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Exchange Economics as an Alternative to Distributed Optimization

Anders Rantzer

Abstract— Quadratic optimization subject to linear con-
straints is a fundamental building-block in many other branches
of applied mathematics. However, for large-scale systems, where
a common global objective function is neither naturally de-
fined nor easily computable, it is natural to view economic
equilibrium theory as an alternative approach to design and
analysis. Stability and robustness of equilibria can then be
studied using the concept of monotonicity. In this paper we
prove fundamental monotonicity properties for price dynamics
with quadratic utilities. In particular, the main theorem gives
quantitative bounds on the size of the monotone cone. Simple
examples illustrate the ideas.

I. INTRODUCTION

A common approach to design of interconnected systems

is to define a global cost function and then search for

solutions that minimize this cost. See for example [11], [3],

[6], [10]. The paradigm has several benefits. The existence

of a global objective makes it possible to compare different

solution methods and architectures in a rigorous manner. In

particular, distributed solutions can be compared to central-

ized schemes for which theory is well established. A useful

approach to synthesis of distributed controllers with this

paradigm is dual decomposition [9], which can be viewed

as a method to coordinate agents using monetary incentives.

However, optimization of a global cost function also

has disadvantages. One difficulty is that optimization over

distributed control structures often leads to non-convex prob-

lems which are very hard to solve. Another difficulty comes

up at an even earlier stage, namely in the choice of optimiza-

tion criterion. For large-scale control applications such as

energy-, traffic- or communication networks, there are many

agents involved, each with different needs and interests.

Integrating all of them into single optimization objective

is hard, if not impossible. This motivates us to consider

an alternative paradigm for distributed synthesis, namely

“general equilibrium theory” from exchange economics.

Many fundamental ideas in the theory for exchange eco-

nomics, such as the notion of a Walras equilibrium can be

traced back to the 19th century. The study of conditions

for existence, uniqueness and stability in the economic

literature culminated during the 1950-70s. Results from this

period are summarized in a classic book by K.J. Arrow and

F.H. Hahn [1] and are also covered in modern textbooks on

microeconomics. The concept of monotone operators, which

is central to our paper, has a long history in economics. See

[5] and references therein.
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Also mathematicians and have expressed interest in the

subject. A notable example is S. Smale, who in 1998 stated

“Introduction of dynamics into economic theory” as the eight

problem in his collection Mathematical problems for the next

century [12]. The last ten years has seen a growing interest

from the computer science and game theory perspective,

where the main challenge is to efficiently compute economic

equilibria [8]. Hence the difficulties associated with equi-

librium theory should not be underestimated. Our attention

will be restricted to the special case that every agent is

maximizing a quadratic objective. This is a natural choice

for control applications, but not very common in economics.

An exception is [4, Figure 2], which nicely illustrates the

possibility of multiple equilibria.

The main contribution of this paper is to derive a convex

cone of price vectors where the demand function is a

monotone operator. Monotonicity guarantees uniqueness and

global stability of the equilibrium. After some preliminaries

in section II, the main result is presented in section III and

proved in section IV.

II. PRELIMINARIES

P will generally be assumed to be a cone in R
n. Let

SP = {p ∈ P : |p| = 1}. A demand function is a map

z : P → R
n such that z(p) = z(tp) for all t > 0 and which

satisfies Walras law: pT z(p) = 0 for all price vectors p.

To model an exchange economy with n products traded by

m agents, we may consider demand functions z1, . . . , zm.

The price vector p ∈ R
n defines relative prices for the

products and zi(p) specifies the quantities that agent i is

willing to buy and sell subject to the budget constraint given

by Walras law. The sum z =
∑

i zi is called the aggregate

demand. When demand equals supply for all products, i.e.

the aggregate demand is zero, the market is said to be in

equilibrium. Hence a solution p to the equation z(p) = 0 is

called an equilibrium price vector.

