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Positive systems analysis via integral linear constraints

Sei Zhen Khong, Corentin Briat and Anders Rantzer

Abstract— Closed-loop positivity of feedback interconnec-
tions of positive monotone nonlinear systems is investigated. It
is shown that an instantaneous gain condition on the open-loop
systems which implies feedback well-posedness also guarantees
feedback positivity. Furthermore, the notion of integral linear
constraints (ILC) is utilised as a tool to characterise uncertainty
in positive feedback systems. Robustness analysis of positive
linear time-varying and nonlinear feedback systems is studied
using ILC, paralleling the well-known results based on integral
quadratic constraints.

Index Terms— positive systems, closed-loop positivity, robust
stability, integral linear constraints

I. INTRODUCTION

Monotone systems are a class of dynamical systems that
preserve a closed order relation from the input space and
initial state to their state space and output space [1]. They
constitute one of the most important classes used in math-
ematical biology and chemical modelling. Since biological
and chemical models often treat variables such as popula-
tion densities or concentrations of chemical mixtures that
are intrinsically positive, they typically preserve positivity
of solutions to differential equations and enjoy additional
monotonicity or order-preserving properties.

Positive monotone systems have gained an increasing
attention over the last decade due to the fact that their
order-preserving properties can often be exploited to simplify
computations and control synthesis. For instance, stabilising
output feedback controllers for positive systems are charac-
terised using linear programming in [2] and extensions to
input-output gain optimisation are considered in [3]. In [4],
it is shown that the input-output gain of positive systems can
be evaluated using a diagonal quadratic storage function and
this is utilised for H∞ optimisation of decentralised con-
trollers in terms of semidefinite programming. Rantzer [5]
establishes that positive systems are amenable to distributed
control whose complexity scales linearly with the number
of interconnections. Robust stability of positive monotone
systems subject to time-varying delays is studied in [6]. The
class of differentially positive systems is introduced in [7]
as an extension of the definition of monotone systems.
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Of the aforementioned works, [3] introduces the use of
integral linear constraints (ILCs) to characterise uncertainty
and derives linear-programming conditions to verify robust
stability of LTI systems based on a dissipativity approach.
This paper further generalises this idea via an input-output
approach to analyse robust stability of positive feedback
systems, in a similar spirit to integral quadratic constraints
(IQCs) based analysis [8]. IQCs are a well-known and useful
tool for describing uncertain input-output dynamics. It unifies
a range of methods in the literature, such as small-gain and
passivity. This paper presents a first attempt to inherit these
features via the more scalable form of ILCs for positive
feedback systems. The main result generalises the static
gain conditions on robust stability of positive feedback inter-
connections of linear time-invariant (LTI) systems to linear
time-varying (LTV) and nonlinear systems via integral linear
constraints. Importantly, a sufficient condition guaranteeing
positivity of the feedback interconnection of two positive
nonlinear systems is also provided.

The paper evolves according to the following structure.
Notation and preliminary material are introduced in the next
section. Section III establishes a sufficient condition under
which positive feedback interconnections preserve positiv-
ity of open-loop nonlinear systems. ILCs are reviewed in
Section IV. Robust stability analysis via ILCs is performed
in Section V. Section VI contains a couple of illustrative
examples. Some conclusions are provided at the end.

II. NOTATION AND PRELIMINARIES

A. Signals and systems

Denote by Ln1 the set of Rn-valued Lebesgue integral
functions:

Ln1 :=

{
v : [0,∞)→ Rn : ‖v‖1 :=

∫ ∞
0

|v(t)| dt <∞
}
,

where |·| denotes the 1-norm. Let Rn+ denote the nonnegative
orthant of Rn. Define

Ln1+ := {v ∈ L1 : v(t) ∈ Rn+ a.e.},

where “a.e.” is with respect to the Lebesgue measure on
[0,∞). Define the truncation operator

(PT v)(t) :=

{
v(t) t ∈ [0, T )
0 otherwise,

and the extended spaces

Ln1e := {v : [0,∞)→ Rn : PT v ∈ L1 ∀T ∈ [0,∞)};
Ln1e+ := {v : [0,∞)→ Rn : PT v ∈ L1+ ∀T ∈ [0,∞)}.
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In what follows, the superscript n is often suppressed for
notational simplicity. A (nonlinear) operator ∆ : L1e → L1e

is said to be causal if PT∆PT = PT∆ for all T ≥ 0. A
causal ∆ is called bounded if the Lipschitz bound

