Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d plus Au Collisions at root s(NN)=200 GeV

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.111.212301

2013

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central $d + Au$ Collisions at $\sqrt{s_{NN}} = 200$ GeV

PHYSICAL REVIEW LETTERS
week ending 22 NOVEMBER 2013

212301-1 © 2013 American Physical Society
Proton- and deuteron-nucleus collisions at relativistic energies are studied to provide baseline measurements for heavy-ion collision measurements. In \(p(d) + A \) collisions, initial-state nuclear effects are present; however, the formation of hot quark-gluon matter as created in heavy ion collisions is not commonly expected. Recently, there has been significant interest in the physics of high-multiplicity events in small collision systems, motivated by the observation of a small azimuthal angle (\(\Delta \phi \)) large pseudorapidity (\(\Delta \eta \)) correlation of primarily low \(p_T \) particles in very high multiplicity \(p + p \) collisions at 7 TeV [1]. The correlation resembles the “near-side ridge” observed in \(Au + Au \) [2,3]. The initial \(p + p \) result sparked considerable theoretical interest [4–6]. Recently, a similar effect was observed in \(p + Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV [7]. Subsequent work from ALICE [8] and ATLAS [9] removed centrality independent correlations (largely from jet fragmentation) by looking at the difference in correlations between central and peripheral events and has additionally uncovered similar long-range \(\Delta \eta \) correlations at \(\Delta \phi = \pi \) beyond those expected from fragmentation of recoiling jets. The effect appears as a longitudinally extended azimuthal modulation with a predominantly quadrupole component [i.e., \(\cos(2\Delta \phi) \)] and bears a qualitative resemblance in both magnitude and \(p_T \) dependence to elliptic flow measurements in heavy ion collisions, where the large quadrupole modulation is understood to be caused by the initial-state spatial anisotropy followed by a nearly inviscid hydrodynamic expansion [10]. A variety of physical mechanisms have been invoked to explain the observed anisotropies in \(p + Pb \) including gluon saturation [6,11–13], hydrodynamics [5,14,15], multiparton interactions [16], and final-state expansion effects [17].

Previous analyses involving two-particle correlations from \(d + Au \) collisions at Relativistic Heavy Ion Collider (RHIC) have not indicated any long-range features at small \(\Delta \phi \) [2,18–20]. However, these measurements involved \(p_T \) selections that emphasize jetlike correlations, rather than the underlying event. Also, Refs. [19,20] were based on \(d + Au \) collisions recorded in 2003 with a small data sample, which limited the statistical significance of the results.

We present here the first analysis of very central \(d + Au \) events to measure hadron correlations between midrapidity particles at \(\sqrt{s_{NN}} = 200 \) GeV. The center of mass energy per nucleon is a factor of 25 lower than at the Large Hadron Collider (LHC). Another potentially key difference is the use of a deuteron as the projectile nucleus rather than a proton. In Ref. [14], within the context of a Monte Carlo-Glauber (MC-Glauber) model, the calculated initial spatial eccentricity of the participating nucleons, \(\varepsilon_2 \), for central (large number of participants) \(d + Pb \) is more than a factor of 2 larger than in central \(p + Pb \) collisions at LHC energies. We find the initial spatial eccentricity \(\varepsilon_2 \) from the MC-Glauber model [21] for \(d + Au \) at RHIC energies to be similar to the \(d + Pb \) calculations at LHC energies.

The results presented here are based on 1.56 billion minimum-bias \(d + Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV recorded with the PHENIX [22] detector in 2008. The event centrality in \(d + Au \) is determined from the integrated charge measured by a beam-beam counter facing the incoming Au nucleus [23]. Here, we isolate a more central sample than previously analyzed, to compare more
closely to the LHC results. We use central and peripheral event samples comprising the top 5% and 50%–88% of the total charge distributions, respectively.

This analysis considers charged hadrons measured within the two PHENIX central arm spectrometers. Each arm covers nominally π/2 in azimuth and has a pseudorapidity acceptance of |η| < 0.35. Charged tracks are reconstructed using drift chambers with a hit association requirement in two layers of multwire proportional chambers with pad readout; the momentum resolution is 0.7% @ 1.1% p(GeV/c). Electrons are rejected with a veto in the ring-imaging Čerenkov counters.

All pairs satisfying the tracking cuts within an event are measured. The yield of pairs satisfying tracking and particle identification cuts is corrected for azimuthal acceptance through the use of mixed-event distributions. The conditional yield of pairs is determined by $(1/N'_t) \times (dN_{\text{pairs}}^\text{same} / d\Delta \phi) \times (dN_{\text{pairs}}^\text{mix} / d\Delta \phi)$ where N'_t is the number of trigger hadrons (trigger hadrons are those having the momenta required to begin the search for a pair of hadrons) and $N_{\text{pairs}}^\text{same}$ ($N_{\text{pairs}}^\text{mix}$) is the number of pairs from the same (mixed) events. Mixed pairs are constructed with particles from different events within the same 5% centrality class and with event vertices within 5 cm of each other. Because the focus of this analysis is on the shape of the distributions, no correction is applied for the track reconstruction efficiency, which has a negligible dependence on centrality for d + Au track multiplicities.

