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Detection of Contact Force Transients in Robotic Assembly

Andreas Stolt, Magnus Linderoth, Anders Robertsson, Rolf Johansson

Abstract— A robotic assembly task is usually implemented
as a sequence of simple motions, and the transitions between
the motions are made when some events occur. These events
can usually be detected with thresholds on some signal, but
faster response is possible by detecting the transient on that
signal. This paper considers the problem of detecting these
transients. A force-controlled assembly task is used as an
experimental case, and transients in measured force/torque
data are considered. A systematic approach to train machine-
learning based classifiers is presented. The classifiers are further
implemented in the assembly task, resulting in a 15% reduction
of the total assembly time.

I. INTRODUCTION

Industrial robots are usually position-controlled, i.e., con-

trolled to follow predefined trajectories. The robots do the

trajectory following very well, with very high repetitional

accuracy and with high speed. But not all types of tasks

are suitable for this control strategy. Tasks that require

interaction with the environment, such as assembly, would

require a very high accuracy of the robot and the calibration

of its work cell to be able to accomplish the tasks using

position control. Small uncertainties in position may lead to

very large forces and potentially damaged equipment. An

alternative strategy is to introduce additional sensors, such

as a force sensor. Uncertainties can then be compensated for

by sensing the contact forces.

A force-controlled assembly task can be implemented as

a sequence of simple motions, usually in the form of search

motions that are used to resolve uncertainties in the task.

An example of this strategy was presented in [13]. The

conditions for switching between the simple motions is that

some event occurs, e.g., that a contact is established. These

events can often be detected by using a threshold on the

measured force/torque data. What really is detected is a

transient in the measured data. In many cases, the events can

be detected from other transients as well, occuring before the

force/torque build up detected by the threshold. This effect

can be exploited to reduce the total assembly time. This paper

considers the problem of detecting transients in force/torque

data in the context of force-controlled assembly, but it could

also be applied to any other signal in a different context.

A systematic approach for training machine-learning based

classifiers will be used to accomplish this. A part of the
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Fig. 1. Left: The experimental setup used for the experiments. Right: The
coordinate frames that were used to specify the task.

assembly of an emergency stop button will be used as an

experimental case, where the setup can be seen in Fig. 1.

Machine learning approaches within assembly has previ-

ously been used in [11], where a single-axis force sensor was

used to detect failures in an assembly scenario. A somewhat

different approach was applied in [7], where a Hierarchical

Dirichlet Process Hidden Markov model was used to monitor

an assembly task, for detection of errors. Another approach

to monitoring assembly tasks was presented in [12], where a

hierarchical taxonomy was used to monitor a snap assembly

task. The force/torque signatures were investigated with

respect to relative changes in several different layers that

could be used to discriminate nominal behavior from errors.

Machine learning has also been used for detecting failures,

e.g., [4] and [10], where support vector machines were used

to detect tool breakage in milling processes.

II. ASSEMBLY SCENARIO

The assembly scenario considered in this paper is to

assemble the internals of an emergency stop button, see

the parts in Fig. 1. An electrical switch should be snapped

into place in a slot in the bottom box. The scenario and

its implementation have previously been presented in [13],

[14]. The task is modeled using the iTaSC framework [6].

The feature coordinates used to describe the task are the three

translations (x,y,z) in frame f1, see right part of Fig. 1, and

the Euler ZYX-angles (φ,θ,ψ) describing the reorientation

from f1 to f2, the frame attached to the switch in the gripper.

The task is accomplished by performing a number of guarded

search motions, i.e., search motions that are ended when the

corresponding contact force is sensed.

The assembly sequence is controlled by a state machine,

with force/torque measurements triggering state transitions.

