the orientation and position of the refractive
surface relative to the camera is known, Snell’s law (see Fig X.2) can be used to
determine the outgoing rays from a point on the camera sensor. It states that the
angle θ1, relative to the normal of the interface, of an incident ray is related to the
angle of the refracted ray θ2 by the equation

ρ1 sin θ1 = ρ2 sin θ2, (X.1)

where ρ1 and ρ2 are the refractive indices of the two media. The fact that this
equation is nonlinear is one of the main causes of the challenge in the field of
underwater structure from motion. For example, finding the ray in the scene
corresponding to an observed pixel is not much more difficult than for regular
cameras. Note, though, that it requires that the intrinsics of the camera and the
relation to and geometry of the underwater housing is known. However, the
reversed problem of finding the projection of a point in space on the image plane
is significantly more challenging than for regular cameras.

Another significant difference is the appearance - colors look different under
water than when imaged through air [7, 12, 13]. There are two sources of light
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that can be observed: light from the scene object and light as part of the ambient
light. The observed ambient light part will be termed the veiling light. In this pa-
per, the observation of the veiling light is caused by ambient light being scattered
towards the cameras line of sight by the particles in the water. The light signal
from the scene object can by itself be seen as composed of two components - di-
rect transmission and forward scattering. Whereby the direct transmission is the
signal after losing energy due to particles absorbing and scattering (in all directi-
ons) the light from the scene object, causing an exponential decrease in energy.
The forward scattering is caused by particles scattering the light in small angles
relative to the line of sight, causing a blur as well a decrease in energy. A crucial
part regarding attenuation is that different wavelengths are attenuated at different
rates - red is absorbed 10 times faster than green, which in pure water is absorbed
approximately twice as fast as blue. This causes the natural ambient light to be
blue/green since the red/yellow components of the natural sunlight are absorbed
too quickly to be perceived.

In the remainder of this section, we will present our novel method for taking
advantage of this difference in observed color, by assuming that a scene object
will have the same unknown radiance when viewed in different images. We then
introduce how the observed difference in color between observations of a scene
point can be used to estimate differences in distance to the point.

2.1 The physical model

The Jaffe-McGlamery equation is a commonly used equation that models the
effect of absorption and scattering [7]. In this paper, a simplified version of the
equation (Eq. (X.2)) is used, which does not take the forward scattering into
account. The forward scattering can be neglected as the dominant cause for image
contrast degradation is the veiling light [12, 13], and furthermore a large part of
the forward scattering can be seen as attenuation, which is already captured in the
simplified model (Eq. (X.2)).

First, we introduce our notation. The point in space with index k is re-
presented by (Uk, Ek), where the three-vector Uk is the position and the three-
vector Ek = (Erk, E

g
k , E

b
k) is the radiance of the object in the color channels

λ ∈ {r, g, b}. The observation of the point with index k in camera i is repre-
sented in the coordinate system of camera i by (uik, Iik, pik), where uik is the
direction of the ray in water, pik is a point on the ray and Iik = (Irik, I

g
ik, I

b
ik) is

the observed color. Note that in the case of the pinhole camera model, all pik = 0,
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and in the case of the generalized camera model to account for refractions, the pik
are points on the refractive plane. The depths zik denote the Euclidean distance
from pik to Uk, i.e. zik = ‖pik−(RUk−Rt)‖2, whereR is a rotation matrix and
t a translation vector that together transform scene points to the local coordinate
system of the camera.

The equation used for modelling the physical effects towards the observed
colors is the simplified version of the Jaffe-McGlamery equation

Iλik = αλ

(
Eλk e

−ηλzik +Bλ
∞(1− e−ηλzik)

)
+ βλ, (X.2)

where Iλik is the pixel value in color channel λ for camera i and point k, αλ and
βλ are color correction coefficients [8], Eλk is the "true" but unknown color of
point k, ηλ is the attenuation coefficient of the water, zik is the distance from the
outer refraction plane of camera i to point k and Bλ

∞ is the "veiling light". This
is a convex combination of the true color and the veiling light, with added color
correction. Note that we here assume that the two cameras have the same color
correction coefficients. The equation can be reformulated to:

Iλik = αλ

(
Eλk −Bλ

∞
)
e−ηλzik + γλ, (X.3)

where γλ = αλB
λ
∞+βλ is the observation of the veiling light. Given observations

{Iλik} and {Iλjk}, λ ∈ {g, b}, of the color of point k in cameras i and j at depth
zik and zjk, the equation can be reduced to

