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On optimal low-rank approximation of non-negative matrices

Christian Grussler and Anders Rantzer

Abstract— For low-rank Frobenius-norm approximations of
matrices with non-negative entries, it is shown that the La-
grange dual is computable by semi-definite programming.
Under certain assumptions the duality gap is zero. Even when
the duality gap is non-zero, several new insights are provided.

I. INTRODUCTION
Low-rank approximation of matrices and more generally

of Hankel-Schmidt operators is considered an established
tool in many areas such as image analysis, model order
reduction or system identification (cf. [1], [3], [5], [12],
[13], [15]). The main idea is to truncate less important
parts in order to find an underlying structure of a given
data matrix. For unitarily invariant norms the optimal low-
rank approximation problem can be solved by performing a
singular value decomposition (SVD) (see Section III).

However, these solutions usually do not fulfil any further
desired structural constraints such as non-negativity, Hankel-
structure, etc. (cf. [2], [3], [4], [8], [12], [13], [15]). Only in a
few known cases an explicit solution to the constrained low-
rank approximation problem can be determined e.g. Hankel-
norm approximation (cf. [1], [14]). To this end, new concepts
based on convex optimization have been developed (cf. [3],
[5], [13], [15]), many among them relying on the so-called
nuclear-norm heuristic which allows to incorporate any con-
vex constraint (see also Section VI). In general, solutions
determined by this heuristic are satisfactory, however the
question of optimality remains and has been addressed e.g.
in [15] for minimum rank solutions among affine constraints.

In previous work [7], the authors have developed a model
reduction method which preserves input-output positivity
i.e. the non-negativity of the approximating Hankel-operator.
This work intends to address the problem of approximating
a general non-negative matrix under the preservation of non-
negativity (see Problem 2 and Section IV).

Besides the nuclear-norm heuristic, the most well-known
approach to this problem is the so-called non-negative matrix
factorization (NNMF) (see Section VI). Since each of the
presented methods in this work has its benefits and down-
sides, we will conclude this work with a comparison between
them in Sections VII and VIII. Nevertheless, all available
solution approaches can only guarantee a local optima.

In contrast, we will show that a globally optimal solution
to our non-convex problem can often be determined by
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convex optimization. (see Sections IV and V). As a byprod-
uct of our derivations we will prove that this is also true
for the unconstrained problem. Moreover, we derive several
notable generalizations of concepts which are often used in
the context of the nuclear-norm heuristic (see Section II and
V). Finally, in Section VIII we are going to observe that the
so-called alternating least squares algorithm (see Section VI)
usually converges to an optimal solution.

II. PRELIMINARIES

The following notation for real matrices and vectors X =
(xi j) is used throughout this paper. We say that X ∈ Rm×n

≥0
is non-negative, if all entries are non-negative (xi j ≥ 0 for
all i, j). By |X | = (|xi j|) we denote the entry-wise absolute
value of X and by xi its i-th column, if not further specified.

If X =XT , then we write X � 0 (X � 0) if X is positive def-
inite (semi-definite). We also use these notations to describe
the relation between two matrices, e.g. A� B means A−B�
0. Furthermore, we denote by σ1(X)≥ ·· · ≥σmin{m,n}(X) the
non-increasingly ordered singular values of X counted with
multiplicity. Rn×m is equipped with the Frobenius inner prod-
uct 〈X ,Y 〉 := ∑

m
i=1 ∑

n
j=n xi jy ji = trace(XTY ), X ,Y ∈ Rn×m

and Frobenius-norm

‖X‖F :=

√
m

∑
i=1

m

∑
j=n

x2
i j =

√√√√min{m,n}

∑
i=1

σ2
i (X).

The Frobenius-norm is unitarily invariant, i.e. ‖T XU‖F =
‖X‖F for all unitary T ∈ Un and U ∈ Um. A complete
characterization of all unitarily invariant norms is given in
[9]. However, this work only considers the norms which are
found in the following Lemma, where Pr stands for the set
of all orthogonal projections of rank r.

Lemma 1: Let M ∈ Rn×m and 1 ≤ r ≤ q := min{m,n},
then

‖M‖r :=

√
r

∑
i=1

σ2
i (M) =

√
max
P∈Pr

〈P,MT M〉 (1)

is a unitarily invariant norm with dual-norm

‖M‖∗r := max
‖X‖r≤1

〈M,X〉== max
∑

r
i s2

i≤1

[
r

∑
i=1

σi(M)si + sr

q

∑
i=r+1

σi(M)

]
.