Simple threshold detectors for some force or torque channels

can be used for all transitions. However, the overall assembly

time can be decreased by instead detecting transients in
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Fig. 2. The recorded data from the snap motion. To increase the readability,
all sequences have been shifted such that the transient occurs at t = 0 s. The
force/torque directions refer to the feature coordinates defined in Sec. II.

the force/torque data. Another positive effect is that the

magnitude of the forces in the task can be decreased, as the

largest forces usually relate to the thresholds used, which

usually need to be large to get robustness. In one of the

states, the switch slides along a surface to find the slot and

it is finished when contact is established with an edge. A

possible improvement is to instead detect the transient arising

from the switch sliding into the slot, which happens before

contact with the edge is established. This motion will be

called the slide motion in the rest of the paper. Another

improvement is for the state where the switch is snapped

into place, which can be detected from the snap transient,

instead from when contact is established with the bottom of

the box. This motion will be called the snap motion.

III. PROCEDURE

To get a classifier for a transient from an assembly

sequence, several steps have to be taken. First, data have

to be gathered and preprocessed, then the classifier has to be

trained. The procedure is described in this section, and the

classifiers considered are introduced. For method description,

the snap motion transition is used as an example.

A. Data gathering

In a production setting, each emergency stop button that

the robot assembles will have new components. To mimic

this scenario, it would therefore be a benefit to have a

large number of different switches available, recording one

assembly operation from each one of them. In the current

setup, however, only 12 switches were available, and only

using them once would give a rather small training data set.

Therefore, five recordings were made for each switch, and

the total number of recordings made was thus 60.

The training data were divided into two halves, one to

be used for training and one to be used for validation. The

division was made such that the training and the validation

data set did not contain any recordings from the same switch.

The transients considered, during the slide motion and the

snap motion, were manually marked in each recording. The

force/torque data from the recorded snaps are displayed in

Fig. 2. It might seem to be an easy task to detect a snap

in these data, but the classifier should be able to do it with

only a subset of the data available. The smaller subset, the

better, as that would decrease the computational burden, and

also decrease the delay from when the snap occurs until the

detection is done.

B. Data pretreatment

The data contained six different channels of force and

torque data, i.e., the three force directions and the three

torque directions as displayed in Fig. 2. A subset of these

channels were used by the classifier. A number npre of

samples before the transient and a number npost of samples

after the transient were taken from the channels that were

used and were put after one another in a vector, which will

be called a sequence. If the number of channels used was

nch, then a sequence will be a vector in Rnch·(npre+1+npost).

The job of the classifier is thus to determine if a sequence

contains a transient or not.

Before forming the sequence vector, the mean value was

removed from each channel. This should make the classifier

independent to any offset force/torque, e.g., the offset seen

in the θ-torque in Fig. 2. The data were also prescaled such

that all force/torque components got approximately the same

magnitude. This should make the problem of training the

classifiers better numerically conditioned.

C. Data for training

Every recording contained one interesting transient and

a lot of background sequences, i.e., data not containing

a transient. The number of background sequences in each

recording is approximately equal to the length of the record-

ing, which was about 100 for the snap transient example.

Using all background sequences would give an unreasonably

large training data set. Instead, a number of N (chosen

to be 20) randomly selected background sequences and

the sequence containing the transient were used from each

recording. These selected sequences were used for training

the classifier, and then it was validated against all background

sequences in the recordings chosen for training. If any

misclassified sequences were found, these were included into

the training sequences and the training of the classifier was

performed once again. This procedure was iterated until no

more misclassified sequences in the recordings chosen for

training were found, not already included in the training

sequences, or until a maximum number of iterations was

reached (10 was used).

There is a risk, however, that this strategy will lead

to different classifiers depending on the initial choice of

background sequences. To average this effect out, for every

choice of parameters, the classifier was trained a number

of Nseeds, usually around 10-20, each time with a different

configuration of the random number generator used for

choosing the initial background sequences. The score for the

given parameters was then taken as the average of the Nseeds

performed trainings.



D. Cost function

It might be more important not to make any false positive

classifications than any false negative classifications, or the

other way around. In the experimental scenario considered,

classifying a background sequence as a transient would be

worse than missing a transient, as backup classifiers based

on thresholds existed. This asymmetry in the problem can

be included by using the following cost function for training

J = costFP · nFP + costFN · nFN (1)

where costFP and costFN are the costs associated with false

positives and negatives, respectively, and nFP and nFN are

the number of false positives and false negatives.