Iλik − γλ
Iλjk − γλ

=
αλ
(
Eλk −Bλ

∞
)
e−ηλzik

αλ
(
Eλk −Bλ∞

)
e−ηλzjk

= eηλ∆zijk . (X.4)

2.2 Estimating the constant parameters

The red color channel is not used due to the fact that in practical applications
the red colors are by practical means completely absent, as discussed in Section 2.
Accordingly, there are 4 unknown constant parameters to estimate, and each pai-
rwise correspondence introduces 1 unknown variable (∆zijk) and provides two
constraints by using only the green and blue color channels in Eq. (X.4). This
means that to solve for all 4 + n unknown constants and variables, at least n = 4
pairwise correspondences are needed. However, a scale ambiguity exists, thus ηλ
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and zik can be redefined as η̂λ = ηλ/ηg and ẑik = ηgzik. Thus for each point
correspondence we have the constraints

Igik − γg = (Igjk − γg)e∆ẑijk ,

Ibik − γb = (Ibjk − γb)eη̂b∆ẑijk .
(X.5)

Furthermore, solving for γλ and reformulating Eq. (X.5) leads to

γλ = Iλjk +
1

1− eη̂b∆ẑijk
(
Iλik − Iλjk

)
, (X.6)

which is monotonous in ∆ẑijk. This monotony can be used to show that there
does not always exist a real solution (∆ẑijk,γ, η̂).

2.3 The Three Colors Depth Difference algorithm

After introducing the obtained constraint for each point correspondence, we now
introduce our proposed depth estimation. The underwater error function for the
color channel λ is defined as (rewritten from Eq. (X.4))

rλ(γ, η,∆zijk) = Iλik − γλ − (Iλjk − γλ)eηλ∆zijk , (X.7)

and the combined error function for the green and blue channel as

r(γ, η,∆zijk) = r2
g + r2

b . (X.8)

The Jacobian for Eq. (X.8) is computed and used in a Gauss-Newton algorithm
to find the parameters for which the error is minimized.

Note that if Iλik − γλ has a different sign than Iλjk − γλ there is no solution
to rλ = 0 (since ex > 0), and the minimum is found at ∆zijk = 0. This would
correspond to a point being observed beyond infinity. Thus it can be concluded
that

min
∆z

r2
λ(γ, η,∆z) ≥ (Iλik − γλ)2 (X.9)

This means that a point in one camera with green and blue color intensities
larger than γ will still have color intensities larger than γ when observed in
another camera. This lower bound will later be used for fast outlier rejection
when implementing the three-point relative pose algorithm within RANSAC (see
Section 4.1).
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3 The Three Point Delta algorithm

Given three point correspondences in two calibrated generalized cameras as well
as the difference in depth (with known scale or, equivalently, either ηg or ηb is
known i.e. up to scale), the relative motion of the cameras is sought. Note that in
the particular case where the generalized camera is a pinhole camera, an unknown
scale of depth differences simply gives a scale ambiguity in the solution. In the ge-
neral case, an unknown scale of depth differences make the solution non-existing
or invalid.
We denote Pi =

[
I 0

]
and Pj = R

[
I −t

]
as the ith and jth camera’s

projection matrices with the ith camera without loss of generality being at the
origin and in canonical orientation. Let {xik} and {xjk} denote sets of points in
the camera planes of the generalized cameras i and j, respectively, corresponding
to observations of the scene points k = 1, 2, 3, and let ∆zijk = zjk − zik
be the measured depth differences of the points between camera i and j. The
backward projection of each pair of corresponding points (xik, xjk) into space
can be parametrized by

pik + zikuik, zik ∈ R,
R>(pjk + zjkujk) + t, zjk ∈ R,

(X.10)

where pik, pjk, uik and ujk are known since the cameras are intrinsically calibra-
ted. In the case where the generalized cameras are cameras enclosed in underwater
housings, the pik’s and pjk’s are points on the outer surfaces of the underwater
housing ports, and the uik’s and ujk’s are the directions into the water.
Since xik and xjk correspond to the same scene point, there exists zik and zjk
such that pik + zikuik = R>(pjk + zjkujk) + t (using the parametrization from
Eq. (X.10)). The unknown depths zjk can be reduced by substituting zjk =
zik + ∆zijk, which gives the sets of equations

pik + zikuik = R>(pjk + (zik + ∆zijk)ujk) + t,

k = 1, 2, 3,
(X.11)

where depths zik, camera j’s rotation R and camera j’s translation t are the
unknown variables that are sought. We propose to parametrize R using qua-
ternions q = (s, v), where s is scalar and v is a three-vector,

