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IN OPTIMAL LINEAR SYSTEMS

by
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San Jose, California

ABSTRACT: In a sample data system we are essentially restricted to
control signals which are constant over the sampling interval. The purpose
of this report is to analyze the effect of this restriction, The situation where
the admissible control signals are piecewise continuous is used as a reference
case and the problem is approached from a variational formulation of the con-
trol problem where the object of the control is to minimize a loss function.
The minimal values of the loss function over the classes of piecewise constant
and piecewise continuous control signals are compared. It is assumed that
the system is linear and the criterion quadratic. Asymptotic formulas for
small sampling intervals and Fortran programs for the evaluation of the
values of the loss function in the discrete and continuous cases are given,
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INTRODUCTION:

When controlling a physical system, we are faced with the following
situation: The system can be influenced by applying control signals to it,
and its status can be observed by measuring certain output signals. The
basic problem of control is to generate a control signal on the basis of the
observed outputs in such a way that the objective of the system is achieved.
To implement the solution of the problem, one frequently uses schemes
where the data processing and the function generation are performed at

discrete instants of time, so called sampled data systems. There are

several reasons for this: The complexity and accuracy of the computations
might require a digital computer. The output signals are available only at
discrete times, For example, this is the case in the control of many chemi-
cal processes where analytical instruments are used for composition measure-
ments, or in fire control systems where target data are available only once

per revolution of the radar antenna.

The choice of sampling rate is a fundamental problem in the design of
sampled data systems. There are many considerations which affect this
choice. In some applications, the maximum sampling rate is given by the
available equipment; for example, in radar applications where the rate is
given by the angular velocity of the antenna, or in the control of a chemical
process where the sampling rate is given by the procedure used for the
composition analysis of the product. It is, however, important to deter-
mine what sampling rates are intrinsically required for the solution of a
particular problem. This information can be used for example to deter-
mine the specifications of the computer required for the implementation

of the system or to find the incentive in an improved measurement technique.

There exist at present no rational procedure for the choice of sampling

rates in discrete systems. Shannon's sampling theorem has been suggested

for this purpose.




In essence, Shannon's theorem states that signals whose power spectra are
zero outside the frequency interval (-f,f) can be represented by the values

of the time function at time intervals with the spacing Tz;f_ . The filter re~
quired to reconstruct the continuous signal from such a representation is,
however, not physically realizable. The approximation of the ideal filter by
physically realizable filters leads to considerable delay of the reconstructed
signal, There is no difficulty in an open loop system. Ina closed loop sys-
tem, however, this delay may give rise to stability problems. When compro-
mising between a slower sampling rate with a sophisticated data reconstruction
and a higher sampling rate with a simpler data reconstruction, one, therefore,
frequently chooses the latter alternative. For example, in carrier frequency

servos, it is not unusual to have a bandwidth of the servo which is a tenth of

the carrier frequency.

In recent years, control problems have been successfully treated as
variational problems, the object of the control being to minimize a scalar
loss function. The basic idea of this paper is to exploit this approach in
order to see if it can give some insight into the choice of sampling rates in

. a discrete system. By using a sampled data system instead of a continuous
system, we restrict the data processing and this should, therefore, affect
the loss function. To be able to persue the subject analytically, it is

assumed that the system can be described by linear differential equations

and that the objective is to minimize the integral of a quadratic form in the

state-and control variables., It has been shownS’ > that the data processing

problem in this case can be separated into two problems; first, the minimum
mean square estimation of the state from the observed outputs, and, second,
the deterministic control problem, i.e., knowing the state to determine the
optimal control. Furthermore, it has been demonstra.ted’7 that these

problems are dual.




The influence of the sampling rate in the deterministic optimal control
problem is analyzed in Section II, In the discrete case, the control signal

has to be a prescribed function of time over the sampling interval: Constant,

linear, quadratic, exponential, etc. All'cases can be reduced to the situation
where the control signal is constant over the sampling interval by expanding
the state of the system and we will, therefore, only analyze this case. (The
reduction of the other cases is demonstrated by examples in Section IIL,) The

main problem is thus to compare the minimal values of the loss function over

the classes of piecewise continuous and piecewise constant control signals,
respectively. Let V and V denote the loss function in the two cases. It
is shown that

L+p, = = =14f, , B>0, B, >0

<l<?

The quantities f; and B,, which can be interpreted respectively as the
minimum and maximum relative increase in the loss function due to sampling,
are related analytically to the parameters of the criterion and system equations.
It is shown that they converge to zero as the sampling intervals tend to zero.

In the case of stationary systems with constant sampling intervals of length

h, we obtain an asymptotic estimate

B. = a h?+ O~
i i

which is very useful for the determination of sampling rates in practical

problems,

In Section III, we demonstrate the application of the results of Section II
to some examples, It is found that the values of the sampling rates obtained

by the methods of Section II in some cases are widely different from those

obtained from considerations based on the sampling theorem.




In Section IV, we analyze the influence of the sampling rate on the
solution of the discrete estimation problem, The main problem here is
to analvze the effect of having to operate on the observations at discrete
instants of time as compared to a continuous data processing. As can be
expected from the principle of duality, the problem is essentially the same
as the problem discussed in Section II and the results previously obtained

are extensively used,

A straightforward combination of the results of Sections II and IV will
give the influence of the sampling rate in the linear stochastic optimal

control problem,

The paper makes extensive use of results developed recently in the
linear theory of optimal control, As there is not yet available a unified,
comprebensive treatment of this, we have included in the Appendices A, B,

C, and D statements of the main results used in this paper.

In Appendix A, we give the main results of linear continuous optirmal
control. The treatment is based on Reference 6 to which we refer for proofs

and further details,

In Appendix B, we give the transformation to the discrete problem and
the main results of the theory of time discrete linear optimal control, This

problem was first solved in Reference 8; proofs and control theoretic

interpretations are also found in References 1 and 2,

In Appendices C and D, we have stated the main results on the continuous

and discrete filtering, Most of the results stated in these sections are based

on Reference 7.

The results obtained in Section II are in a form which is well suited for

numerical computations on a digital computer. For the determination of




suitable sampling rates for a stationary system, we have developed a set of
computer programs. In Appendix E, we give a program for the computation
of B, and B, , and in Appendix F, we give a program for the evaluation

of the asymptotic bounds a; and a,.

The main conclusion of the results of this paper is that the formulation of
a control problem as a variational problem will give a rational way to de-

termine the sampling rate in a discrete system by analyzing the increase in

the loss function due to the sampling.
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THE INFLUENCE OF THE SAMPLING RATE IN THE DISCRETE
CONTROL PROBLEM:

Consider a linear system described by

dx

+ = Fbx + GHu 2. 1)

where x(t) and u(t) for fixed t are real n and r vectors, called the
state vector and the control vector, respectivelv. The elements of the

matrices F(t) and G(t) are assumed to be continuous and bounded.

Given the initial condition

x(t) = x| (2.2)
and given t, > to' Now consider the following functional of the solution
Xu.(to’ Xo)

u(s) u(s)

, £, .
Vix ot = X (5)Q X(Eg) + ) (X(S)> Q(s) (X(S’) ds  (2.3)
(o]

where Q(t) is a positive semi~definite symmetrical matrix, with bounded
elements
Qi (t)  Qp()
Q) = (2. 4)
Q1 (1) Qs (V)

T
Qz1(t) = Q12 (t) (2. 5)

Let u(t) belong to the class of admissible controls U,




PROBLEM: Given the system (2. 1) and the criterion (2.3), find
the difference between the minimal values of the functional (2. 3)
with respect to the class\of admissible controls U when (a) U= Uc
is the class of piecewise continuous functions and (b) U =TU_ is the

d
class of piecewise constant functions,

The (a) portion of the problem is referred to as the conlinuous problem,

and the (b) portion as the discrete problem. The control schemes defined

by the solutions are called continuous countrol and discrete or sampled data

conirol, respectively.

The object of this paper is to provide a solution to the problem stated

above. We start with some preliminaries,

Let Vo(xo,togti) and Vo(xo,to;ti) be the minimal values of the

functional (2. 3) in the following two cases:

O

Vi ,t st = Min V(x ,t ;ty,v) (2. 6)
o’ o ueU o0
c
~0
t = i . =
v (xo, o’ti) uMel%d V(xo,to,ti,u) (2.7)

It is well known that under certain regularity conditions6 the functions

0 ~0
V (x,t;ty) and V (x,t;t;) are quadratics in the initial state, i.e.,

il

o T
Vo (x,t;ty) X S(tity) x (2. 8)

Il

~0O T ~
Vox,tity) = x° S(tst,) x @. 9)




pe

where the matrices S(t;t;) and §(t;t1) are positive definite and hounded.
Analytical expressions for them in terms of F(t), G(t), and Q(t) are also
available. Summaries of these well-known results, which are frequentlv
used in this paper, are given in Appendices A and B. As UdC Uc’ the

difference
, ~0 o} T, .. v
W(x, tty) = V (x,4t) =V (x,4:t) = X T(t;t) X (2.10)

is positive semi-definite. The quantity W can obviously be interpreted as
the additional increase of the function (2.3) ‘due to the constraint that the
control signal has to be constant over the sampling interval or "the additional

loss due to sampling'.

We have

-1 v -1 -1
A (TS ) = —F5— = A (Ts ) = ||Ts | (2. 11)
min v max
where A . (A) and A (A) denote the magnitudes of the maximum and
min max
minimum eigenvalues of A, and we have temporarily dropped the arguments
to and t; in T, S, {‘70, and VO. As the quantity W depends on the initial
-1
state x, we will frequently characterize W by its maximum AmaX(TS )
which can be interpreted pliysically as the maximum relative increase in the

loss function due to sampling, We will now consider the solution of the

problem,
We have

THEOREM 2.1:

Vix,t,ty) = V(x,tit;) as  max (T,) == 0
1




PROOF:

The discrete version of the canonical equations (B. 17) can be
regarded as a difference approximation to the Euler equations
(A. 10). It is easily verified that the continuity of F(t), G(t),
and Q(t) implies that (B. 17) is a consistent difference approxi-
mation of (A. 10). As (B.17) is linear, it now follows from a
well-known result in numerical analysis (Henrici, 4 Theorem

3.2, p. 124), that

~

Z(tk;ti) — Z (tk;ti) as max (Ti) — 0

1

But V and V are expressed in terms of Z(t;ti) and E(t;ti)

by (A.15) and (B.22), which proves the theorem.
The theorem implies that the value of the functional (2. 3) in the discrete
case can be made arbitrarily close to its value in the continuous case by

choosing the sampling interval small enough.,

We will now give an estimate of the difference between the discrete and
the continuous case. To simplify the algebraical work, we will assume that
the dynamical system (2. 1) is stationary, that Q(t) is a constant matrix,

and that the sampling period is constant h.