Dynamic models are used to describe how prices change

under non-equilibrium conditions. Normally the relative

price for a product tends to fall when supply is bigger than

demand. The most common model for price dynamics is

the Tâtonnement process, which in its simplest form can be

stated as

ṗ(t) = z(p(t)). (1)

Notice that d
dt |p(t)|2 = 2pT ṗ = 2pT z(p) = 0, so the norm

|p(t)| is constant and only the relative prices change.

The following is a useful criterion for uniqueness and

stability of an equilibrium:
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Fig. 1. Level curves of a quadratic cost function V (z) are marked as thin
ellipsoids. The straight lines define constraints of the form pT z = 0. In
each of the four cases, the value z(p) has been marked by a point and the
direction of p has been marked by a small arrow. The range of z is also an
ellipsoid. The thicker part indicates the values of z(p) where p ∈ PR.

Proposition 1: Given a continuous demand function z,

suppose that P is invariant under the dynamics (1). Assume

also that z(p∗) = 0, p∗ ∈ SP and pT∗ z(p) > 0 for all other

p ∈ SP. Then limt→∞
p(t)
|p(0)| = p∗ for all solutions to (1)

with p(0) ∈ P. Moreover, if (p − q)T [z(p) − z(q)] < 0 for

all non-equal p, q ∈ SP, then the Euclidean distance between

any two solutions decreases monotonically with time.

This is essentially a reformulation of [2, Theorem 2]. For

completeness, we include a proof in the appendix.

III. QUADRATIC UTILITY FUNCTIONS

For a positive definite R ∈ R
n×n with condition number

c, define the scalar product 〈p, q〉 := pTRq and the norm

‖p‖ :=
√

pTRp. Let

V (z) = rT z − 1

2
zTR−1z (2)

z(p) = arg max
pT z=0

V (z) (3)

PR =
{

p : 〈r, p〉 > [1 + (c− 1)−2]−1/2 ‖p‖ ‖r‖
}

. (4)

The following is our main theorem:

Theorem 2: Given z,PR defined by (3)-(4), it holds that

(p− r)T [z(p)− z(r)] < 0 for p not parallel to r

(p− q)T [z(p)− z(q)] < 0 for all p, q ∈ PR.

Remark 1. When the condition number c is large, the cone

of monotonicity PR is small. Conversely, when c is close to

one, PR is close to a half space.

Remark 2. The range of z is always an ellipsoid through

zero. In fact, it is straightforward to verify that
∣
∣
∣
∣
z(p)− Rr

2

∣
∣
∣
∣
R−1

=

∣
∣
∣
∣

Rr

2

∣
∣
∣
∣
R−1

for all p. (Here the notation |x|M =
√
xTMx is used.) See

Figure 1.

The proof of Theorem 2 is given in the next section after

some definitions and preliminary results. However, first we

give a some applications.

For positive definite R1, . . . , Rm with condition numbers

c1, . . . , cm, define the scalar product 〈p, q〉i := pTRiq and

the norm ‖p‖i :=
√

pTRip.

Vi(z) = rTi z −
1

2
zTR−1

i z (5)

zi(p) = arg max
pT z=0

Vi(z) (6)

Pi =
{

p : 〈r, p〉i > [1 + (ci − 1)−2]−1/2 ‖p‖i ‖r‖i
}

.

(7)

Combination of Theorem 2 with Proposition 1 gives the

following corollaries.

Corollary 3: Let P be a subset of ∩m
i=1Pi that is in-

variant under the dynamics ṗ(t) =
∑

i zi(p(t)). Then the

equilibrium equation
∑m

i=1 zi(p∗) = 0 has a unique solution

p∗ ∈ SP and limt→∞
p(t)
|p0|

= p∗ whenever p(0) ∈ P.