R = 2(vv> − s[v]×) + (s2 − v>v)I, (X.12)
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and adding the constraint s2 + v>v = 1 to ensure that the determinant is one,
gives a total of 10 equations in 10 unknowns.
The equations are solved by noting that Eq. (X.11) implies that there is a rigid
transformation from pik+zikuik to pjk+(zik+∆zijk)ujk. Thus the Gramians
for the two sets of points Uk = pik + zikuik and U ′k = pjk + (zik + ∆zijk)ujk
are equal [17]. The Gramian for U is defined as V >V , where

V =
[
U2 − U1, U3 − U1

]
. (X.13)

Inserting the expressions for the Uk’s and U ′k’s gives the Gramians

V =

[
zi2ui2 − zi1ui1 + pi2 − pi1
zi3ui3 − zi1ui1 + pi3 − pi1

]
,

V ′ =
[
(zi2 + ∆zij2)uj2 − (zi1 + ∆zij1)uj1 + pj2 − pj1

(zi3 + ∆zij3)uj3 − (zi1 + ∆zij1)uj1 + pj3 − pj1

]
.

(X.14)

Thus the constraint that the Gramians are equal amounts to

V >V − (V ′)>(V ′) = 0, (X.15)

and provides three equations that are quadratic in the three unknowns zik.
It turns out that the coefficients for all z2

ik terms are zero since the uik’s and
ujk’s are normalized. Thus the equations are of the form





A11xy +A14x+A15y +A17 = 0,

A21xy +A22xz +A23yz +A24x+A25y +A26z +A27 = 0,

A32xz +A34x+A36z +A37 = 0,

(X.16)

where x, y and z correspond to z1, z2 and z3. The system in equation (X.16) can
be represented as a matrix-vector multiplication Av = 0, where

A =



A11 0 0 A14 A15 0 A17

A21 A22 A23 A24 A25 A26 A27

0 A32 0 A34 0 A36 A37


 , (X.17)

and v is the vector of monomials

v = (xy, xz, yz, x, y, z, 1). (X.18)
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Note that each line in Eq. (X.16) has been divided by the coefficient of the leading
term. By performing row-operations on the system, it can be simplified to the
form Âv = 0, where

Â =




1 0 0 Â14 Â15 0 Â17

0 1 0 Â24 0 Â26 Â27

0 0 1 Â34 Â35 Â36 Â37


 . (X.19)

To solve the system, x times the third equation, y times the second equation and
z times the first equation are added, i.e. the equations





xyz + C14xz +C15yz + C17z = 0,

xyz + C24xy +C26yz + C27y = 0,

xyz + C35xy +C36xz + C37x = 0,

(X.20)

are added. Since Eq. (X.19) gives reductions from xy,xz and yz to x, y and z,
xyz can also be reduced to x, y and z. Thus the system can be formulated as





M11y +M12z +M13 = xy,

M21y +M22z +M23 = xz,

M31y +M32z +M33 = x,

(X.21)

i.e. as the eigenvalue equation

M



y
z
1


 = x



y
z
1


 . (X.22)

Thus the depth zi1 is an eigenvalue of M , and zi2 and zi3 are the two first ele-
ments of the corresponding eigenvector after normalizing with the third element.
Since M is a 3 by 3 matrix, three solutions are found and need to be evaluated by
Eq. (X.16).

Assuming that one solution (zi1,zi2,zi3) to Eq. (X.16) was found, the zjk’s
can be computed by zjk = zik + ∆zijk. Now that all depths are known, the Uk’s
can be computed from the zik’s as in Uk = pik + zikuik. Eq. (X.11) gives that
Uk = R>(pjk + zjkujk) + t where R and t are the only remaining unknowns,
which means that the remaining problem is now to find a projective transforma-
tion from Uk to pjk+zjkujk. This problem is solved by the three point resection
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method [5], providing up to four solutions for (R, t). All solutions (R, t) that
gives negative depths when projecting the Uk’s are rejected. Then the distance
from each point pjk to the corresponding transformed scene point RUk − Rt is
computed as

z′jk = ‖(RUk −Rt)− pjk‖2. (X.23)

If the relative pose (R, t) is valid, then zjk = z′jk must hold. Thus, for each
solution (zi1, zi2, zi3) to Eq. (X.16) there are at most four solutions (R, t), which
makes a total of up to twelve solutions to be evaluated as described.