‖∆‖ := sup
T>0;‖PT x‖1 6=0

‖PT∆x‖1
‖PTx‖1

<∞. (1)

∆ is said to be monotone [1] if for every u1, u2 ∈ L1e,

u1 ≥ u2 =⇒ ∆u1 ≥ ∆u2,

where the inequality is taken coordinate-wise, that is u1 ≥ u2

means each coordinate of u1 is larger than or equal to the
corresponding coordinate of u2. In the case where ∆ is linear,
monotonicity is equivalent to ∆L1e+ ⊂ L1e+. Note that a
monotone nonlinear operator ∆ which satisfies ∆0 = 0 also
satisfies ∆L1e+ ⊂ L1e+. Such a system is referred to as
a positive system in this paper. A positive ∆ is said to be
bounded on L1e+ if

‖∆‖+ := sup
x∈L1e+;T>0;‖PT x‖1 6=0

‖PT∆x‖1
‖PTx‖1

<∞ (2)

The space of bounded linear causal operators mapping
from L1 to itself is denoted by L (L1,L1). Each operator
in L (L1,L1) has a natural causal extension to an operator
mapping from L1e to L1e, where its L1-to-L1 induced norm
is equal to the Lipschitz bound of the extension [9, Section
2.4]. Note that G ∈ L (L1,L1) is positive if, and only if, its
causal extension satisfies GL1e+ ⊂ L1e+.

+

+
d2

d1

u1

u2y2

y1
G1

G2

Fig. 1. Positive feedback interconnection of positive systems.

Consider the positive feedback interconnection of nonlin-
ear causal G1 : L1e → L1e and G2 : L1e → L1e illustrated
in Figure 1. Mathematically,{

u2 = G1u1 + d2

u1 = G2u2 + d1.
(3)

Denote the feedback interconnection of G1 and G2 by
[G1, G2],

Definition 2.1: [G1, G2] is said to be well-posed if the
map (u1, u2) 7→ (d1, d2) defined by (3) has a causal inverse
H on L1e. It is positive it is well-posed and the inverse H
is positive. It is stable on L1e+ if it is well-posed, positive,
and the inverse H is bounded on L1e+ (cf. (2)). It is stable
if it is well-posed and the inverse H is bounded (cf. (1)).

Note that if G1 and G2 are bounded and G2 is linear as is
the case for standard IQC analysis [8], stability of [G1, G2]
is equivalent to (I −G2G1)−1 being bounded and causal.

Remark 2.2: The notion of stability on L1e+ is introduced

here to characterise the type of well-posed feedback inter-
connections of positive systems (cf. Figure 1) that remain
stable under disturbances d1, d2 ∈ L1e+. In other words,
feedback stability is achieved as far as positive signals are
concerned. The next lemma shows that for linear systems,
this is equivalent to stability on L1e.

Lemma 2.3: A linear causal positive ∆ : L1e → L1e is
bounded on L1e+ if, and only if, it is bounded on L1e.

Proof: Sufficiency is trivial. For necessity, note that any
x ∈ L1e can be written as x = x1−x2, where x1, x2 ∈ L1e+

satisfy ‖PTx1‖1 ≤ ‖PTx‖1 and ‖PTx2‖1 ≤ ‖PTx‖1 for all
T > 0. Moreover, since ∆ is linear, ∆x = ∆x1 − ∆x2,
whereby

‖PT∆x‖1 = ‖PT∆PTx‖1
≤ ‖PT∆PTx1‖1 + ‖PT∆PTx2‖1
≤ ‖∆‖+‖PTx1‖1 + ‖∆‖+‖PTx2‖1
≤ 2‖∆‖+‖PTx‖1.

This establishes the boundedness of ∆ on L1e.

B. Feedback interconnections of positive LTI systems

Given a matrix A ∈ Rp×m, AT ∈ Rm×p denotes its
transpose. The inequality A > 0 (A ≥ 0) means that
all elements of the matrix X are positive (nonnegative). A
matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues
have negative real parts. It is said to be Metzler if its off-
diagonal entries are all nonnegative, i.e. Aij ≥ 0 for i 6= j.
The spectrum of a square matrix M ∈ Cn×n and spectral
radius are defined, respectively, by

spec(M) := {λ ∈ C : λI −M is a singular matrix};
ρ(M) := max{|λ| : λ ∈ spec(M)}.