Moreover,
• ‖M‖1 ≤ ·· · ≤ ‖M‖q = ‖M‖F = ‖M‖q∗ ≤ ·· · ≤ ‖M‖1∗
• rank(M)≤ r if and only if ‖M‖r = ‖M‖F = ‖M‖∗r
• If rank(M)> r then ‖M‖r∗ > ‖M̂‖r for any sub-matrix

M̂ ∈Rp×q of M obtained by deleting columns and rows.
A proof of this lemma can be found in the appendix.

Notice, ‖M‖1 = σ1(M) equals the spectral norm and its dual
norm ‖M‖1∗ = ∑

min{m,n}
i=1 σi(M) equals the Nuclear-norm.
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It is well known that these norms can be reformulated into
semi-definite programs (SDPs) (cf. [5], [15]). In Section V
we will see that the same holds true for all ‖ ·‖r as for their
duals.

III. LOW-RANK APPROXIMATION

Now, let us turn to the underlying problem of this work.
We start with the traditional optimal low-rank approximation
problem in Rn×m, which is formulated as follows

Problem 1: Given A ∈ Rn×m and 1≤ r ≤min{m,n}, find
X∗ ∈ Rn×m with rank(X∗)≤ r such that

inf
rank(X)≤r

‖A−X‖= ‖A−X∗‖

for some given operator norm ‖ · ‖.
In case of the Hilbert-Schmidt norm, which is the natural
operator generalization of the Frobeninus-norm, the problem
has been solved by Schmidt and was generalized by Mirsky
to unitarily invariant norms (cf. [1])

Proposition 1: Let A ∈Rn×m and 1≤ r≤min{m,n} then

inf
rank(X)≤r

‖A−X‖= ‖diag(σr+1(A), . . . ,σn(A))‖,

for any unitarily invariant norm ‖ · ‖.
Hence, if an SVD of A is given by A=∑

min{m,n}
i=1 σiuivT

i , then
an optimal solution is X∗ = ∑

r
i=1 σiuivT

i , which we will refer
to as a standard SVD-approximation. This solution may not
be unique if the norm does not depend on all singular values
or if σr(A) = σr+1(A). Nevertheless, if the chosen norm is
the Frobenius-norm and σr(A) 6= σr+1(A), then there is a
unique solution.

The main problem of this work is the following:
Problem 2: Given N ∈ Rn×m

≥0 and 1≤ r ≤min{m,n} find
M∗ ∈ Rn×m

≥0 with rank(M∗)≤ r such that

inf
M∈Rn×m

≥0 ,

rank(M)≤r

‖N−M‖F = ‖N−M∗‖F .

Clearly, Problem 1 and 2 are non-convex due to the rank
constraint. Nevertheless, we will see in the following two
sections that both problems can often be solved by convex
optimization.

IV. MAIN RESULT

Problem 2 is usually solved by approximating the optimal
solution through heuristics (see Section VI). In the following
we want to elaborate on the optimal solution.

Here is our main result:
Theorem 1: Let N ∈ Rn×m

≥0 then

inf
M∈Rn×m

≥0 ,

rank(M)≤r

‖N−M‖2
F ≥ max

D∈Rn×m
≥0

‖N‖2
F −‖N +D‖2

r (2)

If the maximum on the right is achieved by D∗ ∈ Rn×m
≥0 and

σr(N +D∗) 6= σr+1(N +D∗), then the infimum on the left
equals the maximum on the right. Moreover, the minimizer
on the left is uniquely determined by the unique optimal rank
r Frobenius-norm approximation of N +D∗.

Two different proofs of this theorem can be found in the
appendix. The second one relies mostly on differentiability
of ‖N+D∗+D‖2

r in D, which breaks down if σr(N+D∗) =
σr+1(N +D∗). The first proof is more revealing, because it
shows, if σr(N +D∗) = · · · = σk(N +D∗) > σk+1(N +D∗),
then the standard rank-r SVD-approximation of N +D∗ is
non-negative. Moreover, the proofs do not rely on the fact
that N ∈ Rn×m

≥0 . However, if N ∈ Rn×m
≥0 then there is a

significantly higher chance for σr(N +D∗) > σr+1(N +D∗)
to hold as we will see in Section VIII.