E. Classifiers considered

Four different classifiers were applied to the data, a simple

least-squares classifier, two different versions of support vec-

tor machines, and a boosting classifier. A detailed description

of the methods can, e.g., be found in [1], and a summary of

them can be found below.

1) Least-squares: The first classification method used was

based on the least-squares (LS) method. The model used was

y(x) = wTx+ w0 = [ wT w0 ]

[
x

1

]

= w̃T x̃ (2)

where x denotes the data sequence, w̃ the parameters, and y

should be 1 for a transient and −1 for the background. The

classifier is based on finding a hyperplane that separates the

transients from the background.

All training data can be described by
[
y1 y2 . . . yn

]T

︸ ︷︷ ︸

Y

=
[
x̃1 x̃2 . . . x̃n

]T

︸ ︷︷ ︸

X̃

w̃ (3)

and by using a sum-of-squares error function

J(w̃) =

n∑

i=1

ci(yi− x̃Ti w̃)
2 = (Y − X̃w̃)TC(Y − X̃w̃) (4)

where C is a diagonal matrix describing the cost for the

element i, the optimal w̃ is given by

w̃ =
(

X̃TCX̃
)−1

X̃TCY (5)

The cost matrix C was chosen such that ci = costFP if yi =
−1 and ci = costFN if yi = 1. This gives an approximation

of the cost function (1). Classification is performed by

calculating y(x), and the classification boundary is 0, i.e.,

y(x) > 0 means that x is classified as a transient.

2) Support vector machines: The simplest form of support

vector machines (SVM) uses the model (2), but instead of

choosing the parameters based on the error function (4), the

parameters are chosen such that the resulting hyperplane is

the one with the largest margin to the different classes of

data. The problem can be stated as the optimization problem

minimize
over w,ζ

P
n∑

i=1

ciζi +
1
2‖w̃‖

2
2

subject to yiy(xi) ≥ 1− ζi , i = 1, . . . , n
ζi ≥ 0 , i = 1, . . . , n

(6)

where ζi are slack variables that allow for misclassifications,

ci is the cost for the misclassification, and y(x) is defined

as in (2). The cost is chosen as ci = costFP if yi = −1 and

ci = costFN if yi = 1, i.e., an approximation of (1). The sum

of the misclassifications is penalized by the parameter P .

This parameter will control the trade-off between classifying

everything correct versus having a large margin with possibly

a few incorrect classifications. The optimization problem (6)

is convex, and it can therefore be solved efficiently with

guarantuee of finding global minimum. This classifier will

be called the primal SVM.

By considering the dual formulation of (6), it can be shown

[1] that the following problem is equivalent to solve

minimize
over a

n∑

i=1

ai −
1
2

n∑

i=1

n∑

j=1

aiajyiyjk(xi, xj)

subject to 0 ≤ ai ≤ Pci , i = 1, . . . , n
n∑

i=1

aiyi = 0

(7)

The function k(xi, xj) = xTi xj is a kernel function, which

can be replaced by any other positive definite kernel function.

The formulation (7) was used together with a Gaussian

kernel, k(xi, xj) = e−(xi−xj)
T (xi−xj)/l, where l > 0 is a

parameter that corresponds to the width of the kernel. The

classification function is given by

y(x) =
n∑

i=1

aiyik(x, xi) + b (8)

Most of the ai are zero, and the non-zero ones correspond to

the support vectors xi. The parameter b is calculated through

b =
1

NM

∑

i∈M



yi −
∑

j∈S

ajyjk(xi, xj)



 (9)

where S is the set of all support vectors, M is the set of

indices of data points having 0 < ai < Pci, and NM is the

number of elements in M .

3) Boosting: This is a classifier that uses the result from

many simple classifiers, called weak classifiers, to make the

final classification. The performance of the final classifier is

usually significantly better than any of the weak classifiers.