Proposition 2.4 ([5, Prop. 1 & 2]): Given a Metzler A ∈
Rn×n, the following statements are equivalent:

(i) A is Hurwitz;
(ii) There exists a z ∈ Rn such that z > 0 and zTA < 0;

(iii) −A−1 exists and has nonnegative entries.
Given a B ∈ Rn×n+ , the following statements are equivalent:
(iv) ρ(B) < 1;
(v) There exists a z ∈ Rn such that z > 0 and zTB < zT ;

(vi) (I −B)−1 exists and has nonnegative entries.
Some preliminary results on the feedback interconnection

of two LTI systems are provided below. They demonstrate
the fact that static-gain conditions play a crucial role in the
robust feedback stability of positive LTI systems. Suppose
that G1, G2 have real-rational proper realisations:

Ĝ1(s) = C1(sI −A1)−1B1 +D1 and

Ĝ2(s) = C2(sI −A2)−1B2 +D2,
(4)

where A1 and A2 are Metzler and B1 ≥ 0, B2 ≥ 0, C1 ≥ 0,
C2 ≥ 0, D1 ≥ 0, and D2 ≥ 0. These imply that G1 and G2

are positive [5]. In the following the ·̂ notation will be used
to denote the equivalent frequency-domain representation of
an LTI system or the Laplace transform of a signal in L1 as
above.
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Proposition 2.5 ([10, Thm. 4]): Given G1 and G2 with
realisations as in (4), if D1D2−I (or equivalently, D2D1−I)
is Hurwtiz, then [G1, G2] is positive. Under this condition,
[G1, G2] is stable if, and only if, A1, A2, and Ĝ1(0)Ĝ2(0)−I
(or equivalently, Ĝ2(0)Ĝ1(0)− I) are all Hurwitz.

Corollary 2.6: Given G1 and G2 with realisations as in
(4), if ρ(D1D2) < 1, then [G1, G2] is positive. Under this
condition, [G1, G2] is stable if, and only if, A1 and A2 are
Hurwitz and ρ(Ĝ1(0)Ĝ2(0)) < 1.

Proof: First note that repeated applications of Proposi-
tion 2.4 yields that the Hurwitzness of D1D2−I is equivalent
to (I − D1D2)−1 ≥ 0, which in turn is equivalent to
ρ(D1D2) < 1. Also by Proposition 2.4(iii), Ĝ1(0)Ĝ2(0) ≥ 0
whenever A1 and A2 are Hurwitz. By the same token as
before, the Hurwitzness of Ĝ1(0)Ĝ2(0)− I is equivalent to
ρ(Ĝ1(0)Ĝ2(0)) < 1. The claim thus follows from Proposi-
tion 2.5.

Denote by H∞ the Hardy space of holomorphic trans-
fer functions in the right-half complex plane, which admit
equivalent LTI operators mapping from the space of square-
integrable functions

L2 :=

{
v : [0,∞)→∞ :

∫ ∞
0

|v(t)|2 dt <∞
}

to itself via the Laplace transform isomorphism [11, Thm.
3.30], where | · |2 denotes the Euclidean norm.

Proposition 2.7 ([12, Thm. 3]): The feedback intercon-
nection of positive G1, G2 ∈ H∞ is such that (I −
Ĝ2Ĝ1)−1 ∈ H∞ and (I − G2G1)−1 is positive on L2, if
and only if ρ(Ĝ1(0)Ĝ2(0)) < 1.

Remark 2.8: While Proposition 2.7 is different from the
setting of this paper in that the former considers the L2 space
as opposed to L1, it serves to illustrate the important fact that
the robust stability of a positive closed-loop is determined by
the static gains of the open-loop systems. Proposition 2.7 can
also be seen as a generalisation of aspects of Corollary 2.6
to distributed-parameter transfer functions in H∞, which do
not admit realisations of the form C(sI −A)−1B +D.

In Section IV, it will be demonstrated that the condition
ρ(Ĝ1(0)Ĝ2(0)) < 1 can be generalised via integral linear
constraints for guaranteeing robust closed-loop stability of
positive systems that are time-varying or nonlinear.

III. POSITIVITY OF NONLINEAR FEEDBACK SYSTEMS

This section demonstrates that a positive feedback inter-
connection of two positive causal nonlinear (not necessarily
bounded) systems can be guaranteed to be positive by the
same condition by Willems [9] that ensures the feedback is
well-posed. Consider the feedback interconnection of G1 :
L1e → L1e and G2 : L1e → L1e in Figure 1. It is assumed
that for i = 1, 2,

(i) Gi is causal and positive;
(ii) Gi is locally Lipschitz continuous on L1e, i.e.

sup
x,y∈L1e;PT x6=PT y

‖PT (Gix−Giy)‖1
‖PT (x− y)‖1

<∞, ∀T > 0.

