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Particle Filter for Combined Wheel-Slip and Vehicle-Motion Estimation

Karl Berntorp

Abstract— The vehicle-estimation problem is approached by
fusing measurements from wheel encoders, an inertial mea-
surement unit, and (optionally) a global positioning system
in a Rao-Blackwellized particle filter. In total 14 states are
estimated, including key variables in active safety systems,
such as longitudinal velocity, roll angle, and wheel slip for all
four wheels. The method only relies on kinematic relationships.
We present experimental data for one test scenario, using a
Volkswagen Golf equipped with state-of-the-art sensors for
determining ground truth. We report highly promising results,
even for periods of combined aggressive cornering and braking.

I. INTRODUCTION

Automotive control systems have traditionally relied on
their own set of sensors to estimate the states needed for the
specific control application. With the improved computing
and networking capabilities in modern vehicles during the
last decade, the different systems are now able to exchange
sensor information. Hence, sophisticated sensor-fusion tech-
niques are now feasible alternatives in automotive systems.

This paper proposes a novel approach to model-based,
joint wheel-slip and motion estimation of four-wheeled
ground vehicles. The method fuses wheel-encoder, accel-
eration, gyro, and (optionally) global positioning system
(GPS) position measurements to create estimates of the
vehicle’s pose, translational velocities, and wheel slip. We
explicitly model the nonlinear slip dynamics in the state
and measurement equations, and estimate the states with
a marginalized particle filter [1]. The rationale is that by
introducing a model of the slip propagation, better overall
estimation performance can be obtained. The method only
relies on kinematic relations, which implies that neither
parameters describing the ground-wheel interaction, which
otherwise need to be estimated for multiple terrain types
[2], nor masses or inertias are required. One reason for
introducing a particle filter is that the slip dynamics are
highly nonlinearly dependent on the velocity. A particle filter
is therefore suitable for this problem. Fig. 1 illustrates the
typical relation between wheel slip and tire force.

Slip-estimation techniques are typically either rule based
[3]; restricted to two-wheel drive [4], [5]; or assume knowl-
edge of, or the need to estimate, physical vehicle parameters
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Fig. 1. Longitudinal force Fx as function of longitudinal wheel slip λ.
ABS aim to control the wheel slip around, possibly time varying, reference
values, determined by a high-level safety system. The behavior is stable to
the left of the peak and unstable to the right of the peak. Hence, reliable
estimates of the wheel slip is necessary for good performance.

before being possible to use [3]. Linearizations of the force-
slip curve was used in [6] to estimate the longitudinal
tire stiffness. Motor-current based wheel slip detection was
proposed in [7]. Moreover, [8] used a nine degrees-of-
freedom vehicle model in a Kalman filter to estimate vehicle
speed, brake forces, wheel slip, and vehicle sideslip angle. In
[9], a roll-angle and road-bank estimation procedure using a
proportional-integral observer was introduced, and in [10] an
experimentally verified roll-angle estimation with accompa-
nying stability proofs was presented. Roll-angle estimation
was also considered in [11].

II. ASSUMPTIONS AND NOTATION

Fig. 2 contains the schematics for a four-wheeled ground
vehicle. Lower-case boldface letters indicate column matrices
(or vectors). We assume planar motion (i.e., small inclination
and road-bank angles). The composite rotation between the
inertial frame I and the body-fixed frame B is described
by a rotation ψ about ZI , followed by a rotation φ about
the resulting XV -axis. A rotation matrix from V to I is
denoted with RIV . The superscript V as in vV means v with
respect to I, expressed in frame V . Measurements of the
longitudinal and lateral accelerations a ∈ R2, wheel-angular
velocities ω ∈ R4, steering-wheel angle, and roll and yaw
rates ξ ∈ R2 are available. These measurements can be
considered standard for vehicles equipped with ABS, ESC,
and a rollover-avoidance system. We do not assume, but can
incorporate, GPS measurements in the presented framework.
In this paper, δ1 and δ2 are found through the steering-wheel
angle assuming a fixed gear ratio.
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Fig. 2. The vehicle model and its degrees of freedom. The wheels are
numbered from the front left wheel to the rear right wheel. The coordinate
axes of the frames are denoted with capital letters.

III. BACKGROUND ON PARTICLE FILTERS

Particle filters are sequential Monte-Carlo methods
that represent the posterior probability density function
p(x0:k|y0:k) of the state trajectory x0:k := {x0, . . . ,xk}
given the measurements y0:k := {y0, . . . ,yk} with a set of
weighted particles [12], [13]. This results in

p(x0:k|y0:k) ≈
N∑
i=1

wi
kδ(x0:k − xi

0:k).