Before giving the estimate, we will make an observation which simplifies

the formal work., The inclusion of Qg (t) is immaterial in the continuous

problem statement, If Q,, is non-zero, we can make the transformation

-1 -
F* = F-GQyp Qy (2. 12)

-1
Qi = Qu - QpQy Qy (2. 13)




10.

and we have a problem without Qyg » Therefore, throughout this section

we will assume that Qq = 0.

THEOREM 2. 2:

Let the matrices F, G, and Q be stationary, assume that Q is

positive definite and that the sampling intervals are constant T i h,

then
S(tity) = [Z91(tsty) Zgo(ts ti)Q ] [Z g (5ty) + Z g (s t1)Q ] (2.14)
Sty = Sty + St ] Eyt) + Znit)Q)] 1 o)
where
4 -
at Z(t;ti) = A - Z(‘c;ti) ) Z (t5ty) = 1 (2. 16)
N 112 3
> (t;t A(‘th) vy Bty + o(b%) (2. 17)
fz E(tty) = A E(tity) * BZ (t,ty) » Eltyity) =0 (2. 18)
F —GQZZ_l Gt
A = (2. 19)
Q41 ¥
FGsz G Qy FGsz_l ¢'F
B = (2. 20)
A T T
'QnGsz " Qu -Q;GQy G F
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PROOQOF:

~

The transition matrix Z (t+hst) is given by

~ T -1
~ h. _ _]_
2 12 (tk+ ,tk) = A2 A1
~ -1
St tht) = AL
2 (G5t ) = Ay
where

i

~ ._]_ ~ T
Ay [ -T Qg Q]

~ =] _T

N—lN

E511 - aizsz Qa4

Il

Az
and

2(t) = exp(Ft)

h
D (t) dt] G

h
T
= S @7 (t) Qg B(t) dt

0

O
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h

~ T

sz = S\ @ (t) Q“I‘(t) dt
o)
h T

Qyy = S‘ [T @) QyI(t) + Q] dt
(o]

The equation (B.17) which gives the solution of the discrete problem
can be regarded as a difference approximation of (A. 10), yielding the

solution of the continuous problem. We have
N
n.n
z (t+h;t) = Z ol A'h (2.21)
n=20

A tedious but trivial series expansion of Z (t+h,t) gives
E(t+h;t) =I+ hA + -21—' h?A? + —311— h3 (A%+B) + O(ht) (2.22)

This implies that (B. 17), regarded as a difference approximation

of (A. 10), has a local truncation error

d . 4
o WB + Oh)

The asymptotic formula (2.17) for z (t;ty) now follows from a

4
well-known result in numerical analysis. (See Henrici, Theorem

3.4, p. 135.)




It should be noted that:

1. The assumption of a constant sampling interval is not

essential. Theorem 2.2 still holds if h = max [T
i i

2. Results similar to Theorem 2.2 can also be obtained
in the case of time varying coefficients using the same
technique. In the general case, the difference W will,
however, be of the order of h. The asymptotic formula
corresponding to (2.17) has, however, -a complicated

analytical form.,

Let E(t;t;) be the solution of (2.18) and let the matrix C(t;t,;) be
defined by

7. =
-1
C = {Ey + Ey Q, ~SEy + Ey Qo]} e + Ty Q) (2.23)

where the arguments t and t;, are temporarily dropped in the matrices

C, S, Eij’ and Eij. It now follows from Theorem 2, 2:

Corollary 2. 3:

2

~ h
S(tity) = S(tity) + 75

.|_

C(t;ty) + O(h?) (2. 24)

Corollary 2.4:

%(X,t;tﬁ h? -1
—2 U — + O(h® 2.25
mAX - Yatt) LT 1z Mmax® O F O®) (2.25)

V(x, tit,) e

1
in @ —t X o3 2.26
M Yetty) L T12 Mmin ® O+ 00 (2.26)
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The asymptotic formulas of Theorem 2.2 and its corollaries essentially
provides the solution of the stated problem when F, G, and Q are constant,
and they can be used to estimate the sampling rates required for a particular
application. The results can be utilized in different ways depending on the

way the computations are arranged.

The asymptotic formulas can be evaluated. If only the discrete problem
ig solved, we can repeat the solution for different values of h., Knowing that
the asymptotic behavior is O(h?), we can then estimate the difference by a
Richardson extrapolation. Some examples of these applications are given in

the following section.

We notice from the proof of Theorem 2. 2 that the asymptotic formulas

hold whenever

z (t+ h;t)
can be approximated with sufficient accuracy by a few terms of its series

expansion, which apparently is true if

hiA] <1

This observation is useful in order to find the magnitudes of h for which

the asymptotic formulas are valid. We will also use ||A|| to normalize h.
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EXAMPLES:

We will now consider some examples which illustrate the application of

the results of the previous section.

Example 1,

Consider the first order system
X =u (3.1)

with the criterion

T
( .
- 2
Vix 0 = ‘)o [qy x*(t) + gy u® (t)] dt + qoxz (T) (3.2)
when (a) u belongs to the class of continuous functions u ¢ Uc and
(b) u belongs to the class of piecewise constant functions u ¢ U 4"
To fix the ideas, it is assumed in (b) that u(t) is constant on the

semi-open intervals [kh, (k+1)h), k=1,...,n-1, nh=T,

We have
0 0

-1
-q, 0 -q? q 0

The solution of the canonical equation (2. 16) becomes

osh _sinh a
— cosh a =
) T - i
Ngqyq, sinh a cosh a (3.3)

where

By o
o= Jg (T (3.4)
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The minimal value of the functional (3.2) in case (a) is

min  V(x ,u) = x? 8(0,T) ,
0 o
ue U
C
where
q, + Nq;q, tanha
Nayq, + d, tanh a

St;T) = Ngydg

Now consider the discrete case. We get

& = 1

I = h

Qy = gih
Qy = % q; h?

1
Qg qp h+ 5 4y h?

and the minimal value of (3.2) is

. ~ w2 Q
min V(xo,u) X S (0)

ue Ud

where

w8 + 5 a1

S(t-n) = Sty + q;h - —— -
[h?S(t) + azh + 5 a4 h’]

E(T) = d,




],7.

Using the asymptotic formulas (2.15) and (2. 17) for E(t) we get

oo q 444z (sinh a cosha-a) + Zqo\/q1q2 sinh?a + qg (sinh a cosh a~a)
= —"—zqz ’\}qiqz B

d;q, - cosh? a + 2gyNg,q, sinhacosha + ¢, sinh’a

If the interval (0, T), over which the optimization is performed, is

increased to infinity, we get

44 —
C = q199
24,

and the asymptotic formula gives

~ 2
St ) = Ny, (1 % )4 om)
24 g,

The exact value of §(t, w) is

~ 1 4
S(tyeo) = Nagay NI+ = == n?
12 q,
To judge the influence of the sampling rate on the criterion, we have,
in the table below, given the relative increase of the loss function for different
values of the sampling rate. To demonstrate the asymptotic formula, we have

also in the second column given the corresponding values calculated from the

asymptotic formula.
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s 5-8 w
dy S - 128

0.1 .00041658 . 00041667
0.2 .0016653 .00016667
0.5 .010363 .010416
1.0 . 04043 . 04125
2.0 . 1547 . 1667
5.0 .756 ~ 1. 042

10.0 2.05 4,17

The asymptotic formula will give results correct within one percent if

dy
h - < 0.7
d2

’ q4
Notice that q_ is the magnitude of the largest eigenvalue of the A-matrix.
2

Example 2,

Consider the system

with the criterion

‘) [A%% (1) + dyx%(t) + rud®] dt , r>0,q;>0,q,>0




when: (a) u belongs to the class of continuous functions Uc’ and (b) u

belongs to the class of piecewise constant functions U To fix the ideas,

T
it is assumed in (b) that T =nh and that u is constant on the semi-open

intervals [kh, (k+1)h), k=1,,..,n-l. As r >0, both problems are regular

and there exists a unique solution. ®
We have
0 1 0 0
-1
A = 0 0 0 -r
=0 0 0 0
O _qz _]. 0
0 r—lq2 r_l 0
B = 0 0 0 0
0 0 0 0
= B
0 =-r g3 -r 1q2 0
The eigenvalues of A are given by
raf g A2+ g =0
Letting T — «, we get
'\]q1q2+ 2qyNrgy NT
S(t, ) = Z

'\/rq1 Nrg, + 2rNrq,




20,

The integrals (B.8) through (B. 11), giving the transformation to the

discrete problem, can be evaluated in closed form as follows:

1 h

d =
® 0 1

1p?

T =
h
1

~ 4;h TR
Qi =

Lo n qoh + =gy h3

2 1 3
~ / '.%‘qihz .
Qyy = w
P — _1_ 5 .l h3
Qyy = 20 g, h +3q2 +rh

1

To find the influence of the sampling rate, we have calculated )\maX(TS— )
and P\min(TS-l) for the case q; =q, =r=1, T =10, The results are
summarized in Figure 1. Notice that for this choise of parameters, the
eigenvalues of the A-matrix will all have the magnitude 1. The figure shows,
for example, that a sampling rate of 0.3 will give an increase of the loss

function of 1% at most, while a sampling interval of 1.0 may give a 10%

increase of the loss function,




Example 3.

Consider the problem of Example 2, but assume in the discrete problem

that the minimum is taken with respect to piecewise linear functions.

We handle this situation by transforming it to the case of piecewise

constant controls in the following way. Introduce

u = Xyt ouy

By assuming that u; and u, are piecewise constant, we will thus achieve
that u is piecewise linear. We adjoin the variable Xg to the state variables

x4 and X, and obtain

and the criterion becomes
T
S [A3 %% (1) + QX (1) + T2 (t) + 2T %y (u, + ru?]dt
“0

The problem is thus in standard form with




a4 0 0 0
Qy =§ 0 q O Qe =} 0
0 0 T T

0
0

Qpy =

o
o]

In this case, the transformation to the discrete problem can also be

carried out analytically, and we get

] h  in?
o] ES 0 1 h
0 0 1

1
Qn '3"11]“3 + qyh

1 1
=q,h’ g dght + > dpb?

I

1
3 q;h® + —q,h?

2

1

1.3
20 q h° + qzh +rh

10 qh® + él-qzh3 +Th

o |—

I .4, 1 .2
q1h6+8q2h +2rh

1
72

1.2 1.3
Zh 6h
= l 9
h 21’1
h
1
¢’ \

1 1 2
gqjh4 5 gy h

210 q,h® + —q1h3 +rh ‘
1
24 d1h

1

qhS +-—q1h4 + lrh2

T2 q;h® + —q2h4 + -—rh2

1
252

1 1
q.h" + é—aqzh5 tyT

h3




A

FIGURE 1.
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As Q,, is singular, the continuous problem is not regular, and Theorem
2.2 does not apply. It is easily seen, however, that there are positive h
such that Q,, is positive definite, which means that the discrete problem is

regular for the values of h,

For qy =q, =r =1, we find that Q,, is positive definite, at least for
0 <h =5, and the discrete problem is thus regular for h in this range. In
Figure 2, we have plotted )\max(TS-l). Alscl>, for the purpose of comparison,
we have shown in the same figure AmaX(TS ) for the case of piecewise

constant functions. Compare Example 2,

To have at the most a 1% increase of the loss function, we find that the
sampling interval has to be smaller than h = 1,6, compared to h=0,3 in
the case of piecewise constant functions. Also notice that this problem is
degenerate in the sense that the second-order term in h vanishes and that

we have

Sty = S¢t) + h3D + O(u?)
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IV. THE INFLUENCE OF THE SAMPLING RATE IN THE DISCRETE
ESTIMATION PROBLEM:

We will now consider the influence of the sampling rate in the imple-

mentation of the solution of the minimum mean square estimation problem.

