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Diagonal Lyapunov functions for positive linear time-varying systems

Sei Zhen Khong and Anders Rantzer

Abstract— Stable positive linear time-invariant autonomous
systems admit diagonal quadratic Lyapunov functions. Such
a property is known to be useful in distributed and scalable
control of positive systems. In this paper, it is established that
the same holds for exponentially stable positive discrete-time
and continuous-time linear time-varying systems.

Index Terms— linear time-varying systems, positive systems,
Lyapunov functions, stability

I. INTRODUCTION

Monotone system models are ubiquitous in engineering
and science. These models are characterized by dynamics
that preserve an order relation in the state space [1], [2].
For linear models, the monotonicity property is equivalent to
forward invariance of the nonnegative orthant and the class
of systems is called positive systems [3], [4].

Besides their relevance to real-world modelling, monotone
systems have gained an increasing attention over the last few
decades owing to the fact that their order-preserving property
can often be exploited to simplify analysis, synthesis and
computations. For instance, [5] shows that stabilising static
output feedback controllers for positive linear time-invariant
(LTI) systems can be characterised using linear program-
ming, by contrast to the more sophisticated semidefinite
programming used for general linear systems [6]. Extensions
along similar lines to input-output gain optimisation can
be found in [7]. In particular, [7] introduces the use of
integral linear constraints (ILCs) to characterise uncertainty
and utilises linear programming to verify robust stability via
a dissipativity approach. In [8], this is further generalised
via an input-output approach to analyse robust stability of
positive feedback systems, in a similar spirit to integral
quadratic constraints based analysis [9].

The work [10] develops separator-based conditions for the
stability of interconnected positive LTI systems. Robust sta-
bility of more general classes of cone-invariant LTI systems
is characterised in [11]. In [12], it is shown that the input-
output gain of positive systems can be evaluated using a
diagonal quadratic storage function and this is exploiteid
for H∞ optimisation of decentralised controllers in terms of

This work was partially supported by the Institute for Mathematics and its
Applications (IMA) with funds provided by the National Science Foundation
and the Swedish Research Council through the LCCC Linnaeus centre. The
authors gratefully acknowledge the support of the IMA, where much of the
work was carried out during the 2015-2016 program on Control Theory and
its Applications.

S. Z. Khong is with the Institute for Mathematics and its Appli-
cations, The University of Minnesota, Minneapolis, MN 55455, USA.
szkhong@umn.edu

A. Rantzer is with the Department of Automatic Control, Lund University,
SE-221 00 Lund, Sweden. rantzer@control.lth.se

linear matrix inequalities. The series of work [13], [14] in-
troduces various methods for distributed analysis and control
of positive systems. Positive linear systems are also known
to demonstrate a high level of robustness against certain
perturbations. For instance, it is shown in [15] that such sys-
tems are robustly stable against bounded time-varying delays.
This is generalised to a class of monotone nonlinear systems
in [16]. A generalisation of the class of monotone systems
to differentially positive systems is introduced in [17], where
the cone in which the state trajectory lies may vary over time.

It is well known that the stability of positive LTI systems
can be characterised via the existence of a diagonal quadratic
Lyapunov function [18], [14]. This is a form of sum-
separable Lyapunov function, i.e. it is decomposable into a
sum of functions, each of which is dependent on only one
state variable. This also shows that the search for a Lyapunov
function is amenable to distributed optimisation. Further-
more, diagonal quadratic Lyapunov functions supports the
use of decentralised control laws and significantly facili-
tate scalable control of large-scale interconnected systems.
This paper establishes the existence of diagonal quadratic
Lyapunov functions for exponentially stable positive linear
time-varying (LTV) systems, extending the features to this
larger class of systems. Both discrete-time and continuous-
time systems are considered. The results can be viewed as
converse Lyapunov theorems [19] for positive LTV systems,
with the additional requirement that the Lyapunov functions
are quadratic and diagonal. An intermediate step to estab-
lishing the result for LTV systems involves doing so first for
linear periodic systems. It is worth noting that the existence
of max-separable Lyapunov functions has been established
for monotone nonlinear systems on compact domains in [20].

The paper evolves along the following lines. Notation
and preliminary material are introduced in the next section.
The existence of diagonal quadratic Lyapunov functions is
first established for positive linear periodically time-varying
systems in Section III. This is then extended to positive
LTV systems in Section IV. Some concluding remarks are
provided in Section V.