In conclusion, we have shown how given only three pairs of corresponding
points and their difference in distance to the camera, first the absolute distances
can be found and subsequently the object and the relative motion. Furthermore,
by combining this method with the method for estimating relative depths given
the colors of three pairs of corresponding points, we have found a method for es-
timating relative motion of a generalized camera given three corresponding points
with their associated colors in the images.

4 Robust estimation with the Misty Three Point algorithm

In this section we show how the Misty Three Point (MTP) algorithm can be
embedded in a RANSAC-framework using a sequencing of the algorithm that
enables fast rejection of an estimate as well as fast rejection of outliers. Given a set
of inliers, we also show how the solution can be optimized for all parameters while
taking both reprojection errors and the physical model for underwater imaging
into account.

4.1 RANSAC

Since the Three Point Delta (TPD) algorithm introduced in Section 3 uses relative
depths as input, the Three Colors Depth Difference (TCDD) algorithm defined
in Section 2.3 must be the first step of relative pose estimations. In general, the
underwater imaging parameters that the TCDD provides are not necessarily fea-
sible for all points, giving an opportunity to ignore those points in the following
steps. In addition, there is not always a solution to the depth difference problem,
in those cases the estimate based on those points can be instantly rejected. As-
suming that the algorithm found feasible parameters, the TPD is then used to
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estimate the relative pose. At this point, the scene points are reconstructed by
triangulation, and the reprojection errors are computed and used to evaluate how
well the estimated pose fits the dataset. Furthermore, the depth differences are
also estimated for all feasible points, adding one more measure of how well the
estimate fits the dataset.

4.2 Bundle adjustment

The results from the RANSAC method are optimized in a bundle adjustment
algorithm that seeks to minimize the errors both for the reprojections and the
underwater imagery equations using all variables. In particular, it optimizes for
the relative motion of the generalized cameras and the 3-D points. We define
the residual vector, whose norm is the target for minimization, by combining the
reprojection errors with Eq. (X.3):

r(x,θ) =




...

Ig1k − Ê
g
ke
−ηgzk − γg

Ib1k − Êbke−ηgzk − γb
Ig2k − Ê

g
ke
−ηgz′k − γg

Ib2k − Êbke−ηgz
′
k − γb

Uk − zkuk
RUk −Rt− z′ku′k

...
s2 + v>v − 1




(X.24)

where radiance Êλk = α(Eλk −Bλ
∞) and R is parametrized as in Eq. (X.12). The

partial derivatives of r are computed analytically and are used for minimizing
‖r(x,θ)‖ using Gauss-Newton’s method with respect to x.

5 Experiments

We are evaluating our proposed method on simulated and real data. First, we
show that the Three Point Delta (TPD, see Section 3) algorithm is numerically
stable with respect to estimating the depth. Secondly, we show that the Three Co-
lors Depth Difference (TCDD, see Section 2.3) algorithm and the combination
of the TCDD algorithm followed by the TPD algorithm (The Misty Three Point
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algorithm, see Section 4) are also numerically stable. Thirdly, we show that the
RANSAC based algorithm introduced in Section 4.1 handles outliers well.

The simulated experiments are then complemented with real data experi-
ments. Note however, that for the real experiments we do not have ground truth
to compare with, hence, we compare them only qualitatively.

5.1 Synthetic data

In order to test the system, a scene consisting of three 3D-points with RGB-colors
and two cameras was generated along with underwater imaging parameters. The
points were projected into the cameras and the known distance from each 3D-
point was used to find the attenuated colors according to Eq. (X.2). To test
the accuracy of our proposed pose estimation, the MTP algorithm was used to
estimate the relative pose, using the projected points and the observed colors.
The relative translational error and the relative angular error for the estimate were
computed and are presented in Fig X.5. Similarly, the TPD was used to estimate
the relative pose using the projected points and the given difference in depth,
the results of which are also presented in Fig X.5. These results show that we
can accurately estimate the camera motion. Furthermore, the MTP algorithm
was used to estimate the absolute distance given the three projected points and
their colors, and the TPD algorithm provided estimates using the three projected
points and the given change in depth. The relative errors of the estimates are
presented in Fig X.5. The numerical accuracy of the TCDD algorithm was tested
by providing the observed colors of the three points. The estimated difference in
depth as well as the underwater imaging parameters are compared to the ground
truth in Fig X.5.