Consider a system described by

g% = F)x + vy (4. 1)
y = H@Ux + v (4. 2)

where x(t) and y(t) are n and p vectors referred to as the state vector
and the output signal, respectively. The variables vy(t) and v,(t) are
vector valued second-order random functions with zero average and the

covariance functions

cov vy (t) v?(t +T) = Ry(t) 6(T) (4. 3)
T . .

cov Vi(t) Vo (t+ T) = Ryy(t) 6(T) (4.4)

cov Vy(t) Vo (t+rT) = Rgy(t) &(T) 4.5)

where 6(T) is the Dirac measure and the initial state is a random variable

with

E[x(0)] = m

cov x(0) XT(O) = Ro 4. 6)

The matrices F(t) and H(t) are assumed to be continuous and bounded.

Consider the following:




PROBLEM:

Given the observations of the output y(t) over the interval (0,t)
find the minimum mean square estimate, ;;(t), of the state vector
x(t) when (a) the estimate is formed by operating continuously on
the observations, and (b) the estimate is formed by operating on
the observations only at discrete instants of time. Find the differ-

ence between the estimation errors of Case (a) and Case (b).

Case (a) is called the continuous problem. Case (b), called the discrete

problem, refers to the situation when the solution of the estimation problem
is implemented by a data processing equipment operating sequentially in

time., To fix the ideas, we will in Case (b) assume that the data processing
equipment produces an estimate ?{(tk) of the state variable X(t) at discrete

instants of time

n-1
t =t + S‘ T,
n o 2 i
i—0

-

where T i are fixed numbers referred to as the sampling intervals. The
data to be processed by the computer is fed from the measuring equipment
via sample and hold circuits., Let the components of the p-vector z(t) be
the numbers obtained in the computer registers after these operations. We
will assume that z(t) is related to the output signals y(t) by the linear

transformation
t

z(tk) = g k k(tk;s) y{s) ds “4.7)
tk—l

Different kernels k(t,s) correspond to different methods of sampling, For

example:




28,

1. '"Inpulse Sampling"
We have

kit st) = 8(t ~t)

and we get

z(t) = y(t) (4.8)

2. "Average Sampling"

We have

k(tst) =1

and we get

_(k
z(tk) = St y(s) ds 4.9)

For a more detailed discussion of the sampling process, we refer to
Ragazzini and Framklin.1 0 In this section, we will arbitrarily assume that
z(tk) is formed by (4.9), i.e., average sampling. This assumption is not
essential. One reason for this choice is that it leads to the formal dual of
the optimal control problem discussed in the previous section, where the

corresponding assumption was that the control signal is constant over the

sampling intervals,

The solutions of the discrete and the continuous estimation problems

are well known; the minimum mean square estimation errors are given by

P(t) =E{[x(t) - X()] [ xt) - k)] ) (4. 10)
and

~ ~ ~ T
P(t) =E{[x(t) - Xt )] [x(t) - X1~ b @ 11)
respectively.




Analytic expressions for the matrices P(t) and 13(1;) in terms of F, G, and
7

B are available, See Kalman. As we are going to make extensive use

of them, they are included in Appendices C and D. For the purpose of

"~y
comparing P and P, we introduce the norm

IPI® = max x Px (4. 12)
%=1

It immediately follows from the problem statement that
1)1 = eI’ | (4.13)
Yk k :

The estimation problem of this section is the formal dual of the control

problem of Section II. Using the dual transformation,

t* = =1

FH(t¥) = Fo(y)

HA () = G (f)

RY () = Q)

P{t*) = S(t) (4. 14)

the results of Section II can immediately be used and we obtain

THEOREM 4. 1:

D . — . —_ 4:. 15
P(tk,to) P(tk,to) as m:ilx(’r i) 0 ( )
In the case of stationary systems, we have the following asymptotic estimate

of the difference between 13' and P,
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THEOREM 4.2:

Let the matrices F, G, and R be stationary, let R,,=0, let R,, be

positive definite, and let all sampling intervals have the same length,

’Ti = h, then

o~

P(tit ) = [Agy (tit ) + Aoy (b8 )R T[A (bit ) + Ay (ti2 )R ]

where

d
—~ . = * . .
o Abt) = A*A®mE) L At )

~ h? _
. - . — Rk (t: 3
A(t,to) A(t,to) + E (t,to) + O(h?)

12
L prtst ) = A*E(tt ) + B¥A(tit)
dt "o o "o ’
-FT HY 322"11{
A* =
Ry F
-1
B* =

T -1
RyjH Ry, HRyy

=1
E(tt ) = 0
-1

-1
R, H R, HF

-1
Pitit ) = [Ayy(tit ) + Dop (b5 )R TIAyy (b5t ) + Ay (tit )R ]

-1

(4. 16)

(4. 17)

(4. 18)

(4.19)

(4. 20)

(4.21)

(4.22)

Again we notice that the assumptions of constant sampling intervals and

Ry, =0 are not essential.




%
Further, introduce the matrix C (t;to) defined by

* * * * -1
C = {Ey + EpR - PIEy + EpR IHAy + ApR ] (4.23)

where the arguments t;to are temporarily dropped in C, D, Eij and Aij'

It now follows from Theorem 4. 2,

COROLLARY 4,3:

5 . . _1_13 * . 3 :
Pt = Pltit) + 75 C (Gt ) + O@) (4.24)

COROLLARY 4.4:

2 -1 *
max XX o, B N L o (4.25)
T 12 max
X x Px
x Px % -1
. PSS R £\ 3
min T 1+ 12 )\min(P C*) + O®m?) (4. 26)




APPENDIX A

The Continuous Control Problem:

The continuous problem, i.e., the minimization of the functional (2. 3)
with respect to the class of piecewise continuous functions, is a classical
variational problem. For a detailed discussion, including proofs and
control theoretic interpretations, we refer to Kalman. 6 In this appendix

we will summarize the main results used in this paper.

The Hamiltonian of the variational problem is

2H(x,p,t,u) = XTQHX + ZXTQnu + uTQZZu + 2pT(Fx+Gu) .
(A.1)

The Hamiltonian is minimized for u= uo where
o} T
QyX + Qpu + G'p =0 . (A. 2)

If Q,, is positive definite, the control uO which minimizes the Hamiltonian

is uniquely given by

C,pt) = -Qy - [Qyx + Gop] (A.3)

The condition that Q,, is positive definite is the regularity condition for the
variational problem. Notice that in (A. 3) the optimal control signal is de~
fined in terms of the values of the state vector x and the canonical coordinate

p, which means that (A.3) in fact defines a control law or a feedback solution,




The minimal value of the Hamiltonian is given by

2H(x,p,t) = 2 min H(x,p,t,u) =
u

T -1 T -1 T 1T
X [Q“_Qszg Qqyy1x + 2p [F-GQyy Qqylx-p GQ,y G'p
(A.4)
The Hamilton-Jacobi equation is
o} o)
Vt + H (x, VX,t) =0 , . (A.5)
where VO(X, t;t;) is the minimal value of the loss function, i.e.,
V%, tt) = min V(K tt,u . (A. 6)
ue U
The Hamilton~-Jacobi equation has the solution
o T
V (%, t;ty) = X S(‘c,’c1)><O , (A.7)

where S(t;t;) is a symmetric matrix which satisfies the Riccati equation

-1 T -1 -1 T
dS 4 [F-GQy; Q] S + S[F-GQy Q] - SGQy G S

dt
Ql?. ~1
tQy AQp Q= 0, (A.8)
2
with the boundary condition
Sty ty) = Q) - (A.9)

Conditions for the existence of a solution of (A.8) for to =t=t, are found

in reference 6.

a




The canonical equations, or Euler's equations, whose solutions are the

characteristics of the Hamilton-Jacobi equatior, are

-1 -1 T
[F-GQqy Qplx - GQy G P

xo
il

e
|

-1 4T
[Qii—QIZQZZ Qyylx - [F-GQy Qul » (A. 10)

with the boundary conditions

xt) = X, (A.11)
p(ty) = Q x(ty) - (A. 12)
Let
2y (t5ty) 212(t;t1)
Z(t;fq) =
291 (t3ty) Zgg itsty) (A.13)

be the fundamental solution to (A.10). Using the boundary condition on
p(t), we get

p(t) = Stpx®t) (A. 14)

where

S(tity) = [Syyltst ) + Ty tit)Q] [Dyy(bity) + Zm(t;ti)QO]—l :
(A. 15)
The matrix S(t;t;) satisfies the Riccati equation (A.8) with the boundary
condition (A.9).




Using (A.14), the control law (A. 3) becomes

WOz, p,t) = ~L(t) x(t)

N (A. 16)
where

-1
L) = Qu () Q) + GL(t) Stity)] (Al 17)

The equation of motion of the optimal system is

X(t) = [F(t) - G(t) L(t)] x(t)

. (A. 18)
7 e e ATy
_

S
.
.
%

. - .
. ~
- . .
- -
o

.
| - .. -
N g e
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APPENDIX B

The Discrete Control Problem:

Now consider the discrete problem, i.e., the minimization of the

functional (2. 3) with respect to control functions, u(t) , which are piece-

8
wise constant. This problem was first solved by Kalman and Koepcke
. . ‘ 1 .
using Bellmau's techuique of dynamic programming and has since been sub-

ject to extensive treatment. In the following, we will state the main results,

It is assumed that the time t, :: T, is fixed and that the interval

[to, T,] is divided into subintervals (ti’ ’c~i + Ti) by the division points

k-1

t o Z Ti , T, B.1)
i=0

where {T i} is a given sequence of numbers called the sampling intervals.

The control functions u(t) are assumed to be constant over the semi-

open intervals [ti,ti+ ”r'i) . See Figure B.l.