II. NOTATION AND PRELIMINARIES

Let R (Z) and R≥0 (Z≥0) denote, respectively, the real
and nonnegative real numbers (integers). Given a column
vector x ∈ Rn, ‖x‖ denotes the Euclidean norm, i.e.
‖x‖ :=

√∑n
i x

2
i . Given a matrix A ∈ Rm×n, AT ∈ Rn×m

denotes its transpose. Ai,j denotes the (i, j) entry of A. ‖A‖
denotes the matrix 2-norm, i.e. the largest singular value
of A. In denotes the identity matrix of dimensions n × n;
the dimension n is often omitted when it is clear from the
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context. Given an A ∈ Rm×n, the inequality A > 0 (A ≥ 0)
means that all entries of A are positive (nonnegative). An
A ∈ Rn×n is said to be Metzler if all its off-diagonal
entries are nonnegative. It is called Hurwitz (resp. Schur)
if all its eigenvalues have strictly negative real parts (resp.
lie strictly inside the unit circle). The spectral radius of A is
denoted as rad(A). An A ∈ Rn×n is said to be symmetric if
A = AT . A symmetric A is said to be positive (semi)definite
if (xTAx ≥ 0) xTAx > 0 for all x ∈ Rn; this is denoted
as (A < 0) A � 0. Given two symmetric matrices A and B,
the notation A < B is used to denote A−B < 0. Similarly,
given two matrices A and B, the notation A ≥ B is used to
denote A−B ≥ 0.

This paper is concerned with the class of discrete-
time and continuous-time homogeneous linear time-varying
(LTV) finite-dimensional state-space systems. The discrete-
time systems in question are of the form:

x(k + 1) = A(k)x(k); x(0) = x0 ∈ Rn, (1)

where A : Z≥0 → Rn×n is a uniformly bounded discrete-
time matrix-valued function. On the contrary, the continuous-
time systems are of the form:

ẋ(t) = A(t)x(t); x(0) = x0 ∈ Rn (2)

where A : R≥0 → Rn×n is a uniformly bounded continuous-
time matrix-valued function. The unique existence of the
solution x(t), t ≥ t0 to (2) follows from certain properties
on A. In the case where A is piecewise continuous and
uniformly bounded, the unique existence of x follows from
the fact that the right hand side of (2) is globally Lipschitz
in the variable x [19, Thm. 3.2].

Starting from any initial state x(m) at time m ≥ 0, the
solution of (1) is obtained as

x(k) = Φ(k,m)x(m) k ≥ m,

where the discrete-time state transition matrix Φ(k,m) is
given by

Φ(k,m) =

{
I k = m
A(k − 1)A(k − 2) · · ·A(m) k > m.

(3)

Note that Φ(k,m) = Φ(k, p)Φ(p,m) for all k ≥ p ≥ m ≥ 0.

For the continuous-time system (2), the general solution
starting at any initial state x(s) at time s ≥ 0 is of the
form [21], [22]:

x(t) = Φ(t, s)x(s), (4)

where Φ is the unique solution of the matrix differential
equation

dΦ(t, s)

dt
= A(t)Φ(t, s), t ≥ s; Φ(s, s) = I.

In particular, Φ(t, s) is called the continuous-time state
transition matrix and is invertible for all t, s with Φ(t, s)−1 =
Φ(s, t). Moreover, it satisfies Φ(t, s) = Φ(t, τ)Φ(τ, s) for all
t, τ, s ≥ 0. In the case where A is a constant matrix, i.e. (2)

is an LTI system, we have Φ(t, s) = eA(t−s).

Definition 2.1: The discrete-time LTV system (1) is said
to be (uniformly) exponentially stable if there exist γ > 0
and 0 < λ < 1 such that

‖x(k)‖ ≤ γλ(k−m)‖x(m)‖ ∀k ≥ m ≥ 0, x(m) ∈ Rn.

Equivalently,

‖Φ(k,m)‖ ≤ γλ(k−m) ∀k ≥ m ≥ 0.

Analogously, the continuous-time LTV system (2) is said to
be (uniformly) exponentially stable if there exist γ, λ > 0
such that

‖x(t)‖ ≤ γe−λ(t−s)‖x(s)‖ ∀t ≥ s ≥ 0, x(s) ∈ Rn.