5.2 Real data

For the purpose of validating that the models and methods are practically ap-
plicable, a video taken from diving an underwater ship wreck was downloaded
from YouTube. The video was captured using a GoPro camera enclosed in a flat
port protective underwater housing. Despite the unknown calibration, we could
still evaluate our method qualitatively and provide a proof-of-concept, as seen in
Fig X.8 and Fig X.9. As can be seen in the figures, the MTP succeeds in fin-
ding qualitatively correct corresponding points, reconstructed structure and also
qualitatively correct motion.
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6 Conclusion

We have proposed a novel method for estimating relative motion given three
points and their colors. Using physical models for underwater imaging, we have
shown that the depth information that is present in the observed colors can be
estimated and used in practice. We also demonstrate that our algorithms perform
quantitatively well in the synthetic experiments when compared to ground truth
(see Fig X.5), when exposed to noise (see Fig X.7), and in a RANSAC-framework
when exposed to high ratios of outliers (see Fig X.6). Furthermore, we have shown
that our proposed method is qualitatively correct in the reconstruction of struc-
ture and estimation of motion (see Fig X.8 and Fig X.9).
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Figure X.1: Real images with corresponding points found using the Misty Three
Point algorithm proposed in this paper.

269



Paper X

u

vn

P

X

ρ1 ρ2

C

θ1 θ2

Figure X.2: Snell’s law. A ray originating from the camera center C with direction u
undergoes a change of direction according to ρ1 sin θ1 = ρ2 sin θ2. This causes the
usually linear equations for projections, for example, to become nonlinear and much
harder to solve.
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Figure X.3: The relative pose problem solved in this paper. Two cameras centered
at the origin and t, respectively, are observing three points of unknown position
and unknown color. Note that we are not only using the direction uik from each
observed point, but also the observed color. The relative depths ∆ik = zjk − zik
are also crucial parts of this method. In the left cameras, with larger distance to the
objects, the colors look very similar. In the right camera, however, the observed colors
are more similar to the actual color of the object. These differences is what enables
the estimation of depth differences.
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Pinhole and air
Pinhole and air

Pinhole and water
Pinhole and water

Refractive and air
Refractive and air

Refractive and water
Refractive and water

Figure X.4: A visualization of the imagery effects of refraction and attenuation. The
top row images shows projections of the scene in a pinhole camera and the bottom
row shows projections of the scene in refractive cameras. The left column images
shows the images with no loss of colors, and the right row shows the images with
attenuated colors according to Eq. (X.2).
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Figure X.5: Distribution of solver error relative to ground truth, computed over
10000 random problem instances. The top row shows the relative error in estimated
distances for the Three Point Delta (TPD) algorithm and the Misty Three Point
(MTP) algorithm. The second row shows the relative error in estimated camera
direction for TPD and MTP. The third row shows the relative error in estimated
camera translation for TPD and MTP. Lastly, the bottom row presents the relative
errors in estimated depth difference (left) and underwater imaging parameters (right)
performed by the Three Colors Depth Difference (TCDD) algorithm.

272



6. Conclusion

0 0.5 1
0

5

10

Ratio of actual inliers

N
um

.c
or

re
ct

in
/o

ut

0 0.5 1
0

0.5

1

Ratio of actual inliers

R
at

io
co

rr
ec

ti
n/

ou
t

Figure X.6: The performance of inlier/outlier classification of the system given a
varying number of outliers, while the number of inliers is fixed to 10. In the left
figure, the number of classified inliers from the true inlier group (green) and the
outlier group(red) is shown. In the right figure, the rate of classifying outliers as
outliers (red) and inliers as inliers (green) is plotted. The test for each inlier ratio
was repeated 50 times, each of which consisted of 1000 RANSAC iterations, and the
plotted lines are the mean values over those tests.
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Figure X.7: Median of angular error in degrees as a function of noise variance. For
each noise level x, 1000 random problem instances were generated, and normal dis-
tributed noise with zero mean and x2 variance was added to the generated points.
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Figure X.8: A 3D-reconstruction of a scene estimated with the MTP. Detected point
correspondences are colored by distance to the origin, where the closest points are
colored red and the farthest away are blue. The top figure and the middle figure
show the detected points plotted on the used images and the bottom figure shows
the reconstructed 3D-points.
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Figure X.9: Some examples of images and corresponding points found using the
Misty Three Point algorithm. Reprojections of estimated scene points are given as
red asterisks.
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