V. EQUIVALENT REFORMULATIONS

Let us derive several reformulations of Theorem 1 in order
to gain insightful geometric ideas and to prove computability.

A. SDP-reformulations

We start with an SPD-reformulation of

min
D∈Rn×m

‖N +D‖2
r . (3)

Let T � (N +D)(N +D)T and q := min{m,n}, then

‖N +D‖2
r ≤ trace(T )−

q

∑
i=r+1

σi(T )≤ trace(T )− (q− r)σq(T ).

Hence,

‖N +D‖2
r ≤ min

T�(N+D)(N+D)T
trace(T )− (q− r)σq(T )

and equality can evidently be achieved. Using the Schur-
complement (cf. [9]) shows that (3) is equivalent to

minimize trace(T )− γ(min{m,n}− r)

subject to
(

T N +D
(N +D)T I

)
� 0, T � γI, D ∈ Rn×m

≥0 .

By taking the Lagrange dual of this expression we can also
determine the solution to its dual

minimize trace(W )−2trace(NT M)

subject to
(

I−P M
MT W

)
� 0, M ∈ Rn×m

≥0 ,P� 0,

trace(P) = min{n,n}− r.

Under the assumptions of Theorem 1, an optimal solution
M∗ to the dual problem is equal to the unique optimal
solution to Problem 2, which does not require a standard
SVD-approximation of N +D∗.

B. Gauge-dual

If D∗ is an optimal solution to minD∈Rn×m
≥0
‖N +D‖r then

by Proposition 5 in the appendix

‖N +D∗‖r = max
Md∈Rn×m

≥0
‖Md‖r∗≤1

〈N,Md〉.

This can be reformulated into
1

‖N +D∗‖r
= min

Md∈Rn×m
≥0

〈N,Md〉=1

‖Md‖r∗. (4)
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The right-side of (4) is sometimes referred to as a gauge dual
to minD∈Rn×m

≥0
‖N +D‖r (cf. [6]). Consequently, the optimal

solution to Problem 2 can be found by studying the set Br∗∩
H ∩Rn×m

≥0 where

Br∗ := {X : ‖X‖r∗ ≤
1

‖N +D∗‖r
},

H := {X : 〈N,X〉= 1}.

Theorem 1 states, if σr(N +D∗)> σr+1(N +D∗) then Br∗∩
H ∩Rn×m

≥0 consists of a single element. This can also be
understood geometrically with the help of the following
lemma.

Lemma 2:

{X ∈ Rn×m : ‖X‖r∗ ≤ 1}= conv(K)

with K := {X ∈ Rn×m : ‖X‖r = 1, rank(X) ≤ r} and conv(·)
denoting the convex hull.

Proof: By Lemma 1 we know that conv(K) ⊂ {X ∈
Rn×m : ‖X‖r∗ ≤ 1}. Moreover, by first assertion in Lemma 1

sup
M∈conv(K)

〈N,M〉= ‖N‖r = sup
‖M‖r∗≤1

〈N,M〉

for all N ∈ Rn×m. However, since both sets are closed,
equality holds if and only if {X ∈ Rn×m : ‖X‖r∗ ≤ 1} =
conv(K) by Theorem 17.1 in [16].

This gives us the geometric interpretation that the hyper-
plane H intersects Br∗ ∩Rn×m

≥0 at a non-negative extremal
point of Br∗. Hence, σr(N +D∗) = σr+1(N +D∗) > 0 can
occur if and only if H intersects Br∗∩Rn×m

≥0 at several points,
i.e. either the solution to Problem 2 is non-unique or there is a
duality-gap in (2). Furthermore, it is interesting to notice that
neglecting the non-negativity in (4) leads to the following
theorem.

Theorem 2: Let A ∈ Rn×m, 1≤ r ≤min{m,n} and X∗ be
a solution to the convex problem

min
〈A,X〉=1

‖X‖r∗.

If σr(A) > σr+1(A), then rank(X∗) = r and there exists
c > 0 such that

inf
rankX=r

‖A−X‖= ‖A− cX∗‖

for any unitarily invariant norm ‖ · ‖.
This implies, if N ∈Rn×m

≥0 and σr(N)> σr+1(N) = 0, then
the gauge dual (4) returns the solution N

‖N‖2F
and it holds that

one can choose D∗ = 0.

VI. OTHER METHODS

In order to put our result in the context of earlier work, we
recall two of the most commonly used solution approaches
to Problem 2. Additionally, we consider two other heuristics
which appear to work very well for this particular problem.