& u(n
[
[ SeE—
[ —
[ —
} } { i s 3
0] To ‘ri 1‘i+ Tl 'rN- T" t




Utilizing the fact that u(t) is constant over the sampling intervals, the

equation (2.1) describing the motion of the dynamical system can be integrated,

and we get

x(t) = @(t;tk) x(tk) + T(t;tk) u(tk) , tk =t= tk+1 (B.2)
where
4 B(tst, ) = F(t) (tst, ) t st=t (B.3)
dt "k "k ’ k™ 77 k+l )
et it,) = I (B.4)
and
t
F(t;tk) = ®(t;s) G(s) ds ) tk =t= tk+1 (B. 5)
t
k
The functional (2. 3) can now be expressed as
N-1 T
Vet ,x,Tw = x () e Qt, ) i
( O’XO’ 1,11) = X ( N) QO X( N) 7 u(tk) tk u(tk)
=0
(B.6)
where
. Qu(t)  Qpty
at) = \g 5 By
k Qult)  Quty) (B.7)
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and

~ ,,tk+1 T
Qi) = ﬁt " (sit) Qi () (sity) ds (B.8)
k
o~ o k+1 T T
Guy) = § e QETER) ¢ 8 e Qe o
K (B.9)
B ) = QL B. 10
Qut) = Qq (t) (B. 10)
o ptk+1 T T
Guly) = ) T i) Que Tt + T (sih) Qu(6)
k

+ Q21(S)P(S3tk) + Qyy(s)] ds
(B.11)

The discrete problem can now be stated as

PROBLEM: Given the discrete time dynamical system
described by the difference equation (B.2), find the minimal
value of the functional (B. 6) and the sequence of controls for

which the minimal is attained.

The minimal value of the functional (B. 6) is

~ T e
V(Xo’to’Ti) = Xo S(‘co,’I‘i)x0 (B. 12)




where the symmetric matrix S(to, T,) is given by the recursive equation

~ T » ~T T & Q.15+ O
ST = @ S, T ~Lr S, sT0+ @1 £ @y

= TS, pTOY + Qy -L 7 Qy -Qyp L+ L Qy L

~ T ~ ~ -] T~ ~
L = [T7 8, T + Q" [T S, ;T2 + Gy
%

~ol] T ~
v - ®-TL (B. 15)

The initial condition is

S(r;, Ty = Q (B. 16)
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The canonical equations are

g ~ -l o~ e
St ) = (2 -TQyp Qulxty) - TQy T o)

+
I

(B.17)
D(tk—l) = [Qli - Q"jz Q22 QZI ]X(tk) + [®@-T sz Q21 1 p(tk)

with the boundary conditions
x(to) = x(to) . ~ (B.18)

o) = xty (B. 19)

In the formulas above, the arguments of the functions are as follows:

o= 2, ph)
vo= M )
o= T pty)
L = i(tk o
Qu = Qut

Q= Q)

Qy = Qy (t)

-Let
~ St st St t.)
AY i1 - 12
L bst) = <N K'N (B.20)
/. (k’ N) ~ >
- Zyy (b5t Zyp (6 3ty

il




be the fundamental solution of (B.17) with

/]2

gty =T

o

then, .

w2

p(tk—l) = (tk;tN) x(tk) (B.21)

where

~ o~ o~ ~ o~ -1

S(tk;tN) = [221(1‘, ;tN) + 222 (tk;tN)Qo] [Z“(tk;tN) + 212 (tk;tN)Qo]
(B.22)

If Qyp and S(t ;tN) are positive definite, then S(t ;tN) satisfies (B.13)
with the initial condition (B. 16) which explains the notation (B.21).

The minimum of the loss function is assumed for the control law

u(tk) = =L (tk) x(tk) (B.23)
and the equation of motion of the optimal system is
(b, ) = Wb, st X(t) (B. 24)

The regularity condition which assures a unique control law is that the

matrix

T ~ ~
T7 S, pTHT + Qg (B. 25)
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is positive definite for all k. Notice, however, that the minimum might
exist even if this is not the case. One control law vielding the minimal

value to the loss function might be obtained by suhstituting the inverse in

(3.14) by a generalized inverse. See Penrose. ¢

Also notice that the regularity of the continuous problem implies the
regularity of the discrete problem, but that the converse statement is not
true. By the limitation of the class of admissible controls, the conditions
for the regularity of the variational problem have been considerably weakened.,
If Qg =0, the continuous problem is irregular, but the discrete problem

might well be regular,




APPENDIX C

The Continuous Estimation Problem:

Consider the system described by (4.1) and (4.2). The minimum mean

square estimate ;((t) of the state variable x(tf) is given by

L X0 = FO KO+ KO v - 50 .1
X(0) = m (C.2)
¥(O = Ht) X(t) | (C.3)
K = [P(tit) HO + Ry O] Ry (0 (C.4)

where P(t;to) is the minimum mean square estimation error, i.e.,
A A T
Pt ) = E[x(t) - x®)] [x(t) - x(V)] (C.5)

The symmetric matrix P(t;to) satisfies the Riccati equation

d s "‘1 = —1 T i
at P = [Fd Ry Ry H;{]P + P[F& Ry Ry Hri] -
T -1 -1
- PH Ry, HP + Ry -Ryy Ryy Ry (C. 6)
with the initial condition
P = .
(t,t) = R (C.7)
‘ = “ - m . |
- -
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In (C.7), the argument t is temporarily dropped in all the functions.
Notice the formal similarity with (A.8), from which we can conclude that

the solution of (C.€) can be represented as

-1
P(tt) = [Azt (Est ) + Azx(t;to) R T [y (tit) + Mg (tit )R ]
| z (C.8)

where A(t;to) is the fundamental solution of

7 -1 F T T, -1
d ~[F £ Ry, Ry H7[<] H Ry, H

a A(t;to) = A(t;to)

-1 N -1
[Ry; =~ Ryy Ry Ryyl [F # Ry Ryy Hrr]

(C. 9)




APPENDIX D

The Discrete Estimation Problem:

Consider the discrete estimation problem, i,e., to produce an estimate
of the state of (4.1) when we are only operating on the data at discrete inter-
vals of time., To fix the idea, we assume that it is possible to operate on the

data at the instants

tk = tO + Z Tl , (D. 1)

k-1

—
<

where {‘Ti} is a given sequence of numbers called the sampling intervals.

We also assume "'average sampling', i.e., the number produced in the data
" processing equipment as the result of the action of the sample and hold
circuits is related to the output of the plant by

S

2(t,) = \S y(t) dt . (D. 2)

tk-l

Integrating the equations of motion (4.1) and (4. 2), we get

\

o, , it = 5t H(s) 8(sit) ds 6 =t=t (D.7)

% X(Fk+1) = @(tk+1;tk) x(tk) + ei(tk) (D. 3)
% aty) = O, i) X)) + ep(t) (D. 4)
§ where

g d

~' = & (t: = ® (t: =t=<

| & 2 t) = FO) ot t St=t (D. 5)
. d(t - =

(tt) = I t (D. 6)
% |




The variables e1(tk) and e, (tk) are second order vector valued

random functions with zero means and the covariance functions

T ~
E ej(t)eg(t) = Ryt 8, (D. 8)
T ~
E eyt e, (t) = Ryp(t) 8, (D. 9)
T o~
E e (tk) ey (ts) = Ry (tk) 6ks (D. 10)
where 6ks is the Kronecker delta and
) /""tk+1 T
Ry (t) = 5 ®(t,, 138) Ryy(s) @ (8, 38) ds (D. 11)
tk
~ ~ k+1 T
Ry (6) = S (2, ;9Rs1(8)© (6, 39) + B(t . iRy (5)] s
t
k (D. 12)
t
~ 5 kil T
Rzz(tk) = ‘St [6(tk+1;s)R“(s)9 (tk+l,s)+ @(tk+1;s)Riz(s) +
k
T
+ Ryy(s) © (tk+1;s) + Ryy(s)]ds (D. 13)
~ ~T
Ry (t) = Ryt (D. 14)

To arrive at these results, we have to interchange the operations of

calculating mathematical expectations and integration with respect to time.

After these preliminaries, the discrete problem can now be stated as

follows:
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PROBLE M:

Consider the discrete dynamical system (D, 3) with the output

signal (D.4). Given a sequence of observed outputs

y(to), V(ti)seao ,Y(tk), find the minimum mean square estimate

of the state vector at time tko

The solution of this problem is given by Kalman, ! The estimate is

obtained from

~

M) 7 Pl pd ¥(G) + K ) I, ) =Y, I

e e

= Wl ph XD KRG, Py )

where

ey = Ol ph) 2, ) X

iy, pty) = 2l ) - Kt Ot it
and

Rt = [Pt t )0F + Rul [O6D(t it )OF + Royl L

(kF].) - [ (k’ 0) 12] [ (k’ O) 22]
~ ~ o~ ....1

Ply, ) = 2PMESEI® = Kb, ) [OPESE DO + Ry 1 K (B, 7 Ry

T

- \I{N . @ _ o~ ~ ~
Pt st ) Ket,, PRy + Ry

= TPt )Y + Ry - 2K(, PRy + Kl PRy K7 (¢, )




As before, we notice that

error, i.e.,

cov[x(tk)

To abbreviate the writing, the arguments have been omitted in the

formulas above. The arguments are as follows:

(e 1Y)

ity 1Y)

P(t is the covariance of the estimation

e 1%o)

- %] = Bt

g This fact can be used, for example, to calculate confidence intervals of the

estimate,
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E
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{ APPENDIX E
E

Program TSAMPN:

This program gives a numerical solution of the discrete and continuous
linear optimal control problems for stationary systems. The program also

compares the values of the loss function for the purpose of finding the influ-

ence of the sampling time.

The program has three sets of data cards:

ie ~ The first card gives the formats FMT, FST, and FTT for the
print-out of the results and the data cards to follow, respectively.
Further, it gives the integers N, NU, and NT specifying the
dimensions of the data, The number CO0, giving the accuracy of

the iteration for LAMDAMAX, and T 0, the length of the interval

over which the optimization is performed.

2. The second group of data cards gives the elements of the

matrices F, G, Q, and Qo as specified by‘ the format FST,

F N x N matrix
G N x NU matrix
Q1 N XN matrix
Q12 N X NU matrix
Q2 NU x NU matrix
Q0 NXxN matrix

3.  The third group of data cards gives the elements of the
matrix T(NT x 1), i.e., the lengths of the sampling intervals

to be used in the discrete problem.




The program contains the subroutines DYN, EXPR, INVPD, LMAX,
NORM, RICCE, and TRANS which are described in detail below. A
FORTRAN listing of the programs is given at the end of this section.

Subroutine DYN:

Given the matrices @, T, 'é“, am, 622, and ‘g(thr 1) this

program computes the matrices L and E(tk)‘ from

~ T ~ =1 _Te T '

£ = [mose, )0+ Qul 078, )2+ Qpl (E.1)
~ T ~T Tw . ~

S(t,) = @ St )2 - LiQp + T St )91+ Qu (E.2)

The matrix inversion is made by the subroutine INVPD based on the
square root method. The ratio R between the determinant and the norm
of the matrix to be inverted is calculated at each step. If this value is less
than 10_6, a print-out

THE MATRIX S2 IN SUBROUTINE DYN ILLCONDITIONED

DET/NORM = ...

is generated.

The following notations are used in the FORTRAN program.