The instantaneous gain of Gi is defined by

α(Gi) := sup
T>0

inf
∆T>0

sup
x,y∈L1e;PT x=PT y
PT+∆T (x−y) 6=0

‖PT+∆T (Gix−Giy)‖1
‖PT+∆T (x− y)‖1

.

Note that α(G) = 0 if G is strictly causal, i.e. the input
has no instantaneous effect on the output. It is shown in [9,
Thm. 4.1] that if α(G1)α(G2) < 1, then the [G1, G2] is well-
posed as per Definition 2.1. The following demonstrates that
α(G1)α(G2) < 1 also guarantees positivity of [G1, G2].

Theorem 3.1: If α(G1)α(G2) < 1, then [G1, G2] is well-
posed and positive.

Proof: Well-posedness is established in [9, Thm. 4.1].
As for positivity, let u := (u1, u2), d := (d1, d2), and
G(u1, u2) := (G2u2, G1u1). The feedback equation (3) can
be written as

u = Gu+ d.

Well-posedness and positivity of [G1, G2] is thus equivalent
to the causal positive invertibility of (I −G). [9, Thm. 4.1]
establishes that when α(G1)α(G2) < 1, PT0+∆TGPT0+∆T

is contractive for T0 ≥ 0 and sufficiently small ∆T > 0,
whereby PT0+∆T (I − G)PT0+∆T is invertible. Invertibility
of I − G is then shown on consecutive intervals that cover
the whole half line [0,∞). Moreover, causality of (I−G)−1

is established from the fact that G is causal and the invert-
ibility of I − G is based on the convergence of successive
approximations

un+1 = Gun + d n = 0, 1, . . .

for arbitrary u0. Therefore, when G is positive, d ≥ 0,
and u0 ≥ 0, it follows that lim

n→∞
un ≥ 0. This establishes

positivity of (I −G)−1 along the same lines of causality.
Consider again the setting of Proposition 2.5, where

Ĝ1(s) = C1(sI − A1)−1B1 + D1 and Ĝ2(s) = C2(sI −
A2)−1B2+D2 with A1 and A2 Metzler and B1 ≥ 0, B2 ≥ 0,
C1 ≥ 0, C2 ≥ 0, D1 ≥ 0, and D2 ≥ 0. Observe that

α(Gi) = sup
|u|=1

|Diu| =: ‖Di‖1→1.

Thus, Theorem 3.1 ensures that [G1, G2] is positive whenever
‖D1‖1→1‖D2‖1→1 < 1. Alternatively, it may be established
by the first part of Corollary 2.6. To see this, note that

ρ(D1D2) ≤ ‖D1D2‖1→1 ≤ ‖D1‖1→1‖D2‖1→1 < 1.

Theorem 3.1 is useful in that it can be applied to nonlinear
time-varying systems.

IV. INTEGRAL LINEAR CONSTRAINTS

Given a causal bounded ∆ : L1e → L1e, define the graph
of ∆ with respect to positive signals as

G(∆) :=

{[
x
y

]
∈ L1+ : y = ∆x

}
.

Similarly, define the inverse graph as

G′(∆) :=

{[
y
x

]
∈ L1+ : x = ∆y

}
.
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The following definition of integral linear constraint follows
that in [3]. As will be seen later, this allows the establishment
of a link from the main robust stability result to the static
gain condition in Corollary 2.6.

Definition 4.1: A causal bounded system ∆ : Lm1e → Lp1e
is said to satisfy the integral linear constraint (ILC) defined
by the multiplier Π ∈ R1×(m+p) if∫ ∞

0

Πv(t) dt ≥ 0 ∀v ∈ G(∆).

This is denoted ∆ ∈ ILC(Π). On the contrary, ∆ is said to
satisfy the strict complementary ILC if∫ ∞

0

Πw(t) dt ≤ −ε
∫ ∞

0

1Tp+mw(t) dt ∀w ∈ G′(∆)

for some ε > 0, where 1n ∈ Rn denotes the vector whose
entries are all ones. This is denoted ∆ ∈ ILCc(Π).