During training, weights are used to give data points that

are hard for the weak classifiers to correctly classify more

importance. The final classifier is a weighted average of

the weak classifiers, which in turn has been trained with

differently weighted training data. The algorithm used is

called AdaBoost and was first proposed in [8].

The weak classifiers considered were threshold detectors

for one of the coordinate axes. For each weak classifier, all

axes were considered, and the one giving the best separation,

concerning the cost function (1) and the importance weights,

was chosen.

F. Training procedure

The first part of the training procedure consisted in decid-

ing which channels to use, the number npost samples after

the transient, and the number of npre samples before the



transient. This is a difficult task, as the available parameter

space is quite large. A proposal is that it can be performed

in three steps, by first selecting the channels to use, then the

number of samples after the transient, and finally the number

of samples before the transient.

The value of the parameters to be used can be found by

choosing one classifier and evaluate the performance on the

validation data for the different parameters. It is also possible

to use a combination of classifiers.

1) Varying the channels to use: The first step was to vary

the channels used. The values of npre and npost were chosen

to be large (30 was used), such that the limiting factor for

the total information available was in the choice of channels.

All possible combinations of channels were evaluated.

One choice for continuing from this step would be to

choose the combination of channels giving the best result,

but this would most likely mean that all channels should be

chosen. That is undesirable, as the complexity of the classi-

fier increases with the number of channels used. Instead, the

best choices for one to four channels were chosen and used

for the following steps.

2) Varying npost: The number of samples used after the

transient should be kept at a minimum, not delaying the

detection of the transient more than absolutely necessary.

This was done by varying npost from zero to a large value

(30 was used), while fixing npre to a large value (30 was

used). In other words, all information before the transient was

kept while the amount of information after the transient was

varied. The evaluation was based the performance measure

J1, the sum of J defined in (1) plus a quadratic penalty term.

J1 = J + p1n
2
post (10)

3) Varying npre: The trade-off for the number of samples

used before the transient is about performance versus com-

plexity of the classifier. The parameter npre was varied from

zero to a large value (30 was used), with npost given by the

choice from the previous step. The evaluation was similar as

in the previous step, but now with the linear penalty p2npre.

This should reflect that it is not as costly to have some more

samples before the transient than after.

4) Training of other classifiers: With all parameters con-

cerning how much data the classifier should use decided,

choosing the classifier specific parameters remained. Neither

the LS nor the boosting classifier (N = 50 weak classi-

fiers were used) had any specific parameters, but the SVM

classifiers considered had some further parameters to tune.

The primal formulation has the so called misclassification

penalty, P in (6). The search for the best choice of this

parameter was performed in two steps. First the parameter

space was coarsely gridded with logarithmic spacing. A

classifier was trained in every grid point and evaluated

against the validation data. The second step consisted in

refining the grid around the best grid points from the first

step and redoing the training in the new grid points.

The dual SVM classifier had the width of the Gaussian

kernel as an extra parameter, besides the misclassification

penalty. The parameter space was therefore two-dimensional.

The training procedure was performed in the same way as

for the primal SVM classifier, but with an even coarser grid

to begin with to reduce the computational load.

G. Implementation

The training procedure described in this section was

implemented in Matlab. The training of the SVM classifiers

was performed by using CVX, a package for specifying and

solving convex programs [5], [9].

IV. EXPERIMENTAL RESULTS

A. Robot system

The robot used in the assembly scenario was the ABB

YuMi (previously known as FRIDA). It is a dual-arm ma-

nipulator with 7 joints in each arm. The robot was controlled

with the IRC5 control system, extended with an open control

system [2], [3], which made it possible to modify the

references for the low-level joint control loops. An ATI

Mini40 6-DOF force/torque sensor was mounted on the table

beneath the fixture for the bottom box. The sensor was used

without any configured low-pass filter, and it was sampled at

250Hz. A photo of the experimental setup is given in Fig. 1.