F = @ N x N matrix
G = T N x NU matrix
Ql = Qg Nx N  matrix
Q12 = Qy N x NU matrix
Q2 = Qy NU x NU matrix
81 = %(tk+ 1) NxN matrix
S = S(tk) N x N matrix
AL = L NU x N matrix
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Subroutine EXPR:
This routine calculates the exponential function of a matrix by the
series
QO
A= Loam
exp Y (E.3)
n=0

The series is truncated after N terms where N is the smallest number

less than 36, such that

R = 107 (E.4)
where
1 N N 1 n,a
R = — A 2 °
g a1 | ZomA I (E.5)

and ||A] is the matrix norm (E.7),

If the condition (E.4) is not satisfied for any number less than 36, a

print-out
SUBROUTINE EXPR TERMINATED AFTER 35 TERMS R =,..
is generated.

If the (E.7) norm of A is greater than 9, the program computes the

exponential function as

1 n
exp A = [exp 0 Al

where

n = largest integer less than “f—g

and a print-out of the norm of A is obtained.




Subroutine INVPD:

This subroutine calculates the inverse of a positive definite

symmetrical matrix by the square root method.,

Subroutine LMAX:

The subroutine calculates the largest eigenvalue of a symmetrical-

matrix by the Reyleigh Ritz method as described in Faddeeva, D. 212. The

iteration is terminated whenever the difference between two consequtive

iterates is less than CO. The initial value of the eigenvector is taken as

1.1415963
1. 0000000

x(0) =

1. 0000000

The routine iterates a maximum of 100 times;if the prescribed accuracy is

not obtained after 100 iterations, a print-out

SUBROUTINE LMAX TERMINATED AFTER 100 STEPS C= ...

is generated.

Subroutine NORM:

This subroutine calculates the matrix norm

11 (E.7)

Al = min[max Z la,.| , max Z |a,
i ] 1 3 7 1)

J j i

SRR
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Subroutine RICCE:

This program integrates the differential equation
T
S == F S + SF - Sst + Q1
50) = Q (E.8)

The program utilizes the result that the solution to the Riccati equation can

be written as

. - -1
S(t) = [Z91(t) + Ty (t) Qo] [Z45(t) + Z 45 () Qo] (E.9)
where
2 11 (0 2 19 (t)
Zgy(t) Zgp ()
is the fundamental solution to the linear differential equation
F _Q2
X = X (E. 10)
T
~Qyy -F

This linear equation is integrated by the exponential subroutine EXPR and

the solution is then formed from (E. 9).

For test purposes, we utilized the result that the solution of the Ricecati

equation also can be expressed as the Taylor series

S t °
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where the coefficients An are given by

r'Qo n=0

T
AnIJFQO+QOF-AOQ2AO+Q1 n=1
1 T n-1
=[F A + A F-_Z >
\n[ n-1 n-1 k=0 Asz An—l-k] n>l (E.12)
This method was found to be slower than the technique based on the exponential
routine. A

Subroutine TRANS:

General Description:

This program performs the transformation from the 'continuous

problem' to the "discrete problem'. Given the n X n matrices (n = 20)
F, G, Qq, Qyy, and Q,,, which define the "continuous problem', the pro-
gram computes the n x n matrices @, I', Qyy, Qqy, and Q,,, which defines

the "discrete problem', from the equations

o (t) = exp Ft (E. 13)
ot

rey - S 3 (s) ds |G (E. 14)
Yo

~ ‘t T

Q) = 5 7 (s) Qq B(s) ds (E. 15)
O

B - | 2T QT+ Qp ds (E. 16)
(o]

Ry (t)y = g [T7(s)Qqy [(s) + T (s)Qyp + Qpi T(s) + Qpylds
° (E. 17)




The integrands, being integral functions, can be expanded in power
series converging for all t, For all finite t , the series can also be

integrated termwise and we can express the integrals as sums of the type

I= > At (E. 18)

where the coefficients An are given by recursive equations as described in
detail below, In the numerical computations, the series are truncated after

N terms, where N is the smallest number less than 36 such that
N -8
t = o
lagt™ Il = 107 jirg| (E. 19)

where Ly is the N-th partial sum and [|A[ is the matrix norm (E.7).

If there is no N less than 36 which satisfies the inequality (E.19), the

computation is terminated and a print-out

COMPUTATION OF .., TERMINATED AFTER 35 TERMS

is generated,




The following notations are used in the FORTRAN listing:

C = n

TS = t

T = "

F = F N x N matrix

G = G N x NU matrix

Q1 = Q N x N matrix

Q12 = Q N x NU matrix

Q2 =  Q NU x NU matrix

FD = @ N XN matrix
: GD = T N x NU matrix
[ QID = 611 N X N matrix
Q2D = Qy N x NU  matrix

Q2D = Qy NU x NU matrix

Computation of (522 :

A trivial calculation shows that the integral (E.17) has the following

series expansion:

o0
Qo () = Qpt + > GTA G+ GTB + cat (E. 20)
. / n n n

n=2

where the coefficients Aq, Bn’ and Cn are given by the recursive equations

e e

0 n= 2

3 1 T
+x—1_!(F) Q4 n> 2

(E.21)

1 T 1 n-
n[F An—1+ FAn] MY Qu F
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n-2
1 T
Bn = ; (F) Q12
1 T _n-2 T
Ch = n1 Qe F = B

In the FORTRAN listing, the following notations are used:

S1 = A
n
s2 A and GTA G+ GTB + c Tyt
-1 n n n
s3 = L g2
n!
D = 1 g™
(n-I)1

Computation of 5 12"

0

(E. 22)

(E. 23)

(E. 24)

(E. 25)




T n-1

1
B = -7 (F) Qp (E. 26)

The following notations are used in the FORTRAN listing:

S1 = A
n
s2 = A _and (A G + B)t"
n-1 n n
n-2
1 T
s3 o ()
n-1
1 T
FD = = (F)

Computation of 62'11 :

The integral (E.15) has the series expansion

I/l
-
o

Qut) = > At (E. 27)

n

1l
L

where the coefficients An are given by the recursive equations

Q n =1

n

1 T
S[FA ;A T n > 1 (E. 28)

The following notations are used in the FORTRAN listing:

S1 = A
n

S2 = A . and A t°
n-1 n
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Computation of ® and T:

The functions @) and I'(t) have the series expansions

i
8
»>
=
ot
5

@ () (E. 29)
n=0
=]
n
'ty = Z Bnt G (E.30)
n=0
where the coefficient An is given by the series expansion
I n =20
A =
" 1
= >
o An—lF n 0 (E.31)
and
B = L A E, 32
n  n+l “q (E. 32)

S1 = A

52 = A

For test purposes, the subroutine considers the particular case when

F and Qq; are diagonal, i.e.,

1l

F diag.[)\i,...,?\n] = diag.[)\i]

1l

Q4

diag° [q1 3000y qu] = dlag' [ql]
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PROGRAM TSAMPN -~ FORTRAN LISTING

Tsanpn

i

O OO O

\
1

]
'ﬁﬂﬁﬁﬁﬁﬂﬁﬂ
. |

i

i

1

2

3

THE PROGRAM SCLVES THE CCNTINUCUS AND THE CISCRETVE LINEAR OPTIMAL
PROBLEM ARD PERFORMS A CCHMPARISON FOR THE PURPOSE OF FINCING THE
INFLUENCE OF TRE SAMPLING TIME

SUBROUTINES RECUIRED
OYN

EXPR

INVPD

INYE

LMAX

NC RS
“RICCE1

TRANS

DIMENSION F(20,20),6(20,207,01(20,20),812(20,20),82(20,20)
DIMENSION FD(2C,2C),6D(20,20),Q10(20,20),8120(20,20),Q20(20,20)

T COMMPON Fob,o01,012,02,F0,60,01C:€120,020,8,0U

DIMENSION B1120,20),82(2C020),F1(20,20)
'Eiﬁéﬂﬁ?ﬁﬁ'Qé(?OTECiéﬁlnlzo,ZO).dzz«zo'20)

DEMENSEION SD(2C,2C)»SC(2C»20),S1120,20),AL120,20)

DIMENSTON T(20)

OIHENSIONﬁEﬁ!jB}.FS?(B)aFTT(B)

READ INPUT TAPE 5,9C0,(FPT(f),]= 1.3).(fSt(l).l-l.al.(FTr(x).x-n.3)
AoNoNUGNT €0, 70

IFIN) 20203
CaLL EXIT

READ INPUT TVAPE 5oFSTo((F(leJ)odolyN)olaloN) li6(led)pdsloNL) oI,

I o (O 1T oD odmlolilolaloN) o (Q2{Tod)od3lolUl o I=1 oMUY ({QL20]ed)od= A

21oNU) o B2LoN) o (1QCITod) d=LoN) o I21,N) "

_READ_INPUT TAPE S5,FTV,(TI(I)oI=1,NT)

700
701
702
703
704
705
706
707

708

WRITE OUTPUT TAPE 6,7C0,TC

FORMAT (23H1CCATENUDOUS PRCBLEM T =0 1PEL4.T)
WRITE OUTPUT TAPE 6,7CH

FORMAT ( 9HOF-MATRIN)

00 702 [E=l,N

HRITE OUTPUT TAPE 6oFMT,(F(Iod)od=l,N)
WRITE OUTPUT TAPE 6,7C3

FORMAT ( 9HOG-MATRIN)

00 704 I=1,N ,
WRITE OLTPUT TAPE 6oFMT,(G(1od)oJ=1,NU)
MRITE OUTPUT TAPE 6,7C5

FORMAT (11HOQLL1=-MATRIX)

DO 7C6 I=1,N

WRITE OLTPUT TAPE 6oFMT,(Q1{T,d) od=l,N)
WRITE CUTPUT TAPE 6,7C7

FORMAT (11H0QL12-MATRIX)

DO 708 I=1,N

WRITE OUTPUT TAPE 6oFHT, (G120 0d) pJ=1oAU)
HRITE OUTPUT TAPE 6,7C9

709

FORFAT {l1HOQ22-MATRIX)




PROGRAM TSAMPN - Continued

TSAMPN

GO 710 isl.NU
710 WRITE OUTBUT TAPE 6,FMT,(Q2(1sd)sd=1,NL)
BRTTE OUTPUT TAPE 6,711
743 FORMAT (1CHCQC-MATRIX)
RO 712 i=1 0N
712 WRITE_OUTPUT TAPE 6o FMT,{CO{Tod)od=l o)
¢
€. TRANSPORMATION
d
DO 100 I=1.NU
TTTTTL B0 1D Jsl, Ay
100 BLil,J)=0211,J)

CALL INYPLIBL,8B292C9NUSCET1)
Tt LAUL NORR{Q2,MU,6CRM,20)
R=0ET/GORM
T JETRe T UEe~1.C) 40405
& WRITE CUTPUT TAPE 65713,R
913 BORPAT (30HGQ22 ILLCCACITICNEC CET/NCRM =y 1XF12.8)
T 5 DOTI02 IsioN
DO 102 J=1,N
T T Rs0.0
. D0 103 K=l,NU _
D0 103 L=1,NU
103 R=R4GII,KIeB2IK,LI2C12(JsL)
102 Fl{loJ)=F(1,J)-R