Here, δ(·) is the Dirac delta function and wi
k is the associated

weight for the ith particle given the measurements y0:k. The
idea of the Rao-Blackwellized particle filter [1] is to estimate
a subset of the states, zk, with a constrained Kalman filter,
and apply the particle filter to the rest of the states. This is
done by using the factorization

p(zk,η0:k|y0:k) = p(zk|η0:k,y0:k)p(η0:k|y0:k),

where zk ∈ Rnz and ηk ∈ Rnη have the dynamics

zk+1 = f(ηk) +A(ηk)zk + F (ηk)w
z
k , (1a)

ηk+1 = g(ηk) +B(ηk)zk +G(ηk)w
η
k , (1b)

yk = h(ηk) +C(ηk)zk + ek. (1c)

The process noise wk =
[
(wzk)

T (wηk )
T
]T

and the mea-
surement noise ek are assumed white and Gaussian dis-
tributed. Note that zk is linear given η0:k. Inputs are in-
troduced by modifying the mean of the process noise. The
weighted mean of the particles is used to get a state estimate.

IV. MODELING

The mass center is assumed to be located at center of
geometry (CoG). We do not make any assumptions on
whether the vehicle is all-wheel drive.

Let the velocity of CoG with respect to frame I expressed
in frame V be vV =

[
vV,X vV,Y

]T
. The longitudinal ve-

locity at the wheel-center contact point of wheel i is denoted
with vxi and can be found through the kinematics. There exist

several definitions for wheel slip. The longitudinal wheel slip
for wheel i is here defined as

λi := 1− Riωi

vxi
, ∀i ∈ {1, . . . , 4}, (2)

where Ri is the wheel radius for wheel i. This definition
implies that λi ∈ (−∞, 1].

A. Continuous-Time Dynamic Model

The minimum set of states to jointly estimate vehicle mo-
tion and wheel slip are the position p ∈ R2, rotation ψ ∈ R2,
velocity v ∈ R2, and the wheel slip λ ∈ R4. The acceleration
and gyro measurements ua and uξ are used as inputs.
Low-cost inertial measurement units (IMUs) suffer from
biased measurements. Accelerometer and gyroscope bias
are denoted with ba =

[
bXa bYa

]T
and bξ =

[
bXξ bZξ

]T
,

respectively. For experiments lasting a couple of minutes, it
is appropriate to model the bias as a random walk:

ḃ = wb,

where the bias noise term wb is white Gaussian with zero
mean. The IMU measurements are therefore modeled as

ua = aB + ba + g +wa, (3a)

uξ = ξ
B + bξ +wξ, (3b)

where g =
[
0 gφ

]T
is the component vector from gravity

caused by the roll angle φ. Moreover, wa and wξ are
modeled as zero-mean, white Gaussian noise. The kinematic
equations for the position, velocity, and bias states are

ṗ = v, (4a)

v̇ = RIB(ua − ba − g +wa), (4b)

ḃa = wba , (4c)

ḃξ = wbξ , (4d)

φ̇ = (uXξ − bXξ + wX
ξ ), (4e)

ψ̇ = uZξ − bZξ + wZ
ξ . (4f)

The kinematic equations (4a)–(4d) describe the relation be-
tween the position p and velocity v expressed in the inertial
frame I and the acceleration aB and associated bias ba
expressed in the body frame B. The kinematic equations
(4e)–(4f) describe the relation between the rotation angles
with respect to I and the rotation rates ξB with associated
bias bξ expressed in the body frame B.

Differentiation of (2) gives

λ̇i =
∂λi
∂vxi

dvxi
dt

+
∂λi
∂ωi

dωi

dt
=
Riωi

(vxi )
2
axi −

Ri

vxi
ω̇i. (5)

Rearranging the slip definition (2) gives that

Riωi

vxi
= 1− λi, (6)

and inserting (6) into the first term in (5), results in the
following model of the slip dynamics:

λ̇i =
1− λi
vxi

axi −
Ri

vxi
ω̇i, ∀i ∈ {1, . . . , 4}. (7)



TABLE I
THE STATES USED IN THE DYNAMIC MODEL.