A. Non-negative matrix factorization

The first solution approach which comes to ones mind is
the well-known non-negative matrix factorization (NNMF),
i.e. given N ∈ Rn×m

≥0 find

inf
L∈Rn×r
≥0 ,

R∈Rr×m
≥0

‖N−LR‖F .

Requiring non-negative factors is a much stronger assump-
tion than our original problem. In contrast to Theorem 1, it
is mostly unknown how to determine an optimal solution
for this problem. Moreover, even if the standard SVD-
approximation of N is non-negative, it does not necessarily
have a NNMF. In addition, all algorithms depend on a choice
of initialization.

B. Convex relaxation

The second approach borrows techniques from sparse
regularized regression or Lasso (cf. [17]), which aims to
estimate a sparse solution x̂ to a linear system of equations
Ax̂≈ b by solving

min
x

1
2
‖Ax−b‖2 + γ‖x‖1,

where ‖ · ‖ can be any norm, ‖x‖1 = ∑i≥1 |xi| and γ > 0.
Self-evidently, sparsity of the singular values is equivalent
to a low rank. Hence, for given N ∈Rn×m, its matrix version
reads

min
M

1
2
‖N−M‖2 + γ‖M‖1∗, (5)

where in this paper ‖ ·‖= ‖ ·‖F . Obviously, this formulation
allows to add any convex constraint such as non-negativity
of M, which is why variants of this approach have been used
extensively (cf. [5], [13], [15]). The limiting factor here is
the need to know γ a priori – whereas a large γ decreases the
rank too much, a small γ may leave it too large. Moreover,
in order to find the best approximation, one usually likes to
keep γ as small as possible, which on the other hand could
end up in a costly search, since each optimization requires
to solve an SDP.

Again, even without any further constraints and the small-
est possible γ , this heuristic usually does not return a solution
which is comparable to the standard SVD-approximation.

C. Lift-and-project Algorithm

The idea behind the so-called lift-and-project algorithm is
to interchangeably perform a standard SVD-approximation
of desired rank and project the result orthogonally onto the
non-negative orthant, which again increases the rank. Eventu-
ally, this method has to converge since the Frobenius-norm is
decreased in every step. Unlike the previous methods, this al-
gorithm will always return the standard SVD-approximation
if it is non-negative. Unfortunately, it is difficult to prove
whether the final result will be non-zero. In our numerical
experiments we never encountered zero results.
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D. Alternating Non-negative Least-Squares

NNMF is often solved by alternating projection algorithms
such as alternating non-negative least-squares [11]. This can
also be used for our problem, i.e. given N ∈Rn×m

≥0 and some
V0 ∈ Rr×n

≥0 , one interchangeably solves

Uk := argmin
UVk−1∈Rn×m

≥0

‖N−UVk−1‖2
F ,

Vk := argmin
UkV∈Rn×m

≥0

‖N−UkV‖2
F ,

where k≥ 1. Unlike NNMF, numerical experiments indicate
a relatively fast convergence. The limit points usually ap-
proach the global optimum as derived in Theorem 1. More-
over, there are examples where its solution fulfils the lower-
bound of Theorem 1 even though σr(N+D∗) = σr(N+D∗).
The authors hope to give a mathematical analysis for this in
a future publication.

VII. DISCUSSION

In the previous sections we have discussed several solution
approaches to determine

inf
M∈Rn×m

≥0 ,

rank(M)≤r

‖N−M‖F .

Whereas our method only provides a solution of desired
rank if the requirements of Theorem 1 are fulfilled, the
heuristic methods always obtain a suboptimal solution. Fortu-
nately, numerical experiments with randomly generated non-
negative matrices indicate that the requirements of Theo-
rem 1 are usually met and a guaranteed optimal solution can
be found. According to Theorem 2, this also includes most
of the non-negative standard SVD-approximations which not
necessarily can be recovered by the first two heuristics.

Nevertheless, as mentioned in Section V, σr(N +D∗) =
σr+1(N+D∗) may imply that there is a non-unique solution
to Problem 2. Indeed, one can readily find such examples
e.g. among non-negative symmetric matrices, which have
an optimal non-negative low-rank approximation that is not
symmetric. Therefore, it would be interesting to extend
Theorem 1 to unitarily invariant norms which benefit from
multiple singular values. Further notice that our method
mainly relies on solving a single SDP, whereas the heuristic
in (5) requires the solution of several SDPs. Computationally
wise, the alternating projection based methods are the most
efficient approaches discussed here.