T D0 104 1=1,N
DO 104 J=1,N

PO 105 K=1,AU .
D0 105 L31,NU

105 R=R+Q1211sK)eB2(K,L)0C121JsL)
106 QL1{1,J)=CL(1,J)=R

0O 106 1=1,N
 DO_106 J=1gN
R=0.0
 pO_107 K=l,MU
DO 107 L=1,NU
107 R=R4GII,K1eB2IK,L19G(JoL)
106 Q22(1,J)=R

SOLUTION 7O CONTINUOUS PROBLEM

CALL RICCEL(F1 NoGCyCL1:Q22,5C,V0) -

DO 6 11s1oNT
¥SaT4i1)

130 CALL TRANS (VS)
c

___ WRITE CUTPUT TAPE 6,730,7S -
730 FORMAT (33H1DISCRETE PROBLEM SAMPLING TINE =,1PEL4.T7)
HRIVE CUTPUT TAPE 6,731
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[aRgX el

[aNaNel

PROGRAM TSAMPN - Continued

FSamen

731
732
733
734
735
734
737
738
739

740

112

113

116

750
751
752
753
754

755

FORMAT (LOMOFC-MATRIX}

00 732 i=],N

HRITE QUTPUT TAPE 6oFMT,(FDII,d)pJd=1,R)
HRITE CUTPUT TAPE 6,733

FORMAT (1OHCGC-MATRIX)

D0 734 i=1,N

HRITE CQUTPUT TAPE 6,FMT,(GD{IsJdlod=1,oNU)
HRIVE QUTPUTY TAPE 6,735

FORMAT (12HCOQLLIC-MATRIN)

00 736 f=1.N

WRITE CUTPUT TAPE 64FMT,{QLDI{sd)sd=l,N)
WRITE CUTPUT TAPE 6,737

FORMAT ([12HCQL2C-MATRINX)

00 738 I=14N .

WRITE QUTPUT TAPE 6,FMT,(C120{Lsd)ed=1,NU}
WRITE CUTPUT TAPE 6,739

FORMAYT (12M0Q220-MATRIX

B0 740 f=13.MU

WRITE QUTPUT TAPE 6oFMT,{C2D(TsJd)od=1NU)

SCLUTICN TO DYISCRETE PROBLEM

00 112 I=1,N
D0 112 Jsi,N
SCU1,4)=Q0(1,4)
T1=0.0

00 114 1=1,N
D0 116 J=1,N
SL{1,d)=0.58{SC{1,J)¢SC(Jo1))

CALL DYN (FDsGLohoNUoCLD,C12D,C2D,S1oSD,AL)

Ti=T1+7S
IF(T1-T040.52TS) 113,115,115

CC 116 I=1,h
DO 116 J=lyN
8l{1:d)=SCUIoJ3=-8C11,d)

WRITE CUTPUT TAPE 6,75C

FORMAY (9HOS=BATRIX)

CC 751 I=1.h

WRITE QUTPUT TAPE GoFFTo(SClloJd)od=1,N)
WRITE CUTPUT TAPE 6,152

FORMAT (14HOSTILDE-MATRIN)

LU 753 i=1,N

WRITE CUTPUT TAPE 6oFMTo(SCIIsd)od=l,h)
HWRITE QUTPUT TAPE 6,754

FORMAT (9HOT-KATRIX)

L0 755 I=1,N

HRITE ODUTPUT TAPE 6oFPT,8RL{1od)od=1,R)

SYMMEVTRIZATION OF MATRICES




64.

PROGRAM TSAMPN -~ Continued

TSAMPN

DO 130 I=1,N
00 130 J=leN

B20(1,41=0.5¢{BITT,JT4B10J,1))
130 SD(19J)=0.50(SCI1,J)¢5CIJo10D

FORM_TRIANGULAR RESOLLTICN OF S MATRIX

o e O

CALL INVPD(SD,B1,20,N,DET,0)

DO 132 1=2,N

o "N[él:l"'"""'““"""“““""'
DO 132 J=1,N1

132 SD(1,J1=0.0

_DO_135 K=1,N
DO 135 L=1,4N

 RL=1.0/RL ,
WRITE OUTPUT TAPE 6,761,RL

END(!&lpO@OngOQ190909_09090909090’
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PROGRAM DYN - FORTRAN LISTING
DYN
SUBROUTINE DYNFoGoNothUo€19012+62,S10S,AL) T
¢ THE PRCGRAM CCMPLTES S AND AL FROM o
c AL=({6T)1S16+Q2)=-1) ({GTISIFCQI2T)
C S=(FT)SIF-ALT(CLI2T*(GV)SAFIe@
C SUBROUT INE RECUIRED )
C INVPD - e - A e - —- .
c v T
DIMENSION F(20,20),6(20,20),Q1(20,20),012020,20),82(20,20),
151(20,20),5(20,20),AL(2C,2C)
DIMENSICON S2(2C,20),53(2C,20)
c : Itebecl) .
c COMPUTATION OF L o .
c
DO 10 I=1,NU
DO 10 J=1,MU ST ) o U T
_R=0.0
00 Tl R=1,N B ' U
00 11 L=1,N Q )
1l R=Re¢G(K,1)eS1{KLIeGIL,Jd7 ’
. 10 s2(1,9)=ReQ2(1,9y B
c , e
... CALL NORM(S2,NU,GORMs20) e e
CALL INVPDUS2,53,20,NUDEY 1T
¢ o - e e
"R=DET/GORM
CTF(Re1.CE6-1,0) 12,2 L . e

1 WRITE CUTPUT TAPE 6,7C0,R
100 FORMAT (S1HOTHE MATRIX S2 IN SUBRCUTINE DVYN ILLCONDIVIONED R =,1XF
110.8) :

c
2 D0 12 [=1,NU
00 12 J=1,N _
R=0.0
ceo . BOM3 K=MoN .
00 13 L=1,N
13 R=ReGIKo1)eSL(KpLIOF(Lod)
12 S2(1,J4)=R¢Q12(J,1)

DO 14 I=1,NU

DO 14 J=1,N

R=0,0

DO 15 K=1l,NU
15 R=R+S3(TsK)@82({KpJ)
14 AL(I,J)=R

COMPUTATICN OF §

ek ala]

GO0 16 I=]1,N
CO 16 J=1,N
R=0.0 v
DO 17 K=1,N
00 17 L=1,yN

17 R=Re¢F{KolleSLIKLI0F(LoJ)
DO 18 K=1,NU

18 R=R-ALIK,1)@52(Kod)

DYN
16 S{IoJd)=ReQLLIsJ)

RETURN
END(1o19000,0:C5150404C5C905000,0)

-
-
. .
.
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EXPR

701

10

11

20

21

23

22

30
31

PROGRAM EXPRI - FORTRAN LISTING

SUBROUTINE EXPR{A,B,yN)
THE SUBROUTINE COMPLTES

A = EXPF(B)
WHERE

A = (NXN)-MATRIX N LESS THAN 41

B = (NXN)-MATRIX N LESS VTHAN 41

SUBROUTINE REGUIREC
MORM

CIMENSION A(4C,40)4B(40,4C),S11(40,40),52140,40)

CALL NCRHM [ByNoP1,4C)
IF{P1-9.0) 1p1,2

S==l¢.0
Go 10 12
$=1.0 : o

WRITE CUTPUT TAPE 6,7C1l,P1

FORMAT (12HINCRM CF B =,1PEL7.7) ~
P1=P1/4.5

NA=P1

R=NA

DO 4 I = 1N

LO &4 J = 1l,N

Bl1,J)=8{1,J}/R

00 10 I = 14N
0O 10 4 = 14N e
A(XVJ)‘:OQO

S1{1¢31=0.0
$2(1,J1=0.0

CO 11 I =1,k
S2(I1,1)=21.0
AtI,1)=1.0
C=0.0
€C=C+1.C

DO 21 J=1,N
S1(1,J1=52(1,J)

DO 22 I=1,N

C0 22 J=1lsN

R=0.0

DO 23 K=1,N
R=R~051H9KMB(K.J)
S211,J1=R/C
AlToJ)=A11,J0482(1,J}

CALL NCRM (Ao N,PLo4C}

CALL NCRM (S2,h,PZ040)
IF(C-35.01 3C,21,21

IF (Plel.Q0E-8-P2) 20,333,323
R=P2/P1

'
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PROGRAM EXPR1 - Continued

EXPR]

WRITE CUTPUT TAPE 6,7CC,R
700 FORMAT (45HOSUBRCUTINE EXPR TERPINATED AFTER 35 TERMS R=,1XF1C.8)
c 9. eIl
33 IF(S) 35,35,4C

40 CO 41 I=1yN
CC 41 J=1,N
41 BlIoJ)=A(1,J)

NA=NA-1]
CO 44 K=1,NA
DO 43 I=1+N
DO 43 J=1,.N

43 S1l1,9)=A(1,4)

DO 44 [=14N

DO 44 J=]1,N

R=0.0

LO 45 L=1,N"
45 R=R+B(I,L)aS1(L,J)
44 A(f,3)=R

35 RETURN
END(loloOyOpO?Col.0,0|C,C.0.0.Qop)~
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PROGRAM LMAX1 - FORTRAN LISTING

WEAX]

eNeRel

¢

11 HEEEY T

700 FORMAT

1¢ X{1y=1.0 T

Y AL=PAERTFUALATIZITYI

CRSHLGC T T

15 R=ReA(I,J)eX1LJY =~ 777777
14 X(1)=R

TREReX(IVex{1y T
16 Rl=R1eX(1)ed1(1)

SUBROUTINE LHMAX(ANgAL CC,F)
THE SURROLTINE TALTULE E

MATRIX BY THE RAYLEIGH R1TZ mevweo (SEE ranaeevn PAGE 212»‘

CIMENSICN A{20,20),X{20),%2{20}

X{11=1.1415963 T
LU 1G I=2,WN

M=0

AL=ATL, 1Y T
£O0 9 I=24W

ALlsAL

0D 12 I=(, W~ T T

12 X1ili=x(1)

DO 14 I=1,W

DO 15 J=1,N

R1=0.0

R®=0.0 ,
DO 16 I=1,N °

N7 2.1 R
C=ABSF((AL=AL1)/ALL)

{8 WRITE CUTPUT VAPE &,700,C ~ 7~
{46HOSUBROUTINE LMAX TERMINATED AFTER 100 STEPS C=,1PE16.8)

17 YFIC-CO0) 22,22,19 o T
19 R=X(1)

22 RETURN

IF{#=100) 17,18,18

Go 70 22

DO 20 [=2sN

20 R=MAXLIF(R,X(1))

0O 21 I=14N S .