To make direct comparisons between our measurements and recent ATLAS $p + Pb$ results [9], we follow a similar analysis procedure. Charged hadrons with $0 < p_T < 3.5$ GeV/c are used. For this analysis, each pair includes at least one particle at low p_T ($0.5 < p_T < 0.75$ GeV/c), which enhances the sensitivity to the nonjet phenomena. To minimize the contribution from small-angle correlations arising from resonances, Bose-Einstein correlations, and jet fragmentation, pairs are restricted to pseudorapidity separations of $0.48 < |\Delta \eta| < 0.7$. This $\Delta \eta$ gap is chosen to be as large as possible within the tracking acceptance, while still preserving an adequate statistical sample size. Unlike measurements at the LHC, this method is not sensitive to the pseudorapidity extent of the correlations.

The conditional yield owing to azimuthally uncorrelated background is estimated by means of the zero-yield-at-minimum (ZYAM) procedure [24]. This background contribution is obtained for both the central and peripheral samples by performing fits to the conditional yields using a functional form composed of a constant pedestal and two Gaussian peaks, centered at $\Delta \phi = 0$ and π. The minimum of this function, b_{ZYAM}, is subtracted from the conditional yields, and the result is: $Y(\Delta \phi) = (1/N'_t)(dN_{\text{pairs}}^\text{same} / d\Delta \phi) - b_{\text{ZYAM}}$. The conditional yields $Y_c(\Delta \phi)$ and $Y_p(\Delta \phi)$ (central and peripheral events, respectively) are shown in Fig. 1, along with their difference $\Delta Y(\Delta \phi) = Y_c(\Delta \phi) - Y_p(\Delta \phi)$. As in Ref. [9], this subtraction removes any centrality independent correlations, such as effects from unmodified jet fragmentation, resonances and HBT. In the absence of any centrality dependence, $Y_c(\Delta \phi)$ and $Y_p(\Delta \phi)$ should be identical. It is notable that any signal in the peripheral events is subtracted from the central events. We see that $Y_c(\Delta \phi)$ is significantly larger than $Y_p(\Delta \phi)$ for $\Delta \phi$ near 0 and π.

We find that the difference with centrality is well described by the symmetric form: $\Delta Y(\Delta \phi) = a_0 + 2a_2 \cos(2\Delta \phi)$ as demonstrated in Fig. 1. The coefficients a_n and their statistical uncertainties are computed from the $\Delta Y(\Delta \phi)$ distributions as: $a_n = (\Delta Y(\Delta \phi) \cos(n\Delta \phi))$. The $\cos(2\Delta \phi)$ modulation appears as the dominant component of the anisotropy for all p_T combinations.

To quantify the relative amplitude of the azimuthal modulation, we define $c_n = a_n / (b_{\text{ZYAM}} + a_0)$, where b_{ZYAM} is b_{ZYAM} in central events. c_2 and c_4 are shown as a function of associated p_T in Fig. 2 for central (0%–5%) collisions.
The 0.36 selection has some
peripheral samples. No significant change was found in the
c2 values from the default peripheral subtraction. This
is potentially different from the implications of Ref. [26]
where a difference in low \(p_T \) hadron correlations between
40%–100% \(d + Au \) and \(p + p \) collisions is observed. We
observe a similar magnitude signal in both 0%–5% and
0%–20% central events. Other sources of uncertainty, such
as occupancy and acceptance corrections, were found to
have a negligible effect on these results.

In \(p + Pb \) collisions at the LHC, the signal is seen in
long-range \(\Delta \eta \) correlations. In this analysis, signal is
measured at midrapidity, but it is natural to ask if previous
PHENIX rapidity separated correlation measurements [18]
would have been sensitive to a signal of this magnitude. The
maximum \(c_2 \) observed here is approximately a 1% modulation about the background level. Overlaying a
modulation of this size on the conditional yields shown
in Fig. 1 of Ref. [18] shows that the modulation on the near
side is small compared with the statistical uncertainties.
With the current method we cannot determine whether the
signal observed here persists for \(\eta > 3 \).

To test effects of the centrality determination or known
jet modifications on this observable, we have applied the
identical analysis procedure (including the centrality selec-
tion) to HIJING [27] (v1.383) \(d + Au \) events. As shown
in Fig. 2, we find an average \(c_2 \) value of \((7.5 \pm 5.5) \times 10^{-4}\)
for \(0.5 < p_T < 1.5 \) GeV/c with no significant \(p_T \)
dependence.

The \(c_2 \) values, shown in Fig. 2, are small relative to \(c_2 \).
Fitting the \(c_3 \) data to a constant yields \((6 \pm 4) \times 10^{-4}\)
with a \(\chi^2 \) per degree of freedom of 8.4/7 (statistical uncertain-
ties only); no significant \(c_3 \) is observed.