B. Snap detection

Three different choices of classifiers were used for the

initial training phase, namely LS, boosting, and the combina-

tion of LS and boosting. These classifiers were used as they

were both quite computationally cheap, and that they had no

extra parameters to tune. The first parameter to be decided

was which channels in the measured force/torque data to use.

The result on validation data for all combinations of channels

is displayed in Fig. 3. It can be seen that the variation in

the performance decreases when the number of channels is

increased, which is intuitive as more information becomes

available. For the LS classifier, however, the performance

seems to deteriorate when the number of channels becomes

large. This is probably due to the classifier being over-fitted,

and thus failing on validation data. The best choice for one

to four channels was used for further training.

The next parameter to decide was npost, the number

of samples to use after the snap. The result on validation

data when this parameter was varied from 0 to 30 for the

different choices of channel selections is displayed in the left

diagram in Fig. 4. The training based on the combination

of LS and boosting has been omitted from the figure to

increase readability. The stars (∗) show the cost according

to (1), and the rings (#) the total performance measure (10).

The constant p1 was chosen as 0.09, and it was chosen

such that it gave a quite low value for npost for this case.

The LS classifier behaves as expected, i.e., the performance

increases with npost. The boosting classifier, on the other

hand, first shows a performance degradation before giving

perfect classification for npost ≥ 14. For all cases the npost

given by the performance measure was a low value.

The final parameter to decide was npre. The result from

varying this parameter from 0 to 30, with the other pa-

rameters decided by the previous experiments, is displayed



0 10 20 30
0

5

10

15

3 channels

F
al

se
p
o
s.

0 10 20 30
0

5

10

15

1 channel

F
al

se
p
o
s.

LS Boosting LS+Boosting

0 10 20 30
0

5

10

15

2 channels

0 10 20 30
0

5

10

15

4 channels

0 10 20 30
0

5

10

15

6 channels

False neg.
0 10 20 30

0

5

10

15

5 channels

False neg.

F
al

se
p
o
s.
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Fig. 4. The result when the number of samples after the transient, npost (left column), and
before the transient, npre (right column), was varied. The cost refers to the cost function (1) with
costFP = costFN = 1. The total cost also contains the extra penalty term for large npost or
npre.

costFP = costFN

Initial training Least-squares Boosting Least-squares + Boosting

Channels [ψ] [x θ] [x φ θ] [x y φ θ] [ψ] [θ ψ] [x φ ψ] [x z φ ψ] [ψ] [x θ] [x z ψ] [x y θ ψ]

npre 7 17 17 17 1 3 1 0 1 17 2 1

npost 2 2 2 2 1 0 1 0 1 2 2 1

costFP = 10costFN

Initial training Least-squares Boosting Least-squares + Boosting

Channels [ψ] [y ψ] [y θ ψ] [x y θ ψ] [ψ] [z ψ] [y z ψ] [y z φ ψ] [ψ] [y ψ] [y θ ψ] [x y θ ψ]

npre 3 5 7 7 8 4 5 8 3 9 4 2

npost 1 2 3 3 15 15 16 15 14 14 14 14

TABLE I

RESULT OF INTIAL TRAINING. THE TOP PART SHOWS THE SYMMETRIC CASE AND THE BOTTOM PART THE ASYMMETRIC CASE.

in the right diagram in Fig. 4. The boosting classifier still

has some problems in the middle region, while the LS

classifier shows a monotone-like performance increase. The

performance measure constant p2 was chosen as 0.5, such

that it gave a slowly increasing cost for growing npre. The

final parameter choices are summarized in the upper part of

Table I.

The considered scenario is in some sense asymmetric, as

was concluded in Sec. III-D. To see the effect of including

the asymmetry, the entire training procedure was performed

one more time, with costFP being 10 times as large as

costFN . The final parameter choices are listed in the lower

part of Table I. It can be seen that the parameters for the

initial training with LS are similar to the symmetric case,

but that npost is much larger for the other initial training

methods. The difference is that the LS classifier was very

careful and made almost no false positive classifications,

but the other two initial training methods had some false

positives for low values of npost. Only a few false positives

gave a large cost, so large that not even the quadratic penalty

could force a low value of npost. For the initial training with

LS, the quadratic penalty was the dominating term as there

were mostly false negatives, and the result was a low value

for npost.