Notation Description

p ∈ R2 Position vector
v ∈ R2 Velocity vector
ba ∈ R2 Accelerometer bias
bξ ∈ R2 Gyroscope bias
φ ∈ R Roll angle
ψ ∈ R Yaw angle
λ ∈ R4 Wheel slip

To find axi , it is convenient to utilize that the relation

ai = a
V + ψ̈ × dVi + ψ̇ × (ψ̇ × dVi ), (8)

holds, where aVi is the acceleration of a point Pi with
coordinates dVi , and ψ is the rotation vector. The first and
third terms in (8) can be found using the accelerometer and
gyroscope measurements and their associated bias states. The
second term, however, is not easily available. One option
is to differentiate the gyro signal to provide an estimate,
but investigations on the available datasets indicate that
this term is small for large parts of the maneuver. Hence,
in the following we neglect this term, but possible future
work is to quantify how much this approximation affects
estimation performance. In (8), ψ̇ is replaced with (4f) and
the acceleration aV,X is replaced with (3a) together with a
small-angle approximation—that is,

ψ̇ = uZξ − bZξ + wZ
ξ ,

aV,X = uXa − bXa + wX
a .

To summarize, the process model consists of (4) and (7).
Table I explains the different states and their description.

B. Discrete-Time Dynamic Model

The dynamic model needs to be discretized to fit into
the estimation framework. With the sampling period Ts,
discretization of (4) and (7) yields the discrete-time model

pk+1 = pk + Tsvk

+
T 2
s

2
RIB(ua,k − ba,k − gk +wa,k), (9a)

vk+1 = vk

+ TsR
I
B(ua,k − ba,k − gk +wa,k), (9b)

ba,k+1 = ba,k + Tswba,k, (9c)
bξ,k+1 = bξ,k + Tswbξ,k, (9d)

φk+1 = φk + Ts(u
X
ξ,k − bXξ,k + wX

ξ,k), (9e)

ψk+1 = ψk + Ts(u
Z
ξ,k − bZξ,k + wZ

ξ,k), (9f)

λi,k+1 = λi,k + Ts

(
1− λi,k
vxi,k

axi,k −
Ri

vxi,k
(ω̇i,k + wω̇,i)

)
.

(9g)

In (9) we have used an Euler discretization, with second-
order corrections for the acceleration components in (9a).
In (9g) zero mean, white Gaussian noise terms wω̇,i for the

wheel angular accelerations have been added. In total the
input state vector is

uk =
[
uT
a,k uT

ξ,k ω̇T
k

]T
∈ R8

The wheel angular accelerations, which are used as inputs,
are not measured. These are estimated by a central-difference
approximation using the wheel angular velocities measured
by the ABS wheel-speed sensors.

C. Measurement Model
The first two elements in the measurement vector consist

of the longitudinal and lateral GPS position measurements.
To incorporate velocity information it is common to model
the vehicle velocities in the body frame as measurements,
either by using the wheel angular velocity measurements
ωm,k together with the forward kinematics [14], [15], or em-
ployment of GPS velocity measurements [3], [16]. Both these
approaches are valid in many scenarios. However, to estimate
the slip when it is incorporated in the state equations, the
wheel angular velocity measurements of each wheel are here
used independently as elements of the measurement vector.
The rationale for this is that it reduces observability issues.

The relation between the GPS position measurements
pm,k and the position pk is

pm,k = pk + ep,k,

where ep,k is the GPS position measurement noise. To
incorporate the wheel angular velocities, usage of the slip
definition (2) gives

λi = 1− Riωi

vxi
⇔ vxi λi = vxi −Riωi ⇔ Riωi = vxi (1− λi)

Thus, the wheel angular velocity measurements ωm,k are at
each time instant related to the states as

Riωm,i = vxi (1− λi) + eω,i, i = 1, . . . , 4, (10)

where {eω,i}4i=1 are the measurement-noise sources for the
wheel-speed measurements. Eq. (10) measures a combination
of λi, v, ψ, φ, and the bias terms. However, because the con-
tribution from the roll angle φ is small, it is hard to estimate
φ from (10) alone. To improve roll-angle estimation, note
that the acceleration of CoG is composed of a translational
part and a rotational part—that is, it is possible to rewrite
the Y -component of (3a) as

uYa ≈ ψ̇vV,X + bYa + gφ+ wY
a (11)

where we, besides sin(φ) ≈ φ and cos(φ) ≈ 1, have assumed
that the acceleration owing to v̇V,Y is small. Insertion of (4f)
into (11) yields

uYa ≈
(
uZξ − bZξ + wZ

ξ

)
vV,X + bYa + gφ+ wY

a . (12)

Splitting up (12) into the standard measurement equation
form results in the measurement equation

uYa =
(
uZξ − bZξ

)
vV,X+bYa +gφ+

[
vV,X 1

] [
wZ
ξ wY

a

]T
.