Equivalently,

‖Φ(t, s)‖ ≤ γe−λ(t−s) ∀t ≥ s ≥ 0.

Lyapunov’s direct method is commonly used to establish
exponential stability of (1) or (2). In particular, exponential
stability of (1) is equivalent to the existence of a P : Z≥0 →
Rn×n such that with

V (x, k) := x(k)TP (k)x(k), (5)

it holds that for all k ≥ 0,

η‖x(k)‖2 ≤ V (x, k) ≤ ρ‖x(k)‖2

V (x, k + 1)− V (x, k) ≤ −ν‖x(k)‖2,
(6)

where η, ρ, and ν are finite positive constants [22, Thm.
23.3]. Analogously, exponential stability of (2) is equivalent
to the existence of a differentiable P : R≥0 → Rn×n such
that with

V (x, t) := x(t)TP (t)x(t), (7)

it holds that for all t ≥ 0,

η‖x(t)‖2 ≤ V (x, t) ≤ ρ‖x(t)‖2

V̇ (x, t) =
∂V (x, t)

∂t
≤ −ν‖x(t)‖2,

(8)

where η, ρ, and ν are finite positive constants [22, Thm.
7.4 and 7.8]. Note that the time-derivative of V along the
trajectories of the LTV system is given by

V̇ (x, t) =
∂

∂t
V (x, t)

= xT (A(t)TP (t) + P (t)A(t) + Ṗ (t))x.

In the following, we will focus on positive linear systems.
We show in Section IV that the converse Lyapunov result
takes a stronger form for such systems. In particular, P can
be taken to be a diagonal matrix-valued function over time,
which is equivalent to saying that the Lyapunov function in
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(5) or (7) is sum-separable:

V (x, k) =

n∑
i=1

Pi(k)xi(k)2 in discrete-time and

V (x, t) =

n∑
i=1

Pi(t)xi(t)
2 in continuous-time.

To this end, the following definition and collection of pre-
liminary results are in order.

Definition 2.2: The discrete-time LTV system (1) is said
to be positive if x(m) ∈ Rn≥0 implies x(k) ∈ Rn≥0 for all
k ≥ m ≥ 0. The continuous-time LTV system (2) is said
to be positive if x(s) ∈ Rn≥0 implies x(t) ∈ Rn≥0 for all
t ≥ s ≥ 0.

Phrased differently, a positive linear system leaves the
nonnegative orthant Rn≥0 forward invariant. Observe that (1)
is positive if, and only if, A(k) ∈ Rn×n≥0 , i.e. it is nonnegative
for all k ≥ 0. Moreover, it can be seen from (4) that
(2) is positive if, and only if, Φ(t, s) ∈ Rn×n≥0 , i.e. it is a
nonnegative matrix, for all t ≥ s ≥ 0. Under the assumption
that A is continuous, the positivity of a linear system is
equivalent to A(t) being Metzler for all t ≥ 0 [1, Lem.
VIII.1].

When A is a constant nonnegative matrix, it is known
that A is Schur if, and only if, there exists a diagonal P � 0
such that ATPA− P ≺ 0 [14, Prop. 2]. On the other hand,
when A is a constant Metzler matrix, it is known that A is
Hurwitz if, and only if, there exists a diagonal P � 0 such
that ATP+PA ≺ 0 [18, Thm. 6.2.3]. Thus, the main results
of this paper can be seen as generalisations of these facts to
LTV systems.

III. LINEAR PERIODIC SYSTEMS

This section establishes the existence of a diagonal
quadratic Lyapunov function for positive linear periodically
time-varying systems that are exponentially stable. This is
then generalised to general LTV systems in the succeeding
section. Both discrete-time and continuous-time systems are
considered.

A. Discrete-time systems

Consider the following discrete-time linear periodic sys-
tem with period p:

x(k + 1) = A(k)x(k); x(0) = x0; A(k + p) = A(k),
(9)

where A : Z≥0 → Rn×n is uniformly bounded. The
monodromy matrix at time k, defined as

Ψ(k) := Φ(k + p, k),

relates the value of the state at a given time k to the value
after one period at k + p:

x(k + p) = Ψ(k)x(k).