Finally, Lemma 2 and Theorem 2 are similar to some of
the ideas in [15], where one tries to find the lowest rank
solution among linear constrains, i.e. minimization of ‖·‖1∗.
Instead, if one can afford a solution of certain rank r, then
Theorem 2 and Lemma 2 suggest to minimize over ‖ · ‖r∗.
This relation may also explain why our method seems to
work for all unstructured, randomly generated examples as
well as why the alternating least squares approach converges
to optimality. Together, both methods seem to supply good
lower and upper bounds on our problem, even in case of a
duality-gap.

VIII. EXAMPLE

Now, let us look at the performance of the discussed
methods based on an example. In our comparison we use
the method given in [11]) for the NNMF, which is known to
perform very well. Moreover, we give the convex relaxation
algorithm (Lasso) the benefit of a nearly optimal γ . As
mentioned in the discussion, for randomly generated dense
matrices there appears little chance to get σr(N + D∗) =
σr+1(N +D∗), therefore we consider an example where this
fact is present intentionally. To this end we choose the
following random binary matrix

N =



0 0 0 1 1 0 0 1 1 0
0 1 1 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1 1 0
1 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1
1 1 0 0 1 0 0 1 1 1
1 0 1 0 1 0 0 1 1 0
0 1 1 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0


for which any of the standard SVD-approximations of rank
r > 1 has 7%−30% negative elements and therefore a simple
projection onto R10×10

≥0 always increases the rank. The results
of the discussed methods are summarized in Fig. 1.

By the Frobenius-Perron Theorem (cf. [9]) the standard
SVD-approximation of rank 1 always has a non-negative fac-
torization, which reveals the clear downside of the nuclear-
norm heuristic for this problem. Furthermore, we observe
that there has been a double singular value of N +D∗ in
Theorem 1 for r = 2 and r = 5 – therefore no optimal
solution is obtained by the SDP-formulations. However, note
that the iterative non-negative least-squares algorithm always
reproduces the optimal solution and even fulfils the lower
bound in case of r = 2 and r = 5. Finally, we observe that
though the standard SVD-approximations are far away from
being non-negative, their relative errors are very close to
those of the optimal non-negative approximations.

IX. CONCLUSION

In this work, a new method to determine optimal non-
negative low-rank approximations of non-negative matrices
is presented. It appears that the non-negativity constraint has
little effect on the approximation error. Additionally, our
result supplies a lower bound on the non-negative matrix
factorization problem, which makes it a useful tool besides
the usual benchmark test for NNMF-algorithms. Apart from
the main result, this work has presented several new insights
into the convexification of low-rank approximation problems.
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X. APPENDIX

A. Unitarily invariant norms

The following results can be found e.g. in [9].
Proposition 2: Let A,B ∈ Rn×m, then

〈A,B〉 ≤
min{m,n}

∑
i=1

σi(A)σi(B).

Corollary 1: Let A,B ∈ Rn×m then

min{m,n}

∑
i=1

σi(A)σi(B) = max{〈A,T BU〉 : T ∈ Un and U ∈ Um}.

In the following we say that g(·) : Rn→R≥0 is a symmetric
gauge function if and only if

1) g(·) is a norm.
2) ∀x ∈ Rn : g(|x|) = g(x).
3) g(Px) = g(x) for all permutation matrices P and all x.
Proposition 3: ‖ ·‖ is a unitarily invariant norm on Rn×m

if and only if ‖X‖= g(σ1(X), . . . ,σmin{m,n}(X)), where g is
a symmetric gauge function.

B. Convex Optimization

In Section IV, the following elementary convex optimiza-
tion results (cf. [16]) are used.

Proposition 4: Let K1 and K2 be convex sets in a Hilbert
space H with inner product 〈·, ·〉. Moreover, assume K1 has
some interior points and K2 contains non of these interior
points. Then there exists an x∗ ∈ H such that

sup
x∈K1

〈x,x∗〉 ≤ inf
x∈K2
〈x,x∗〉.