To summarize, the measurement vector is

yk =
[
pm,k R1ωm,1,k · · · R4ωm,4,k uYa,k

]T ∈ R7.



V. ESTIMATION ALGORITHM

To get the system on the same form as (1), it is necessary
to partition the states into a linear part and a nonlinear part. It
is computationally efficient to have as many states as possible
in the linear part, since these are estimated with a Kalman
filter. Consequently, only those states that contribute the most
to the nonlinearities are in the nonlinear part.

A. Partitioning the States

The major nonlinearities are the velocities at the wheels,
vxi,k, found in (9g). Since the wheel velocities depend on
the yaw angle, longitudinal and translational vehicle ve-
locites, the roll angle, and the bias terms, all these states
can be modeled as nonlinear. However, with computational
efficiency in mind, we only model the vehicle velocities
and yaw angle as nonlinear, since these will dominate the
contributions to vxi,k. The roll angle is assumed small, and
is thus considered to be a linear state. Note that the yaw-
rate measurement enters in vxi,k—that is, in the denominator
in (9g)—which is not allowed in (1). Hence this term has
to be linearized in the measurement update step. The slip
is multiplied with the wheel acceleration in (9g), where the
wheel acceleration depends on the bias terms and the process
inputs. Introducing the four slip quantities as nonlinear states
would drastically increase computational complexity. Thus
{λi,k}4i=1 are considered to be linear.

In total there are three nonlinear states in ηk and 11
linear states in zk, which form the total state vector
xk =

[
zTk ηT

k

]T ∈ R14, where

ηk =
[
vTk ψk

]T
, zk =

[
pTk bTa,k bTξ,k φk λT

k

]
.

(13)

B. Time Update

In the prediction steps of the RBPF the dynamics (9) are
used to propagate the estimates x̂i

k to time index k + 1.
To propagate the covariances in the Kalman filter, however,
linearization of the states in zik that actually are nonlinear is
required. With the partitioning (13), the matrices needed for
(1a) and (1b) in the respective time-update step become

Ak =
∂zk+1

∂zk

∣∣∣∣
x̂ik,uk

, F k =
∂zk+1

∂uk

∣∣∣∣
x̂ik,uk

,

Bk =
∂ηk+1

∂zk

∣∣∣∣
x̂ik,uk

, Gk =
∂ηk+1

∂uk

∣∣∣∣
x̂ik,uk

.

(14)

The inputs corresponding to uzk , w
z
k and uηk , w

η
k in (1) are

(uzk)
T =

[
uT
a,k bTa,k uT

ξ,k bTξ,k ω̇T
k

]T
,

(wzk)
T =

[
wa,k wT

ba,k
wT
ξ,k wT

bξ,k
wT
ω̇,k

]T
,

(uηk )
T =

[
uT
a,k uT

ξ,k

]T
,

(wηk )
T =

[
wT
a,k wT

ξ,k

]T
.

(15)

The prediction consists of propagating the dynamics (9)
based on the estimates at the previous time step and the
covariance matrix for the linear states using (14) and (15).

C. Measurement Update

Similar to the prediction step, the measurement update
step needs Ck in (1c), where some of the states have to be
linearized to fit in the framework. The measurement matrices
are computed as the first-order approximation

Ck =
∂yk

∂zk

∣∣∣∣
x̂ik,uk

. (16)

VI. EXPERIMENTAL RESULTS

The experimental results are from a test drive that was
performed at a race track in Linköping, Sweden. To give an
initial comparison, we have also implemented the approach
to slip estimation in [17]. It is a rule-based velocity estimator
that uses filtered versions of the angular velocities of the
wheels and the longitudinal acceleration for estimating the
velocity. It uses different sensor signals depending on if the
vehicle is braking, accelerating, driving with approximately
constant velocity, or if the velocity is very low.

A. Experimental Setup

The vehicle is a Volkswagen Golf V 2008, equipped with
state-of-the-art sensors, see Fig. 3 and [18]. The sensors used
in the estimation algorithms are:
• The wheel-angular velocities from the ABS wheel-

speed sensors, sending measurements at 10 Hz.
• A GPS sensor, delivering position measurements at 4 Hz

with an accuracy of approximately 2.5 m.
• An Xsens IMU [19] that executes at 100 Hz. Only the

planar accelerations and the yaw and roll rates are used
in the estimation algorithm. The IMU is approximately
located at the (unloaded) mass center, nearly aligned
with the vehicle’s coordinate system, during the experi-
ments. No actions are taken to account for the location
error or misalignment.