It plays a major role in the stability analysis of (9). In
particular, (9) is exponentially stable if, and only if, Ψ(k)
is Schur for all k ≥ 0; see [23], [24]. Note that by the

definition of the state-transition matrix in (3), the eigenvalues
of Ψ(k) are independent of the time tag k and are the same
as those of A(p− 1)A(p− 2) · · ·A(0); see also [24, Section
3.1.1]. In what follows, it is convenient to employ the cyclic
reformulation of a linear periodic system; see [24, Section
6.3]. Specifically, define

Â :=


0 0 · · · 0 A(p− 1)

A(0) 0 · · · 0 0
0 A(1) · · · 0 0
...

...
. . .

...
...

0 0 · · · A(p− 2) 0

 . (10)

Note that

Âp =


Ψ(0) 0 · · · 0

0 Ψ(1) · · · 0
...

...
. . .

...
0 0 0 Ψ(p− 1)

 , (11)

and hence the eigenvalues of Â are the pth-roots of those of
Ψ(k).

Theorem 3.1: A positive linear p-periodic discrete-time
system of the form (9) is exponentially stable if, and only
if, there exists a diagonal P such that P (k + p) = P (k),

ηI 4 P (k) 4 ρI

A(k)TP (k + 1)A(k)− P (k) 4 −νI

for all k ≥ 0. In other words, (6) holds with respect to the
V defined in (5).

Proof: Sufficiency follows from the standard Lyapunov
argument described in Section II. For necessity, note that
exponential stability of (9) is equivalent to Ψ(k) being Schur
for all k ≥ 0. It follows from (11) that Â ∈ Rnp×np defined
in (10) is Schur. By the positivity hypothesis, Â is also a
nonnegative matrix. Therefore, there exists of a diagonal
D � 0 such that ÂTDÂ −D ≺ 0. Let the diagonal blocks
of D be denoted by [D]k ∈ Rn×n, where k = 1, . . . , p. By
defining

P (k) := [D]k+1, k = 0, 1, . . . , p− 1,

it can be seen that A(k)TP (k + 1)A(k) − P (k) ≺ 0 for
k = 0, 1, . . . , p − 1. The claim of the theorem then follows
from extending the definition of P p-periodically.

B. Continuous-time systems

Consider the following continuous-time linear periodic
system with period h:

ẋ(t) = A(t)x(t); x(0) = x0; A(t+ h) = A(t), (12)

where A : R≥0 → Rn×n is piecewise continuous and uni-
formly bounded. The monodromy matrix at time t, defined
as

Ψ(t) := Φ(t+ h, t),

plays an important role in determining the stability of (12);
see [23], [24]. In particular, Ψ(t) relates the value of the
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state at a given time t to the value after one period at t+ h:

x(t+ h) = Ψ(t)x(t).

Therefore, the sampled state xt(k) := x(t+kh) is governed
by the shift-invariant discrete-time equation

xt(k + 1) = Ψ(t)xt(k).

It follows that the periodic system (12) is exponentially stable
if, and only if, Ψ(t) is Schur for all t ∈ [0, 0 + h]. One may
also examine the stability of (12) via the Lyapunov’s direct
method. To be specific, it is known that (12) is exponentially
stable if, and only if, there exists differentiable P such that
P (t + h) = P (t) and for all t ≥ 0 with respect to the
quadratic Lyapunov function defined in (7) [24]. The next
theorem shows that P can be chosen to be diagonal when
the system in question is positive.

Theorem 3.2: A positive linear h-periodic continuous-
time system of the form (12) is exponentially stable if, and
only if, there exists a differentiable diagonal P such that
P (t+ h) = P (t) and with

V (x, t) := xTP (t)x(t),

it holds that

η‖x(t)‖2 ≤ V (x, t) ≤ ρ‖x(t)‖2

V̇ (x, t) =
∂

∂t
V (x, t) ≤ −ν‖x(t)‖2

for all t ≥ 0 and some η, ρ, ν > 0.