Proposition 5: Let H be a Hilbert space with inner prod-
uct 〈·, ·〉 and n ∈H. Moreover, let the distance of n from the
convex set K ⊂ H be measured in some norm ‖ · ‖, then

inf
m∈K
‖n−m‖= max

‖m∗‖∗≤1
m∗∈H

[〈n,m∗〉− sup
m∈K
〈m,m∗〉],

where ‖·‖∗ denotes the dual norm of ‖·‖. If the maximum on
the right is achieved by some m∗0 ∈H and the infimum on the
left by some m0 ∈ K then 〈n−m0,−m∗0〉= ‖m∗0‖∗‖n−m0‖.

Proposition 6: Let K ⊂ H be a convex cone in a real
Hilbert space H with inner product 〈·, ·〉. Moreover, let f
be a differentiable convex function on H. Then a necessary
and sufficient condition that d0 ∈ K minimizes f over K is

∀d ∈ K : 〈∇ f (d0),d〉 ≥ 0,
〈∇ f (d0),d0〉= 0,

where ∇ f (d0) denotes the gradient of f evaluated at d0.

C. Proof of Lemma 1 and Theorem 1

Proof (Lemma 1): Let 1≤ r ≤ q := min{m,n} and

g(x1, . . . ,xq) := ‖diag(x1, . . . ,xq)‖r.

Then ‖ · ‖r is a unitarily invariant norm by Proposition 3,
because g is a symmetric gauge function. Now, let M ∈Rn×m,
then

‖M‖2
r = max{〈MT M,T PU〉 : T,U ∈ Rm×m are unitary},
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with P := blkdiag(Ir,0m−r) by Corollary 1. If MT M =

∑
m
i=1 σi(M)uiuT

i we can define a projection Pr := ∑
r
i=1 uiuT

i
such that ‖M‖2

r = 〈Pr,MT M〉.
Since ‖·‖∗r inherits the unitary invariance, it follows with

Σ := diag(σ1(M), . . . ,σmin{m,n}(M)) that

‖M‖∗r = ‖Σ‖∗r = max
‖X‖r≤1

〈Σ,X〉 ≤ max
∑

r
i σ 2

i (X)=1

q

∑
i=1

σi(M)σi(X)

= max
∑

r
i σ 2

i (X)≤1

[
r

∑
i=1

σi(M)σi(X)+σr(X)
q

∑
i=r+1

σi(M)

]
,

where the last inequality follows by Proposition 2 and clearly
it can be attained. Hence,

‖M‖∗r = max
∑

r
i s2

i =1

q

∑
i=1

σi(M)si ≥ max
∑

r
i s2

i =1

r

∑
i=1

σi(M)si =
r

∑
i=1

σ
2
i (M),

with equality if and only if rank(M)≤ r. The last assertion
follows in the same manner. �

Proof (Theorem 1): Let N ∈Rn×m
≥0 with rank(N)> r, then

it must hold that

min
M∈Rn×m

≥0
rank(M)≤r

‖N−M‖2
F ≥ max

D∈Rn×m
≥0

min
M∈Rn×m

rank(M)≤r

‖N−M‖2
F −2〈D,M〉

= max
D∈Rn×m

≥0

min
M∈Rn×m

rank(M)≤r

‖N−M+D‖2
F −2〈D,N〉−‖D‖2

F

= max
D∈Rn×m

≥0

‖N +D‖2
F −‖N +D‖2

r −2〈D,N〉−‖D‖2
F

= max
D∈Rn×m

≥0

‖N‖2
F −‖N +D‖2

r .

Hence, we need to derive minD∈Rn×m
≥0
‖N+D‖r = ‖N+D∗‖r.

We assume that N+D∗ = ∑
n
i=1 σ̄iūiv̄T

i with D∗ 6= 0 and σ̄r >
σ̄r+1. Applying Proposition 5 from the appendix gives

‖N +D∗‖r = max
Md∈Rn×m

≥0
‖Md‖r∗≤1

〈N,Md〉= 〈N,M∗d 〉

with M∗d ∈ Rn×m
≥0 and 〈D∗,M∗d〉 = 0. We show now that

rank(M∗d) = r.
First, notice that {X : 〈X ,M∗d〉 = 0} defines a supporting,

separating hyperplane between Rn×m
≤0 and the set B := {X ∈

Rn×m : ‖N +X‖r ≤ ‖N +D∗‖r}, which is why

0 = sup
X∈Rn×m

≤0

〈X ,M∗d〉 ≤ inf
X∈B
〈X ,M∗d〉 ≤ 〈D∗,M∗d〉= 0 (6)

by Proposition 4. Since, σ̄r > σ̄r+1 it follows that X̃ +D∗ ∈ B
for all X̃ = ∑

min{m,n}
i=r+1 δiūiv̄i with maxi |δi| < σ̄r − σ̄r+1 and

δi ∈ R. Hence, if
min{m,n}

∑
i=1

ūT
i M∗d v̄i =

(
M̃11 M̃12
M̃21 M̃22

)
,

then the diagonal entries of M̃22 ∈Rn−r×m−r need to be zero
by (6). Consequently,