Remark 4.2: Having Π as a bounded LTI operator from
L1 to L1 does not generalise the definition of an ILC for
the following reason. Denote by π the convolution kernel
corresponding to Π and ∗ the convolution operation, then∫ ∞

0

(
π ∗
[
u

∆u

])
(t) dt

=

∫ ∞
0

(
π ∗
[
u

∆u

])
e−st dt

∣∣∣∣
s=0

= π̂(0)

[
û(0)

∆̂u(0)

]
.

That is, only the static gain of π̂, which is a constant matrix,
matters in the value of the integral.

Lemma 4.3: Suppose ∆ : Lm1e → Lp1e is a causal bounded
positive LTI system, then ∆ ∈ ILC(Π) is equivalent to

Π

[
Im

∆̂(0)

]
≥ 0, (5)

where ∆̂ denotes the transfer function representation of ∆.
Similarly, ∆ ∈ ILCc(Π) is equivalent to

Π

[
∆̂(0)
Im

]
< 0.

Proof: For any u ∈ L1+,∫ ∞
0

Π

[
u(t)

(∆u)(t)

]
dt

=

∫ ∞
0

Π

[
u(t)

(∆u)(t)

]
e−st dt

∣∣∣∣
s=0

= Π

[
Im

∆̂(0)

]
û(0).

Now note that Π

[
Im

∆̂(0)

]
û(0) ≥ 0 for all u ∈ L1+ is

equivalent to Π

[
Im

∆̂(0)

]
≥ 0, since û(0) =

∫∞
0
u(t) dt ≥ 0.

The second part of the claim can be shown using the same
lines of arguments.

Note that the static-gain condition (5) in Lemma 4.3 is
amenable to distributed verifications, since it only involves

multiple vector multiplications. The computation also scales
linearly with the dimensions of the system concerned, much
in the spirit of [5].

V. ROBUSTNESS ANALYSIS

The main robust stability result for positive feedback
systems is stated. Note that the open-loop systems do not
need to be positive for the following to hold.

Theorem 5.1: Given a (nonlinear) bounded causal G1 :
Lm1e → Lp1e and a linear bounded causal G2 : Lp1e → Lm1e,
suppose there exists a Π ∈ R1×m+p such that

(i) [τG1, G2] is well-posed and positive for all τ ∈ [0, 1];
(ii) τG1 ∈ ILC(Π) for all τ ∈ [0, 1]; and

(iii) G2 ∈ ILCc(Π).
Then [G1, G2] is stable on L1e+. In addition, if G1 is also
linear, then [G1, G2] is stable.

Proof: By hypothesis, for all τ ∈ [0, 1], v ∈ G(τG1)
and w ∈ G′(G2), there exists ε > 0 such that∫ ∞

0

Πv(t) dt ≥ 0

and ∫ ∞
0

Πw(t) dt ≤ −ε
∫ ∞

0

1Tp+mw(t) dt.

Define Ψ := 2Π+ ε1Tp+m. The inequalities can be written as∫ ∞
0

Ψv(t) dt ≥ ε
∫ ∞

0

1Tp+mv(t) dt = ε‖v‖1

and ∫ ∞
0

Ψw(t) dt ≤ −ε
∫ ∞

0

1Tp+mw(t) dt = −ε‖w‖1,

where the fact that v, w ∈ L1+ has been exploited. Therefore,
by the feedback configuration in (3),

ε(‖v‖1 + ‖w‖1) ≤
∫ ∞

0

Ψ(v(t)− w(t)) dt

=

∫ ∞
0

Ψ

[
d1(t)
−d2(t)

]
dt

≤
∫ ∞

0

ψ̄1Tp+m

[
d1(t)
d2(t)

]
dt

= ψ̄(‖d1‖1 + ‖d2‖1),

for all v ∈ G(τG1), w ∈ G′(G2), and d1, d2 ∈ L1+,
where ψ̄ := max

i=1,...,m+p
|ψi| and Ψ = [ψ1, . . . ψm+p]. In other

words,

‖v‖1 + ‖w‖1 ≤
ψ̄

ε
(‖d1‖1 + ‖d2‖1). (6)

Note that when d2 = 0, d1 = (I − τG2G1)u1 by linearity

of G2. As such, it follows from (6) and v =

[
u1

τG1u1

]
that

for all u1 ∈ L1+,

‖u1‖ ≤
ψ̄

ε
‖(I − τG2G1)u1‖1. (7)

By the well-posedness and positivity assumption, the in-
verse (I − τG2G1)−1 is well-defined on L1e and satisfies
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(I − τG2G1)−1L1e+ ⊂ L1e+. Given any u ∈ L1e+ and
ν ∈ [0, 1], define

uT := (I − νG2G1)−1PT (I − νG2G1)u ∈ L1e+.