Parameters for the SVM classifiers were found by gridding

the parameter space, as described in Sec.III-F.4. The best

classifiers for all choices of number of channels and initial

training are listed in Table II. It can be seen that the best

performance was achieved with the asymmetric approach,

giving perfect classification. The main difference between

the two approaches was the choice of npost versus npre.

In the symmetric case, npost was small and npre usually

larger, resulting in a classification with only a small delay.

In the asymmetric case, however, npost was large and npre

small when boosting and the combination of LS and boosting

was used for the initial training, giving a longer delay, but

on the other hand giving perfect classification. Depending

on sampling time, this delay might be of more or less

importance. In this scenario, with a sampling time of 4ms,
the extra delay in the asymmetric case becomes 40-50ms,
which is quite short and this suggests that the penalty for

choosing npost might have been a bit too large.



costFP = costFN

Least-squares initial training Boosting initial training Least-squares + Boosting initial training
nch P l Average cost nch P l Average cost nch P l Average cost

Primal SVM 4 0.0182 - 3.65 3 1.33 - 7.0 2 0.294 - 3.85

Dual SVM 2 6.91 67.17 1.80 4 7.97 7.97 2.80 2 6.91 67.17 1.80

costFP = 10costFN

Least-squares initial training Boosting initial training Least-squares + Boosting initial training
nch P l Average cost nch P l Average cost nch P l Average cost

Primal SVM 2 0.571 - 10.60 2 0.00750 - 5.80 4 0.0330 - 3.20

Dual SVM 2 320.75 668.57 3.00 2 28.63 537.00 0.0 1 33.00 320.75 0.0

TABLE II

RESULT OF SVM TRAINING. THE TOP PART SHOWS THE SYMMETRIC CASE AND THE BOTTOM PART THE ASYMMETRIC CASE.
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Fig. 5. The recorded data from the slide motion. All sequences have been
shifted such that the transient occurs at t = 0 s. The force/torque directions
refer to the feature coordinates defined in Sec. II.

The results from the SVM training give no unanimous

answer to how many channels that should be used, as there

were classifiers performing the best in all cases, with one to

four channels used. A feasible strategy could be the one taken

in this paper, i.e., evaluate a number of different choices of

number of channels and choose the one performing best. The

best option for the initial training was the combination of LS

and boosting, giving the best performance in all cases except

for the primal SVM classifier in the symmetric case.

The reduction in assembly time for using the transient

detection compared to the threshold detector earlier used was

approximately 0.31 s, with a standard deviation of 0.064 s.

C. Slide motion transient

The training procedure was applied also to the slide motion

transient, see the recorded transients in Fig. 5. Based on

the results from the snap detection, the combination of LS

and boosting was used for the initial training. The same

parameter values for p1 and p2 were used. For this transient,

both the symmetric and the asymmetric case gave low values

for npost and somewhat larger for npre. The final SVM

training resulted in perfect classification for both the primal

and the dual variants. This is an indication of that this

transient was easier to detect than the snap.

The reduction in assembly time for using the transient

detection compared to the threshold detector earlier used was

approximately 0.18 s, with a standard deviation of 0.041 s.

D. Real-time implementation

Classifiers for the two transients were implemented and

used for executing the assembly operation. The classifiers

chosen for implementation were both dual SVM classifiers

that resulted in perfect classification for training and vali-

dation data. The asymmetric formulation was used, and the

previously used thresholds were used as backup classifiers.

The number of support vectors was 35 for the slide motion

classifier and 53 for the snap motion classifier. As was

mentioned in Sec. III-A, all available switches were used

for training/validation, so the experiments were performed

using a subset of these switches, namely two switches from

the training data set and two from the validation data set.