‖N +D∗‖r = max
Md∈Rn×m

≥0
‖Md‖r∗≤1

〈N,Md〉= 〈Σ1,M̃11〉

≤ ‖Σ1‖r‖M̃11‖r = ‖N +D∗‖r‖M̃11‖r (7)

which is why by Lemma 1 ‖M̃11‖r = ‖M∗d‖r∗ = ‖M∗d‖F =
‖M∗d‖r = 1 and rank(M∗d) = r. We conclude that

min{m,n}

∑
i=1

ūT
i M∗d v̄i =

(
M̃11 0r,m−r

0n−r,r 0n−r,m−r

)
and M∗ := M∗d‖N +D∗‖r ∈ Rn×m

≥0 with rank(M∗) = r fulfils

‖N−M∗‖2
F = ‖N‖2

F −‖N +D∗‖2
r .

Clearly, any other minimizer M∗2 also has to fulfil that
〈D∗,M∗2〉= 0 and therefore by the previous derivations

‖N−M∗2 +D∗‖2
F = min

M∈Rn×m

rank(M)≤r

‖N +D∗−M‖2
F ,

which has a unique minimizer under our assumption. �

An alternative proof of Theorem 1 can be obtained by
using Proposition 6 together with the following lemma.

Lemma 3: Let N ∈ Rn×m with singular value decomposi-
tion N = ∑

min{m,n}
i=1 σiuivT

i and σr > σr+1. Then for D∈Rn×m

and all k = 1, . . . ,n and l = 1, . . . ,m[
∂

∂dkl
‖N +D‖2

r

]
k,l

=

[
2

r

∑
i=1

σiuT
i Eklvi

]
k,l

= 2
r

∑
i=1

σiuivT
i

where Ekl is the matrix with a one in the (k, l)-entry and
zeros elsewhere.

Proof: Assume N ∈ Rn×m with singular value decom-
position N = ∑

min{m,n}
i=1 σiuivT

i = ∑
p
j=1 σn j ∑

n j+1
i=n j+1 uivT

i and
σ1 = σn1 > σn2 > · · · > σnp = σn and σr > σr+1. Since
(N + εEkl)(N + εEkl)

T is symmetric and analytic in ε it
is known (cf. Chapter 2, Theorem 5.6. in [10]) that the
repeated eigenvalues as well as the orthonormal eigenvectors
of (N + εEkl)(N + εEkl)

T are analytic in ε . Hence,

(N + εEkl)(N + εEkl)
T =

min{m,n}

∑
i=1

σi(ε)
2ui(ε)ui(ε)

T ,

where ui(ε) = ui + ε
dui
dε

+ O(ε2) are the perturbed right-
singular vectors. Therefore, 1 = ui(ε)

T ui(ε) = 1+2εuT
i

dui
dε

+

O(ε2) ⇒ uT
i

dui
dε

= O(ε). Together with
n j+1

∑
i=n j+1

uT
i NNT ui = σ

2
n j
(n j+1−n j)

it follows that

σn j (ε)
2(n j+1−n j) =

n j+1

∑
i=n j+1

ui(ε)
T (N + εEkl)(N + εEkl)

T ui(ε)

= σ
2
n j
(n j+1−n j)+2ε

n j+1

∑
i=n j+1

uT
i EklN

T ui +O(ε2)

= σ
2
n j
(n j+1−n j)+2εσn j

n j+1

∑
i=n j+1

uT
i Eklvi +O(ε2).

Since all sums are independent of a particular choice of ui
and vi this implies that

∂

∂dkl

n j

∑
i=n j+1

σ
2
i (N +D) = 2σn j

n j+1

∑
i=n j+1

uT
i Eklvi

is well-defined, even if n j > 1. Due to the assumption that
σr > σr+1, this concludes the proof.
Note that, if σr(N) = σr+1(N), then one may only finds sub-
differentials.
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