21 X{I)=X{1)/R

60 TO 11

END{1,09050005Cs1,0, 0 0sCo0,0,000)
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PROGRAM RICCE - FORTRAN LISTING

RICCEL

SUBROUTINE RICCEL(F,N,QCoCLo0Q2,5,T)

THE PRCGRAM COMPPLUTES THE SOLUTIONM TC THE RICCATIECUATICN
DS/CT={FT)S+SF-SC2S201 '

BY USING THE EXNPONENTIAL SERIES FOR THE CANCNICAL EQUATICN

'SUBROUTANES RECUIREC
EXPR
INVPD
, INVS
DIMENSION F(20,20),00(20,201,61(20,20),02(20420),5(20,20)
T T DIMENSTON S1120,20),52(2€C,20),A160,40),8(40,40)

ocaftAmOO

€ o
€ COMPUTATION OF A-MATRIX
c

. DO 90 J=1,N
90 ATTo3)=F{T,d)

DO 20 1=1,N
,,,,,, oo, DO 20 4=2en B

Ksied
20 A(I,K)=-Q2(1,4)

D0 30 J=1,N
e K®ReN
30 AR o) ==Q1(1,oJ}
D0 40 1=1,N
DO 40 J=1,N
K=N<l
) L=N¢J
40 A(KyL)==F(Jdel)

COMPUTATICN OF EXP(A=Y)

2XaXaks

M=N+N
CO 50 I=l,#
£O 50 J=1,¥#
50 A{1,J)=-TeA(1,J)

CALL EXPR(B,A,¥P)

DU 60 I=1,N
D0 60 J=1,N
R=0,0
K=Nel .
DO 61 Nl=1,N
L=N+N1
61 R=R+B(K,L)2Q0(NL1,J)
60 SL{IoJ41=B(K,J)¢R
C
D0 70 I=1,N
DC 70 J=1,N
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PROGRAM RICCE - Continued

CRICCEL
T TR=0.0
B0 71 Ni=loh
L=N+N1
71 R=R+B(1,L)8CO0(NL,J)

c
CALL INVS{S:S2,20,N)
... 00 80 _ I=1,N o - ,
TTTTTTTTTTTDO 80 JmieN
R=20.0 '

TTTTTTTTTTOU EY W=Y N
81 a*R¢Slil'K{3§2£ﬁlj}_
80 S{I.J1=R

C
TTUTTTTTTUREYURN T '

ENpi!iEIQRQIOYC'1'0’0'090'0'0'0'0)
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PROGRAM TRANS2 - FORTRAN LISTING

“TRANS2

"SUBROUTINE TRANS(TS)
¢ THE PROGRAM PERFORMS THE TRANSFORMATION FROM THE CONTINOUS PROBLEM
€ 7D THE DISCRETE PROBLEM
g NOVATIONS

Dx/ct¥=frecu
» € . VBHX_Q_I«X‘C‘ZXQIZU +UQ2u)
(¥
o _F=RXN - MATRIX
G=NANY MATRIX
€ " @ishXN MATREIX
T T T ZeMRANY MATRIY
G e QZBNUXNU“_ FjAIRIX
[
o SUBROUTIMNES RECULIRE
S NORM T R
C |
"""""""""" UIMENSTON FT20,201,6(20,20),010720,20V,012(20,20) 062(20,2€C)
DIMENS 10N ?D(ZOcZOhGD(ZOoZO)9010(20|20)leZD(ZOoZO)'QZD(ZOQZO’
DIMENSTON 51120,200,52120,200,83(20,20) ~~ —
e _4A_C_Qf'jfpﬁiEgﬁgﬂ!_ﬂ_g}_g__og_z_!fo 96D0,Q1C:6120,020,N,NU
€ MR AL AL ALE LA A I MEMIMEEV 9NMAY 9N .
€ ____COWPUTATION OF G20
¢ — e e .
ACONY=0,0 B S R
€ e
ceeeeeo 00 10 BB e -
0O 10 J=l.N
e $3Mdgdd=000
10 G20{1,J)=7SeQ2{[,4)
DO 31 I=]eN e e -
11 $3{ie1)=0.5
T=7SeTS o )
e PO 12 RElNM )
DO 12 J=1,NL
R=0.0 e
EO 13 K=1,N
13 RSROGIK 1)0Q12(K,J)0QR2(Ke0)@G(Ked) -
12 Q20(1,4)=Q20(1,4)%0.5eReT
L o
€=2.0
eeee. D0 14 Islen
DO 14 J=l,N
- . 14 51(1,9)=0.0
[ .
_ .15 C=Cel.0 B e
T2TeT$S
e 00 16 I=leN
DO 16 J=1,N
. FDUEod)=S3(0,d)
16 S28(1eJ)3=S1(1sJd)
C
O 18 I=1l,n 7
. D0 18 J=l.N .
RSO.O
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PROGRAM TRANS2 - Continued

TRANS2
TTTTTD0 19 K=l,N T
19 R=ROFUILKISFD(K, )
18 $301,41=R/C
00 20 Ts1,M T

- ... D0 20 J4=1,N -

R=0.0

0O 21 _&=1,N

g3 S g g Y

— 20 Si{led¥sR/C
£O 22 E=1,NU
D0 22 J=l My
R=0.0
""""""""" DIFER £ 0Y
CO 23 L=l,N
T2 REREB (R I Ve STIR LY eC T sV eBIR 1) @S3 (LK) 2CR2{L oSV +QLI2(K,f) 283 (KoL)
1eG{L,J)
$S2(LeJd)=TeR )
22 Q204{8,4)=Q20(1,J)252(1,J)

CALL NERM {Q20,.N
CCALL NORH{S2,MNU,

IF (C-35.0) 24,25

U
P2,y
]

.26 ACONV=ACONV+1,.C
IF(ACONV=1.5) 15,30,3C
25 r=P2/P) .
_ WRITE CUTPUT_TAPE 6,7CC,R S
700 FORMAT (4BHCCCMPUTATICN CF Q2C TERMINATED AFTER 35 TERMS R=,1XF10.
18)

COMPUTATICN OF C12D

ACONV=0.0

[g) [aEaNal

30 DO 31 I=1,N
CO 31 J=1,h
Q12C(1,J)=0.0
SE(i,41)=0.0

31 FOU1,J9=0.0

CO 32 I=1,
32 FD(I,0)=1.

DO 33 [I=1,N
€O 33 Jsl.NU
33 QL2C(1.4)=TSeQl2(I,J}

C=1.0
T=TS
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[aNaXel

PROGRAM

TRANS2 Continued

TRANSZ2

34 C=C¢1.C
T=TeTS
DO 35 I=14N
O 35 J=1,4N
S2(1sJ1=81(1,4J)
35 S3(1eJ)=FD(I,4)

80 36 I=1,N
DO 36 J=l,N
R=0,0
DO 37 K=1,N
37 R=R¢F(Ko1)eS3(Ked)
36 FDUIsJ)=R/C

00 38
‘BC 38
R=0,.0

00 39 K=1l,N "~
39 R=R+F(Kpl)lSZ(K.J)fSZ(l,K)CF(K.J)*S3(l.K)'Ql(K.Jl

38 S1{l,J)=R/C

g ——

00 40 I=1,N
CC 40 J=1,N

40 S2{1,4)=0.0

DO 42 T=1,N
0O 42 J=1,NU_

R=0.0
DO 43 K=s1,N

43 R= R+Sl(leK)-G(K.J)+FD(I,K)lQlZ(K.J)
S2(1,J)=TeR

42 Cl20(1,J)=Q12C(1,J)452(1,J)

"CALL NCRM (Q1l20,N,P1,20) ~~~~ 777
CALL NORM (S 2hoeP2,20)

IF(C=35.0) 44,45,45 T

44 IF(PLe1.0E-8-P2) 4T,46,46 =~~~ '

47 ACONV=C.0 R
GO TO 34 _

46 ACONV=ACONV+1.0 L
IF(ACONV-1.5) 34,50,5C

45 R=P2/P1 ) T

HWRITE CUTPUT TAPE 6'7Cl R
1.8)
COMPUTATICN OF Q1C

50

DO 51 I=1,N

CO 51 J=1,R
S1{1,J1=QL0,J)
QlD(loJ)=TSOQl(I'J)

51

|
i
|
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PROGRAM TRANS2 =~ Continued

TRANS2

T=1s
€=1.0

53 C=C¢1.0
77 Yatets$

D0 52 I=1,N

‘00 52 JU=1,N
52 S2(19d)3S1(1,J)

D0 54 I=1,N
TU 56 J=1,N
R=0.0
PO 55 K=1,N
55 REROFIK,1)9S2(KsJ)4S2(1,K)eF(KyJ)
TSI, dI=R/C
56 Q10(1,J)=Q10(1,J)4TaSL(L,J)

CALL NORMIQIDyNyP1,20)
CALL NORM(SL :h,P2,20)
IFIC=35.0) 56,57,57
56 IF(Plel ,0E-0-P2eT) 53,60,6&C
57 R=P2eT/P1
" HRITE OQUTPUT TAPE 6,7C2,R
702 FORMAT (48HOCCMPLTATICN CF Q1D TERMINATED AFTER 35 TERMS Rs,1XF10.
18)

COMPUTATICN OF FC ANC GC

[2X 2K 2]

60 DO 61 IsleN
DU 61 J=1gN
FClIeJd1=0.0
GD{19,J1=0,.0
S1{1,41=0.0

61 §3(1,41=0.0

DO 62 [=1¢N

FOlIsI)=1.0

Si{I,li=1.0
62 S3{1,1)=7S

€=0.0
¥=21.0

63 C=3Ce¢1,.0
T=7SeT

€O ¢4 I=1,N
DU 6% J=14N
64 S2(1,4)=S1(1,4)

£O 66 I=14N
D0 66 J=1,4N
R=C.0
DO 67 K=loN
67 R=R+S2(ToKIeF(Kod)
Si{I,J)=R/C
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PROGRAM TRANS2 = Continued

TRANS2

FCULoJ)=FC({IoJ)2TeS1{1,J)
66 S3{[¢J)=S3{1,J)+TeS1(1,J)@7S/(Ce1.0)

CALL NCRM (FCoh,P1,20)
CALL NCRM (S1,NyP2,20) §
IF(C-35,0) €8,£S,69
68 IF(Plel.0E=E=P2eT) €3,70,17C
69 R=P2eV¥/P1
WRITE CUTPUT TAPE 6,7C3,R
7U3 FORMAT {54HOCCMPLTATICN CF FD ARD GC TERMINATED AFTER 35 TERMS Rs,
11XF1C.8)
70 CL 72 I=1,4N
DO 72 J=1,NU
R=0.0
DU 73 K=1'N
73 R=R+S3(1yK)aG(Kyd)
72 GD{I,J4)=R

RETURN
ENC(1le1500CeCyCsls0p0,CeCyCpeCpCs0)
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APPENDIX F

Program SAMPAS:

This program integrates the differential equations

4 S Gt = A ) (tty) ; ;1 (ty5tg) =1
dt /, y L
d bwmml
at E (t;ty) = A E(t;ty) + B Z (t;ty) , E(tysty) = 0
where
F* QL aT
A =
—Qii* _F*T
F* Gsz—l atQu F*G ngl Gt T
B =
-1 T -1 T T
“Qy*GQyp G Qu* -~Qu*GQy, G FX
% ~1
F*¥ = F-GQp Qy

-1
Qi* = Qi1 ~ Qp Qpy Qyy

and forms the matrices

1
5 = [Zy + 29 Q1 [Z24 + 2y Q]

C= {E; +EypQ -S[Ey+E QI [T+ TpQl

(F. 1)

(F.2)

(F. 3)

(F.4)

(F.5)

(F. 6)

(F.7)

(F.8)




which are used in the asymptotic formulas of Section II. The program also

-1
computes the largest eigenvalue of the matrix S C,

The integration of the differential equations (F.1) and (F.2) is done by

using the exponential series,
The program has two sets of data cards:

l. The first card gives the formats FMT and FST for the print-out of
the results and the data cards to follow. Further, the card gives
N, NV, specifying the dimensions of F and G. The number C 0
gives the accuracy desired in the computation of LAMBDAMAX,

and TO is the length of the time interval over which the optimiza-

tion is performed.