Corollary 4: Suppose that R1 = · · · = Rm. Then the

equilibrium equation
∑m

i=1 zi(p∗) = 0 has the unique

solution p∗ =
∑

i ri and limt→∞
p(t)
|p0|

= p∗ for all solutions

to ṗ(t) =
∑

i zi(p(t)) with p(0) not parallel to −∑

i ri.

Example 1. For a simple example, consider two coupled

control problems at stationarity. (We save the dynamic case

for future work.)

minimizex1,u1
|x1 − w1|2 + |u1|2

subject to 0 = A11x1 +A12x2 +B1u1

minimizex2,u2
|x2 − w2|2 + |u2|2

subject to 0 = A21x1 +A22x2 +B2u2

The two problems are decoupled by introduction of a price

vector (p1, p2).

minimizex1,x12,u1
|x1 − w1|2 + |u1|2

subject to 0 = A11x1 +A12x12 +B1u1

0 = p1x1 − p2x12

minimizex21,x2,u2
|x2 − w2|2 + |u2|2

subject to 0 = A21x21 +A22x2 +B2u2

0 = p1x21 − p2x2

For a given price vector p, the two agents independently

solve their optimization problems. The price vector is said

to define an equilibrium if x12 = x2 and x21 = x1. ✷

Example 2.

R1 =





1 0.1 0
0.1 1.1 0.1
0 0.1 1



 R2 =





1.1 0.1 0.1
0.1 1 0
0.1 0 1





r1 =
[
1 1 0

]T
r2 =

[
1 2 0

]T
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Fig. 2. The price dynamics in Example 1 smoothly finds its equilibrium
values. In fact, the theory shows that the distance to the optimal price vector
decreases monotonically with time.

For a given price vector p, the two agents independently

solve the optimization problem

max
pT z=0

rTi z −
1

2
zTR−1

i z

for i = 1, 2 respectively. The resulting optimal vectors are

zi(p) =
[
I −Rip(p

TRip)
−1pT

]
Riri.

Simulation of

ṗ(t) = z1(p(t)) + z2(p(t))

p(0) =
[
1 0 0

]T

gives the result shown in Figure 2. ✷

IV. MONOTONICITY OF DEMAND FUNCTIONS

Definition 1. The demand function z on P is said to be

monotone1 if the inequality (p− q)T [z(p)− z(q)] ≤ 0 holds

for all p, q ∈ SP. It is said to be strictly monotone if the

inequality is strict whenever p 6= q.

Definition 2. The demand function z is said to be locally

monotone if for every q ∈ SP, it is monotone in an

open convex cone containing q. Locally strictly monotone

is defined analogously.

Global monotonicity generally follows from local mono-

tonicity [7]. However, our definition is non-standard, since

the inequality is only considered on the non-convex set SP.

Because of this, the following statement has no counterpart

for non-proper cones.

Theorem 5: Let P be a proper convex cone in R
n. A

demand function z on P is monotone if and only if it is

locally monotone. It is strictly monotone if and only it is

locally strictly monotone.

Proof. In this proof the scalar product pT q will be denoted

〈p, q〉. Let p, q ∈ SP be non-identical. The assumption that

1Our sign convention is consistent with [5], whereas the mathematics
literature often has the opposite sign convention, requiring (p−q)T [z(p)−
z(q)] ≥ 0.

P is proper implies that 〈p, q〉 > −1. Define

θ̂ := arccos〈p, q〉 > 0

r :=
p− q cos θ̂

sin θ̂

s(θ) := r sin θ + q cos θ 0 ≤ θ ≤ θ̂

It is then straightforward to verify that ‖r‖ = ‖q‖ = 1 and

〈r, q〉 = 0. Moreover, s(0) = q, s(θ̂) = p and s(θ) ∈ SP for

all θ. The identity 〈s(θ), z(s(θ))〉 = 0 implies existence of

a function a(θ) such that

〈r, z(s(θ))〉 = a(θ) cos θ 〈q, z(s(θ))〉 = −a(θ) sin θ

It follows for 0 ≤ φ ≤ θ ≤ θ̂ that

〈s(θ), z(s(φ))〉 = a(θ)
[
sin θ cosφ− cos θ sinφ

]