Then

‖PTu‖1 = ‖PTuT ‖1
≤ ‖uT ‖1

≤ ψ̄

ε
‖(I − νG2G1)uT ‖1

=
ψ̄

ε
‖PT (I − νG2G1)u‖1

=
ψ̄

ε
‖PT (I − τG2G1)u+ (τ − ν)PTG2G1u‖1

≤ ψ̄

ε
‖PT (I − τG2G1)u‖1

+
ψ̄

ε
|τ − ν|‖G2‖‖G1‖‖PTu‖1,

(8)

where (7) has been used to arrive at the second inequality.
Since (I − νG2G1)−1 is bounded on L1e+ for ν = 0, it
follows from (8) that (I − τG2G1)−1 is bounded on L1e+

for all τ < ( ψ̄ε ‖G2‖‖G1‖)−1. By an inductive argument and
repeated applications of (8), it follows that (I−τG2G1)−1 is
bounded on L1e+ for all τ ∈ [0, 1]. In other words, [τG1, G2]
is stable on L1e+ for all τ ∈ [0, 1].

For the final claim, note that linearity of G1 and G2

implies that of (I −G2G1)−1 and apply Lemma 2.3.

VI. EXAMPLES

A. LTI systems

Consider the feedback interconnection of two positive LTI
systems G1 and G2, where Ĝ1(s) = C1(sI − A1)−1B1 +
D1 and Ĝ2(s) = C2(sI − A2)−1B2 + D2 with A1 and A2

Metzler and B1 ≥ 0, B2 ≥ 0, C1 ≥ 0, C2 ≥ 0, D1 ≥ 0, and
D2 ≥ 0. Suppose that ‖D1‖1→1‖D2‖1→1 < 1, whereby

‖τD1‖1→1‖D2‖1→1 < 1 ∀τ ∈ [0, 1],

so that [τG1, G2] is well-posed and positive by Theorem 3.1.
It is shown below that the sufficiency part of Corollary 2.6,
i.e. ρ(Ĝ1(0)Ĝ2(0)) < 1 implies that [G1, G2] is stable, can
be recovered from the main result Theorem 5.1 using a
particular multiplier Π.

To begin with, note that ρ(Ĝ1(0)Ĝ2(0)) < 1 is equivalent
to the existence of a z > 0 such that zT (Ĝ1(0)Ĝ2(0)−I) < 0
by Proposition 2.4. Define

Π := zT
[
Ĝ1(0) −I

]
.

It is straightforward to see that

Π

[
Ĝ2(0)
I

]
< 0 and Π

[
I

τĜ1(0)

]
≥ 0 ∀τ ∈ [0, 1].

By Lemma 4.3, these are equivalent to τG1 ∈ ILC(Π) for
all τ ∈ [0, 1] and G2 ∈ ILCc(Π). As such, [G1, G2] is stable
by Theorem 5.1.

B. Feedback channels with time-varying gain

Suppose two strictly causal bounded positive LTI systems
M1 and M2 are connected in a positive feedback loop via
channels with time-varying gains δ1I and δ2I satisfying 0 ≤
δ1(t) ≤ α and 0 ≤ δ2(t) ≤ β. Stability of this is equivalent
to the stability of the structured feedback interconnection
[M,∆], where

M =

[
0 M1

M2 0

]
and ∆ =

[
δ1I 0
0 δ2I

]
.

Note that with Π := (αI, βI,−I,−I), τ∆ ∈ ILC(Π) ∀τ ∈
[0, 1]. By the strict causality assumption on M , application of
Theorem 3.1 yields that [M, τ∆] is well-posed and positive
for all τ ∈ [0, 1]. It thus follows from Lemma 4.3 and
Theorem 5.1 that [M,∆] is stable if

Π

[
M̂(0)
I

]
< 0.

VII. CONCLUSIONS

The positivity of positive feedback interconnections of
positive nonlinear systems is shown to be guaranteed by
an instantaneous gain condition. The static gain conditions
on robust feedback stability of positive LTI systems have
been generalised to time-varying and nonlinear systems via
the notion of integral linear constraints. Future research
directions may involve investigating if the use of linear
time-varying multipliers reduces conservatism in robustness
analysis and the use of L∞ based conditions as a replacement
of the L1 based ILC.
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