Proof: Sufficiency follows from the Lyapunov’s direct
method described above. For necessity, note that Ψ(0) is
Schur. If Ψ(0) is not irreducible, apply small perturbations
on A so that it is. Then by the Perron-Frobenius theorem [18,
Thm. 2.1.4] there exist y > 0 and z > 0 such that
Ψ(0)T y = λy and Ψ(0)z = λz, where λ = rad (Ψ(0)) < 1.
Define y(t) = λt/hΦ(h, t)T y and z(t) = λ−t/hΦ(t, 0)z.
Then y(t) > 0 and z(t) > 0 for all t, because Φ(h, t)
and Φ(t, 0) are invertible and nonnegative. It follows that
P (t) = diag(y1(t)/z1(t), . . . , yn(t)/zn(t)) defines the de-
sired quadratic Lyapunov function. To see this, observe that
P is h-periodic by construction and

ẏ(t) =
log(λ)

h
λt/hΦ(h, t)T y(t)− λt/hA(t)TΦ(h, t)T y(t)

ż(t) = − log(λ)

h
Φ(t, t)z(t) + λ−t/hA(t)Φ(t, 0)z(t).

Consequently,

(Ṗ (t) +A(t)TP (t) + P (t)A(t))z(t)

= ẏ(t)− P (t)ż(t) +A(t)T y(t) + P (t)A(t)z(t)

=
log(λ)

h
(y(t) + P (t)z(t))

=
2 log(λ)

h
y(t) < 0.

By [18, Thm. 6.2.3] (see also [14, Prop. 1]), it follows
that the Metzler matrix Ṗ (t) + A(t)TP (t) + P (t)A(t) ≺ 0
for all t ∈ [0, h], which remains true for sufficiently small

perturbations on A. This concludes the proof.

IV. LINEAR TIME-VARYING SYSTEMS

The main results of the paper are presented in this section.
The key idea of the proofs involves extending the existence
of diagonal quadratic Lyapunov functions of linear periodic
systems established in the preceding section to time-varying
systems on successive time intervals.

A. Discrete-time systems

Theorem 4.1: A linear positive homogeneous discrete-
time system

x(k + 1) = A(k)x(k); x(0) = x0,

where A : Z≥0 → Rn×n uniformly bounded for all k ≥ 0,
is exponentially stable if, and only if, there exists a diagonal
P such that

ηI 4 P (t) 4 ρI

A(k)TP (k + 1)A(k)− P (k) 4 −νI

for all k ≥ 0. In other words, (6) holds with respect to the
diagonal Lyapunov function V defined in (5).

Proof: Sufficiency follows from the Lyapunov’s direct
method described in Section II. Necessity is established
below. Since the system is exponentially stable, there exist
γ > 0 and 0 < λ < 1 such that

‖Φ(k,m)‖ ≤ γλ(k−m) ∀k ≥ m ≥ 0. (13)

Let p1 be an even number such that ‖Φ(p1, 0)‖ < 1, which
in turn implies that Φ(p1, 0) is Schur. Define

A1(k + ip1) := A(k) ∀k = 0, 1, . . . , p1 − 1, i ∈ Z≥0

and consider the following exponentially stable linear peri-
odic system:

xp1(k + 1) = A1(k)xp1(k); xp1(0) = x(0).

By Theorem 4.1, there exists a diagonal P1 such that η1I 4
P1(t) 4 ρ1I and A1(k)TP1(k+1)A1(k)−P1(k) 4 −ν1I for
all k ≥ 0 and some η1, ρ1, ν1 > 0. Note that A(k) = A1(k)
and x(k) = xp1(k) for k = 0, 1, . . . , p1 − 1, and hence
with P (t) := P1(t) for k = 0, 1, . . . , p1 − 1, it holds that
η1I 4 P (t) 4 ρ1I and A(k)TP (k+1)A(k)−P (k) 4 −ν1I
for k = 0, 1, . . . , p1 − 1.

Now let p2 be an even number such that ‖Φ(p2, p1/2)‖ <
1. Such a p2 exists by (13). By repeating the same steps as
above, P (k) can be extended to k = p1, . . . , p2 − 1 so that
η2I 4 P (t) 4 ρ2I and A(k)TP (k+1)A(k)−P (k) 4 −ν2I
for k = 0, 1, . . . , p2 − 1 for some η2, ρ2, ν2 > 0. Repeated
applications of the arguments above while noting that A is
uniformly bounded then yields a diagonal P such that ηI 4
P (t) 4 ρI and A(k)TP (k + 1)A(k)− P (k) 4 −νI for all
k ∈ Z≥0 and some η, ρ, ν > 0.