= a(θ) sin(θ − φ)

〈s(θ), z(s(φ))〉+ 〈s(φ), z(s(θ))〉 =
[
a(θ)− a(φ)

]
sin(θ − φ)

Assuming that z is locally contractive at q for every q ∈ P,

it follows that the left hand side is positive whenever θ − φ

is sufficiently small. As a consequence, a must be a strictly

increasing function and

〈q, z(p)〉+ 〈p, z(q)〉 =
[
a(θ̂)− a(0)

]
sin(θ̂) > 0.

This completes the proof. ✷

Theorem 6: A continuously differentiable demand func-

tion z on P is strictly monotone provided that

xT

[
∂z

∂p
(p)

]

x < 0 (8)

for all p ∈ SP, x ∈ R
n \ {0} with xT p = 0.

Proof. The condition that (8) holds for x ∈ R
n \ {0} with

xT p = 0 implies existence of λ, ǫ > 0 such that the matrix
∂z
∂p (p) + [∂z∂p (p)]

T − 2λppT + ǫI is negative definite. Taylor

expansion gives

z(q) = z(p) +
∂z

∂p
(p)(q − p) + o(|q − p|)

and

(q − p)T [z(q)− z(p)]

= (q − p)T
∂z

∂p
(p)(q − p) + o(|q − p|2)

≤ λ(q − p)T ppT (q − p)− ǫ|q − p|2 + o(|q − p|2)
However |p| = |q| = 1, so

2pT (q − p) = 2pT (q − p) + |p|2 − |q|2 = −|q − p|2.
In particular, (q − p)T [z(q) − z(p)] is strictly negative for

q ∈ SP in a neighbourhood of p. This proves locally strict

monotonicity and the claim follows from Theorem 5. ✷

Lemma 7: Given a positive definite matrix R ∈ R
n×n

with condition number c, the inequality

(xTRp)2 ≤ (1− c−1)xTRxpTRp (9)

holds for all x, p ∈ R
n such that xT p = 0.
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Proof. The definition of condition number gives

pTRp · pTR−1p ≤ c|p|4 (10)

(Actually, this bound is conservative and it is possible to

replace condition numbers everywhere in this paper by

smaller numbers as long as (10) is not violated.) Given

p, x with pTx = 0, define q = R1/2p, s = R−1/2p and

y = R1/2x. Then the inequality (10) can be rewritten as

follows:

c−1|q|2|s|2 ≤ (qT s)2

qT
(

I − ssT

|s|2
)2

q ≤ (1− c−1)|q|2
(

I − ssT

|s|2
)

qqT
(

I − ssT

|s|2
)

≤ (1− c−1)|q|2I

Multiplying the last inequality from left and right by y and

using that sT y = 0 gives

(qT y)2 ≤ (1− c−1)|q|2|y|2

which is just another way of saying (9). ✷

Lemma 8: Given a number α ∈ [0, 1], the inequality
∣
∣
∣
∣

aT b

|a|2 a− b

∣
∣
∣
∣
≤ |b|

√

1− α2

holds for all a, b ∈ R
n with aT b ≥ α|a| · |b|.

Proof. Let θ be the angle between the two vectors a, b. The

inequality aT b ≥ α|a| · |b| then states that cos θ ≥ α. Hence

sin θ ≤
√
1− α2, so the inequality follows from the fact that

the left hand side is the distance between b and its orthogonal

projection on a. ✷

Proof of Theorem 2. Straightforward calculations give

z(p) =
[
I −Rp(pTRp)−1pT

]
Rr

rT z(p) = rTRr − rTRp(pTRp)−1pTRr

= min
t∈R

[
r

−tp

]T [
R R

R R

] [
r

−tp

]

= min
t∈R

|r − tp|2R

Moreover, pT z(p) = 0 and z(r) = 0, so

(p− r)T [z(p)− z(r)] = −rT z(p) = −min
t∈R

|r − tp|2R

and the first inequality is proved.