An unforeseen problem occurred when the classifiers

were both used in the assembly operation. The shape of

the force/torque signals directly following the slide motion

transient were similar to the snap motion transient, cf.

Figs. 2 and 5. These data were not used for training the

snap classifier, and it was therefore confused when faced

to these data and the result was quite many false positive

classifications right in the beginning of the snap motion. One

solution to this problem would be to include these data for

training. Another solution was to wait for the slide motion

transient to die away before the snap classifier was activated.

In Fig. 5 it can be seen that the slide motion transient has

died away after around 0.1 s, and in Fig. 2 it can be seen that

it takes at least 0.3 s from the snap motion is started until

the snap occurs. The time to wait was therefore set to 0.1 s.
The assembly operation was performed 20 times. None

of the transients were missed and no false positive classifi-

cations were made. The total reduction in assembly time by

using the classifiers was in average 0.49 s (standard deviation

0.070 s), which meant a reduction of the total time to insert

the switch in the bottom box with approximately 15%.

V. DISCUSSION

The classifiers considered in this paper were supposed

to replace simple threshold detectors that have been used

before. The two investigated state transitions showed that

there is time to gain, i.e., production can be sped up.

The advanced classifier can also be used for improving the

robustness, or enabling detection with a lower force at the

same robustness as the threshold detectors.



The procedure described in Sec. III-C to pick out back-

ground sequences to include into the training data was

applied as using all background sequences for training would

be too computationally expensive. On the other hand, it

was computationally cheap to perform validation on all the

background sequences. That made it possible to start with

a small set of background sequences, and include more if

needed, as this will lead to a more robust classifier.
One of the design goals of the presented procedure was

to reduce the number of channels used. This was done by

investigating all possible combinations of channels and in the

end use the one giving the best result. An alternative could be

to employ Principal Component Analysis (PCA), and instead

find one or more linear combinations of channels to use.

PCA would pick out combinations of channels with large

variance, but this might not be the important information for

doing classification. It remains as future work to investigate

this approach.
The complexity of the classifiers has been kept low, in the

sense of using as little data as possible. Aside from keeping

the training time from increasing and also making classifi-

cation faster, it will give some robustness. In a scenario like

this, the training data size will be quite small, at least initially.

A too complex classifier will then tend to model also the

noise, and therefore being a worse classifier when faced to

new data. The parameters used for choosing the complexity

of the classifiers (p1 and p2) in the example scenario may,

however, have given too much emphasis on low complexity.

This is especially the case for when boosting was used as the

initial classifier for the snap, when very few samples before

and after the snap were used for the classifier.
In a production setting, all erroneous classifications should

be saved, perhaps also the successful ones. These data should

be used to redo the training of the classifier to improve

performance. With more data available, maybe also the

complexity of the classifier can be increased.
Automating a task like the one considered in this paper

is difficult. Every new task will be different, with different

requirements. But a systematic approach, as was presented,

will be a step towards a complete solution. The experiments

performed show a proof of concept that it works.
Performing the training procedure takes a really long

time, which may take in the order of days on a standard

computer, depending on the grid size used in the SVM

training. But the training procedure is possible to parallelize

and thus to use multiple machines. It would therefore be

perfect as a cloud service. Record some training data, send

them to the cloud, and receive a classifier in response. With

large computational resources it might further be feasible to

vary more parameters, e.g., other kernels for the dual SVM

classifier, as well as other types of classifiers.

VI. CONCLUSIONS

A systematic procedure for finding machine-learning

based classifiers to detect transients in force/torque data was

presented, but it would also be feasible to use the method

with any other time-series data. A force-controlled assembly

task was used as an experimental case to show that the

method worked. In the implementation of the assembly task,

the classifiers were used to replace simple threshold detectors

that were used before. The replacement resulted in the total

assembly time being reduced with 15%.

REFERENCES

[1] C.M. Bishop. Pattern recognition and machine learning. Springer,
New York, 2006.
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