A measure of the single-particle anisotropy, \(v_2 \), can be
obtained under the assumption of factorization [28–30]:
\[
c_2(p_T^+, p_T^-) = v_2(p_T^+)v_2(p_T^-)
\]
We have varied \(p_T \) and recomputed \(v_2(p_T) \) and find no significant deviation from
the factorization hypothesis. The calculated single particle
\(v_2 \) is shown in Fig. 3, and also compared with the ATLAS
[9] results, revealing qualitatively similar \(p_T \) dependence
with a significantly larger magnitude. We also compare the
\(v_2 \) results to a hydrodynamic calculation [14,31] and find
good agreement between the data and the calculation.
The \(v_2 \) reported here is the excess \(v_2 \) beyond any which is
present in peripheral \(d + Au \) collisions. While we cannot extract \(v_3 \) from the current data, Fig. 2 shows that the
measured \(c_3 \) values are in agreement with the values
expected from \(v_3 \) as a function of \(p_T \) in the same model
as the \(v_2 \) calculation [31]. The \(v_2 \) data are also in qualita-
tive agreement with another hydrodynamic calculation
[32] both with the MC-Glauber model and with impact-
parameter glasma [33] initial conditions (note that these
calculations are at a fixed \(N_{part} \), not the exact centrality
range as in the data). These calculations have very different
assumptions about the initial geometry and yet are all in
qualitative agreement with the data.
FIG. 3 (color online). Charged hadron second-order anisotropy, v_2, as a function of transverse momentum for (filled [blue] circles) PHENIX and (open [black] squares) ATLAS [27]. Also shown are hydrodynamic calculations from Bozek [14,31] (dotted [blue] curve) and Bzdak et al. [32,39] for impact-parameter glasma initial conditions (solid curve) and the MC-Glauber model initial conditions (dashed curve).

To further investigate the origin of this effect, we plot, in Fig. 4, the PHENIX results for both $d + Au$ and $Au + Au$ scaled by the eccentricity (e_2), as calculated in a MC-Glauber model, as a function of the charged-particle multiplicity at midrapidity. Due to the lack of available multiplicity data for the $d + Au$ centrality selection the $dN_{ch}/d\eta$ value is calculated from HIJING [27]. The 0%–5% $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV have a $dN_{ch}/d\eta$ similar to those of midcentral $p + Pb$ collisions at the LHC, while the e_2 values for $d + Au$ collisions are about 50% larger than those calculated for the midcentral $p + Pb$ collisions. The key observation is that the ratio v_2/e_2 is consistent between RHIC and the LHC, despite the factor of 25 difference in collision center of mass energy. A continuation of this trend is seen by also comparing v_2/e_2 as measured in $Au + Au$ [34–36] and $Pb + Pb$ [37,38] collisions. The e_2 values calculated depend on the nucleon representation used in the MC-Glauber model. In large systems, this uncertainty is small, but in small systems, such as $d + Au$, this uncertainty becomes much more significant. For illustration, e_2 has been calculated using three different representations of the participating nucleons, pointlike centers, Gaussians with $\sigma = 0.4$ fm, and uniform disks with $R = 1$ fm for the PHENIX data. The scaling feature is robust against these geometric variations, which leads to an approximately 30% difference in the extracted e_2 in $d + Au$ collisions (other models, e.g., Ref. [32], could produce larger variations).

In summary, a two-particle anisotropy at midrapidity in the 5% most central $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV is observed. The excess yield in central compared to peripheral events is well described by a quadrupole shape. The signal is qualitatively similar, but with a significantly larger amplitude than that observed in long-range correlations in $p + Pb$ collisions at much higher energies. While our acceptance does not allow us to exclude the possibility of centrality dependent modifications to the jet correlations, the subtraction of the peripheral jetlike correlations has been checked both by varying the $\Delta \eta$ cuts and exploiting the charge sign dependence of jet-induced correlations. The observed results are in agreement with a hydrodynamic calculation for $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.

We find that scaling the results from RHIC and the LHC by the initial second-order participant eccentricity from the MC-Glauber model [14] may bring the results to a common trend as a function of $dN_{ch}/d\eta$. This may suggest that the phenomena observed here are sensitive to the initial state geometry, and that the same underlying mechanism may be responsible in both $p + Pb$ collisions at the LHC and $d + Au$ collisions at RHIC. It may also imply a relationship to the hydrodynamical understanding of v_2 in heavy ion collisions. The observation of v_2 at both RHIC and the LHC provides important new information. Models intended to describe the data must be capable of also explaining their persistence as the center of mass energy is varied by a factor of 25 from RHIC to the LHC.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University.
Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

*Deceased

‡PHENIX Collaboration Spokesperson.

†PHENIX Collaboration Spokesperson.

morrison@bnl.gov

jamie.nagle@colorado.edu

31 P. Bozek (private communication).
39 A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan (private communication).