For the second inequality, introduce the notation 〈p, q〉 :=
pTRq and ‖p‖ :=

√

〈p, p〉R. To apply Theorem 6, it is

sufficient to verify that the inequality (8) holds as long as p

stays in the cone P defined in Theorem 2. Notice that

∂z

∂p
=

2RppTRrpTR

(pTRp)2
− RprTR

pTRp
− pTRr

pTRp
R.

Hence

x
T

[

∂z

∂p
(p)

]

x =
2〈p, r〉〈x, p〉2

‖p‖4
−

〈x, p〉〈r, x〉+ 〈p, r〉‖x‖2

‖p‖2
.

Let β = 1 − c−1 where c is the condition number of R.

By Lemma 7, the inequality 〈x, p〉 ≤ β‖x‖ · ‖p‖ holds for

x such that xT p = 0. The assumption p ∈ P means that

〈p, r〉 ≥ α‖p‖ · ‖r‖ with α = [1 + (c − 1)−2]−1/2. Hence

Lemma 8 gives
∣
∣
∣
∣

〈p, r〉
‖p‖2 p− r

∣
∣
∣
∣
≤

√

1− α2‖r‖

and

xT

[
∂z

∂p
(p)

]

x

=
〈p, r〉
‖p‖2

[ 〈x, p〉2
‖p‖2 − ‖x‖2

]

+
〈x, p〉
‖p‖2

〈 〈p, r〉
‖p‖2 p− r, x

〉

≤ 〈p, r〉(β2 − 1)‖x‖2
‖p‖2 +

〈x, p〉
‖p‖2

√

1− α2‖r‖ · ‖x‖

≤ α‖p‖ · ‖r‖(β2 − 1)‖x‖2
‖p‖2 + β

√

1− α2
‖x‖2‖r‖
‖p‖

≤
(

α(β2 − 1)
︸ ︷︷ ︸

αc−2−2αc−1

+β
√

1− α2

︸ ︷︷ ︸

αc−1

)

‖x‖2‖p‖−1‖r‖

< 0 for x 6= 0

This completes the proof of Theorem 2. ✷

V. CONCLUSIONS

We have quantified the cone of monotonicity for price

dynamics in exchange economics. The cone is large when all

agents have similar utility functions and condition numbers

are small. If this is not the case, monotonicity is easily lost,

which can lead to less predictable dynamics and multiple

equilibria. Hence quadratic terms in utility functions for

engineering design should be selected with care, and maybe

sometimes avoided altogether.
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APPENDIX

Proof of Proposition 1. Note that

d

dt
|z(p(t))|2 = pT ṗ = pT z(p) = 0.

Hence the norm |p(t)| remains constant for all t. Assume

without loss of generality that |p(0)| = 1. Then

d

dt
|p− p∗|2 = 2(p− p∗)

T ṗ = −2(p− p∗)
T
z(p) = pT∗ z(p)

where the last expression is negative by assumption, so

|p(t)−p∗| is decreasing with t. Suppose that limt→∞ |p(t)−
p∗| = ǫ > 0. Let δ be the minimal value of pT∗ z(p) on the

compact set {p ∈ SP | |p− p∗| ≥ ǫ}. Then d
dt |p(t)− p∗|2 ≤

−δ for all t, so the assumption that limt→∞ |p(t)− p∗| > 0

must be wrong and limt→∞
p(t)
|p(0)| = p∗.

Finally, let p(t) and q(t) be any two solutions of the

equation ṗ = −z(p). Then

d

dt
|p− q|2 = (p− q)T (ṗ− q̇)

= (p− q)T [z(q)− z(p)]

= qT z(p) + pT z(q) ≤ 0,

so |p(t)− q(t)| decreases monotonically. ✷
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