5272



B. Continuous-time systems

Theorem 4.2: A linear positive homogeneous continuous-
time system

ẋ(t) = A(t)x(t); x(0) = x0, (14)

where A : R≥0 → Rn×n is piecewise continuous and
uniformly bounded for all t ≥ 0, is exponentially stable if,
and only if, there exists a Lyapunov function

V (x, t) = xTP (t)x(t)

with differentiable diagonal P such that

η‖x(t)‖2 ≤ V (x, t) ≤ ρ‖x(t)‖2

V̇ (x, t) =
∂

∂t
V (x, t) ≤ −ν‖x(t)‖2

for all t ≥ 0 and some η, ρ, ν > 0.
Proof: Sufficiency follows from the Lyapunov’s direct

method described in Section II. For necessity, note that by
the exponential stability hypothesis, there exist γ, λ > 0 such
that

‖Φ(t, s)‖ ≤ γe−λ(t−τ) ∀t ≥ s ≥ 0. (15)

This implies that there exists an h > 0 such that ‖Φ(h, 0)‖ <
1, which in turn implies that Φ(h, 0) is Schur. Define

A1(t+ kh) := A(t) ∀t ∈ [0, 0 + h), k = 0, 1, 2, . . .

and consider the following linear periodic system:

ẋh(t) = A1(t)xh(t).

By Theorem 3.2, there exists a differentiable diagonal P1

such that with V1(xh, t) = xThP1(t)xh(t), it holds that
η1‖xh(t)‖2 ≤ V1(xh, t) ≤ ρ1‖xh(t)‖2 and V̇1(xh, t) ≤
−ν1‖xh(t)‖2 for t ≥ 0 and some η1, ρ1, ν1 > 0. Note
that A(t) = A1(t) and x(t) = xh(t) for t ∈ [0, h), and
hence with P (t) := P1(t) and V (x, t) := xTP (t)x(t)
for t ∈ [0, h1), η1‖x(t)‖2 ≤ V (x, t) ≤ ρ1‖x(t)‖2 and
V̇ (x, t) ≤ −ν1‖x(t)‖2 for t ∈ [0, h).

Now by applying inequality (15) again, it follows that
‖Φ(2h, h/2)‖ < 1. By repeating the arguments above, P (t)
can be extended to t ∈ [h, 2h) so that η2‖x(t)‖2 ≤ V (x, t) ≤
ρ2‖x(t)‖2 and V̇ (x, t) ≤ −ν2‖x(t)‖2 for t ∈ [0, h) and
some η2, ρ2, ν2 > 0.

Repeating the lines of arguments above while noting that
A, and hence Ψ, is uniformly bounded then results in a
differentiable diagonal P satisfying η‖x(t)‖2 ≤ V (x, t) ≤
ρ‖x(t)‖2 and V̇ (x, t) ≤ −ν‖x(t)‖2 for all t ≥ 0 and some
η, ρ, ν > 0, where V (x, t) := xTP (t)x(t). This completes
the proof.

The results in this section are particularly useful for
scalable analysis of large-scale positive systems. Consider
the scenario where a diagonal quadratic Lyapunov function
has been found for an exponentially stable positive system
(14) with A(t) ∈ Rn×n. Suppose that an additional agent
xn+1 joins the system, and the new state-space equation with
x̂ := [xT , xn+1]T is given by ˙̂x(t) = Â(t)x̂(t), where Â(t)
is Metzler, the top left n×n entries of Â(t) are equal to those

of A(t) and Âi,(n+1) ≡ Â(n+1),i ≡ 0 for i = 1, 2, . . . n− 1.
It thus follows that in the search for a diagonal quadratic
Lyapunov function for verifying the stability of the appended
system, the first n−1 functions in the sum can be chosen to
be the same as those for the original system. Efforts can then
be concentrated on the last two states/agents xn and xn+1.

V. CONCLUSIONS

This paper establishes the existence of diagonal quadratic
Lyapunov functions for uniformly exponentially stable finite-
dimensional time-varying linear positive systems in both dis-
crete and continuous times. Despite being non-constructive,
the results imply that the search for a Lyapunov function for
such classes of systems can be performed in a distributed
manner. Future work may involve extending the work to
an input-output setting via quadratic storage functions and
synthesising decentralised optimal H∞ controllers for these
systems. Existence of sum-separable Lyapunov functions for
nonlinear systems will also be investigated.
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