In addition, the vehicle is equipped with high-precision
roll- and pitch-angle sensors (accuracy 0.07 deg at 250 Hz),
as well as an optical sensor for measuring the longitudinal
velocity with high precision (0.1% at 250 Hz). By using the
wheel-speed measurements together with measurements of
the longitudinal velocity, it is possible to extract information
about longitudinal wheel slip with high accuracy.

Remark 1: The effective tire radius Ri was determined
by logging data during steady-state, straight-line driving and
comparing the measured longitudinal velocity vX with the
wheel angular velocity ωi. The effective wheel radius for
each wheel was then chosen as Ri = vX/ωi.

B. Results

This scenario was constructed by driving approximately
seven laps on a small part of a race track. Fig. 4 shows
the GPS positions for approximately one lap of the scenario
together with the position estimates. The measured and
longitudinal velocity are shown in Fig. 5 for the whole test
drive. A major part of the available friction is used during
cornering and the braking behavior is aggressive.



Fig. 3. The vehicle testbed used in the experiments. The velocity sensor is
placed at the front end, aligned with the longitudinal axis. The roll and pitch
angle sensors are situated at the front end and in front of the rear wheels.
The vehicle was also equipped with a GPS receiver during the experiments.
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Fig. 4. The estimated positions and GPS positions for one lap on the
considered race track.

Fig. 6 shows a 25 s excerpt of the maneuver. The maxi-
mum velocity error in this figure is approximately 0.6 m/s.
The roll-angle estimation is consistent in most parts, and
the slip estimates are highly accurate. Fig. 7 displays the
wheel slip for the second and fourth wheel, respectively,
together with the rule-based slip estimation algorithm in
[17]1 for another 25 s excerpt. We have confirmed that the
approach in [17] performs well when driving approximately
straight. For this dataset, however, the slip estimation with
the method proposed in this paper is superior, and also rapid
changes in the slip are handled well. The slip characteristics
between the second and fourth wheels are different. This
is because the vehicle is front-wheel driven in combination
with significant load transfer in both roll and pitch direction,
owing to large acceleration/deceleration as well as aggressive
cornering. Fig. 8 provides the likelihood of the time-averaged
root-mean-square errors as cumulative functions over the 100
executions for different number of particles. The average
error for λ1 is 0.025 (and is similar for the other wheels),
and approximately 95% of the executions yield an average
velocity error of less than 1 m/s when using 400 particles.

The average computation time in MATLAB for one iter-
ation of the algorithm when using 400 particles is approxi-
mately 5 ms. The algorithm scales linearly in the number of
particles [21], and for 1000 particles the average computation
time is approximately 12 ms in the current implementation.
Hence, with a dedicated implementation the algorithm can
execute in real time.

1The parameters used in that algorithm are chosen as suggested in [17].
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Fig. 5. The accelerations as measured by the accelerometer in the
experimental evaluation. The driving behavior is aggressive, and utilizes the
available friction in both longitudinal and lateral direction. The maneuver
is performed on dry asphalt, where the friction coefficient µ typically is in
the range 0.95 ≤ µ ≤ 1.2 [2], [20].
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Fig. 6. Estimated (black dashed) and ground truth (red) velocity, roll
angle, and wheel slip for a portion of the whole dataset. The peak in the
force curve occurs when λ ≈ ±0.15 (see Fig. 1 and [20]). The results are
representative of what can be expected from a typical filter realization.
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Fig. 7. Estimated (dashed) and ground truth (red) wheel slip for a portion
of the whole dataset. For comparison, the slip estimation approach in [17] is
also shown (blue). The considered dataset contains combined longitudinal
and lateral movement, in addition to significant roll. This puts large demands
on modeling coupling effects, something which the proposed method does.

VII. CONCLUSIONS

The presented method uses a single estimator for estimat-
ing states tightly connected to vehicle safety systems. In this
way, the slip dynamics can explicitly be accounted for in the
estimation algorithm. It is the author’s belief that modeling
these states simultaneously can improve estimation accuracy,
because more effects are taken into account. It is future work
to quantify the performance difference to current state-of-the-
art methods. However, the results show that the estimation
performance is highly promising.
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