2. The second set of data cards gives the elements of the matrices

F, G, Qqyy Qp» Qyy, and QO as specified by the format FST.

The program uses the subroutines EXP, FORMA, INVPD, LMAX, and

NORM. The subroutine FORMA is described below, all others were described
in Apperdix E,

SUBROUTINE FORMA:

Given F, G, Qqy, Qq, and Qo9 , this subroutine forms the matrix

A 0
B A

as defined by equations (F. 1) through (F. 6).

|
|
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PROGRAM SAMPAS - FORTRAN LISTING

SAMPAS o
THE PRCGRAM EVALUATES THE ASYMPTOTIC FORMULAS WHICH GIVES THE
INFLUENCE OF THE SAMPLING RATE FCR B LIREER STAVIONARY PLAWNT

SUBRCUTINES RLCCULIREE Coo e T
EXP
FCRFA e T oo
IANVPD '
INvs. e+ e e s
LHAX
NCRM . e e e e e e

«Xa¥akzkaskainkzEksEalsl

DIMENSICN F(16,16),G(16,18),Q1T16,T67,012T16, 16T, G2VL6,18T ~
DIMENSICN Q0(16516)95(16916)951(165106),52(16,16)oC{06,26)
CIMENSION A{6%,64),B(64,64) o
CIMENSICN FHT(3),FSY(3)

COMMON "AsFyGoC1,012,029RyRNU T ' oo o o e

1 READ INPUT TAPE 5,900, (FFTITY  I=L¢3T, TFSTIT) 4 T=TIToWoNU, TO,CO
900 FORMAT (6A692[2o2510 5)
TE(N) 2423 e e - - et e
2 CALL EXIT

¢ AU I U,
3 REAC. INPUT TAPE SoFSTQ‘(F(l'J)9J319N’91’1'N’0((C(loJ)rJ‘l.NL’.lgl'
IN) o ((QILTod)eJdz=l,gN)sl= 11N’o(TQZ(IoﬂtJ*IcNU,1]3195'1”'|IQ12T19JTQJ’"
21sNU)Y 1= le)o((QC(IvJ)szloN)ol l'N) o ) ‘
c I

WRITE CLTPUT TAPE 6,7C0,T0C

700 FORMAT {(23HICCNTINUCUS PRCBLEM T s.lPElk 73
WRITE CUTPUT TAPE 6,7C1

701 FCRMAT { SHCF-MATRIX) T T
00 702 I=1,N ,

702 WRITE CUTPUT TAPE 6,FMT,{Fll,dod=loN)
WRITE CUTPUT TAPE 6,7C3

703 FCRMAT ( YHCG-MATRIX)
DU 704 I=s1,N

704 WRITE CUTPUT TAPE 6,FMT{GlIoJ)ed=1,NU} B N
WRITE CUTPUT TAPE 6,7C5

705 FORMAT (11HCQLL-MATRIX)
DO 706 I=1,4N

706 WRITE CUTPUT TAPE 6oFPT(CllLleJ)od=l,oN}
WRITE CUTPUT TAPE 6,7C7

707 FCRMAT (11HCQ12-MATRIX)
DC 708 I=1,N

708 WRITE CUTPUT TAPE 6,FMTo(CL2{1sJ)sd=1oRNU)
WRITE QUTPUT TAPE 6,7CH%

70S FORMAT (11HCQ22-M#ATRIX)
‘D0 710 I=s1,hU

710 WRITE CUTPUT TAPE 6¢FPT,(C2(1,8)9J=1,NU}
WRITE CUTPUT TAPE 6,711

711 FORMAT (1CHCQC-MATRIX)
DU 782 I=1eN

712 WRITE CUTPUT TAPE 6,FFTo(CO(Lod)od=1oN)

CALCULATICN CF SIGMATILCE ANC €

laNale
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PROGRAM SAMPAS - Continued

SAMPAS
CALL FCRMA

M=N+N
Bl=pem
LG 4 I=1,F1
CO & J=1l,M1
4 AlloJ)==-TCeoA(I,J)

o

CALL EXP(ByA,y¥1)

CCMpyTC S

[aNeNeNe]

= I'N
= 1N

1 o= le

N1
B{KoL)aCO(NLyJ)
B(KyJ) ¢ R

11

[

J

c

+ 1

A

+

+
10 )

o
(@)
—
N
—
[ ]
p—
-
2

L
13 R R ¢ B(IsL)aCO0(NL,J)
12 S(IeJd) =R ¢ B(IgJ)
CALL INVS(S9S2,16,N)

15 TC 1é 1
CC 16 J
R = 0.C
CO 17 K 19N

17 R = R 4 S1{I4K)aS2(Ked)

16 S(I4J) =R

1oN
1,N

]

CCMpPuTL C

aN el

CC 18 I=1,M
DC 18 J=1l4Mm
K=14M

18 A{l,J)=L(KyJ)

bG 20 1 =
LG 20 J = 14N
R = 0.C
fu 21 K
L =N=<+K
21 R=R+A(1,L)#CC(Kyd)
2C F{lgd)=A(1,J)¢R

t
—
-
Z

CC 22 1
CC 22 J

1o\
1eN
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[aN alel

o OO0

PROGRAM SAMPAS - Continued

SAMPAS

K =N 2 I

R = 0.0

DL 23 NL = 1ok

L = N ¢ N1 ,
23 R = R ¢ A{KoL)aCCINL o J)=-S{IsNL)OF(NLsJ)
22 G{IyJ) = AlKgJ) ¢ R

DO 26 1 = 1,N

DO 24 J = 19N

R = C.C

DO 25 K = 1,N

25
24

715
718
717
TL8

30

32

35
36

760

DC 34 I = 1,N

CO 26 J = 14N

R = 0.C

CO 35 K = 1yN

DO 35 L = 1eN
R=R4GIKI)aF (KoL )oG{L,J)
Clled) =R

R =R ¢ G(I,K)e32(KeJ)
ClIed) = R/L2.C

HRITE CUTPUT TAPE 6,715
FORMAT (9HOS-MATRIX)
DG 716 1 = lsN

HRITE GUTPUT TAPE &,FNFT, (S(14J)ed = 14N)
WRITE CULUVPUT TAPE 64717

FORMAT (12HOC-MATRIX/12)

DG 718 I = 1N

WRITE CLTPUT TAPE 6,FMT,(ClIsJd)y J = 14N}

SYRMETRIZATION CF MBTRICES

£0 30 1 = le
DO 30 J = 1,N
Filod) = C.5 & (ClIod) ¢+ ClJpI))
Gliod) = C.5 ® (S(IJ) ¢ SUJel))

FORK¥ TRIAAGULAR RCSCLULTICN CF S MATRIX
CALL INVPLC (GoS1,169N,CET,0)

DG 32 1 = 2N
NL =1 -1

DU 32 J = 1eN1
6lIsJ) = C.C

CALL LMAX(C N,RL,CUs¥2)

WRITE CLTPLY TAPE 6,7€C,RL

FORPAT (1¢HCLAMBDANCLL/12 =41PELl4.T)
60 TO 1
ENC(lpOnOvOgO,ColoOiOpOpCvCOC!Olo’
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[N eNel

FORMA

10

11
700

12

15
14

17
1é

19
18

20

PROGRAM FORMA - FORTRAN LISTING

SUBROULTINE FORWA

DIMENSICN FU16+16)5G(16,16),Q1(16,16),Q012(06,16),Q02(16,16)
DIPENSICN BLU16,16)oB2(1€,16) FI{16,16),0100106,16),822(16,167
CIMENSION A{64,64)

COMMON AeFoGoC1,812:Q2,NeAU

CO 10 1 = 1,NL T s T
DC 10 J = 1,NL
Bllled) = €2(1,J)

CALL NCRM {BloNU,GORM,16)

CALL ENVPD (BleB2,1€,NU,CETo1) .

R = DET/GCR¥ . o
[F{Re].0EE~1.C) 11511,12

WRITE CUTPUY TAPE 6,7C0OyR

FURMAT (30HCQ22 ILLCCNCITICNEL CET/NORM =, 1XFL10.8)
DO 14 1 = 14N

DO 14 J = 1N

R = 0.0

CC 15 K = 1,Ny ST

PO 15 L = 1,NL

R = ReGIIK)eB2(K,L)aG12{J, L)
FL(LgJ) = F(l,J)-R

DO 16 I = 1,N

0O 16 J = 1,N

R = 0,0

0O L7 K = 14NU

DO 17 L = 1,NL

R =R + QI2(1,K)8B2{K,L)8C12(JoL) )
QL1(I,J) = €1(1,4) - R

0O 18 I = 1,N

CO 18 J = 13N

R=0¢O

DO 19 K = 1,NU

DO 19 L = 1,NL

R = R ¢ GIIsK)aB2(Kel)eG{J,L)
Q22(1,J) = R

FORMP LIAGUNAL SULBMATRICES COF &

M=NeN

CC 20 [ = 1,N

DC 20 J = 1,N
K=Me]

L=Fed
AlKoL)=sFL{I,Jd)
AlToJd) = FL(L,J)

DO 21 T = 1,N
CO 21 J = 1N
K=J¢N
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PROGRAM FORMA - Continued

FCRMA

Kl=[¢p

LlsKeM

A(KLoL1)==022(1,J)
21 A(1.K) = =G22(1,J)

C
CO 22 1 = 14N
CC 22 J = 14N
K=N+1l
Kl=zheK
L1=8¢y
A(KLoLL)==QLL(1,4)
22 AlKyJ)1=-Q11(1,J)
C
CO 23 1 = 1,N
CC 23 J = 14N
K =N+ [
L =N+ J
Kl=K+P
Li=LeM
A(KE,L1)==F1(J,1)
23 A(KL)=-F1l({J, 1)
C
C FCRM SUBMATRIX A(2,1)
C
DO 30 I = 1,N
‘D0 30 J = 14N
R =2 Q.C
DC 3l K = l’f\
DO 31 L = 1,N
31 R = R ¢ FL(1,K)aC22(K,eL)eCll(L,J)
Kl=]eM
30 A(K1l,J)=R
C
O 32 [ = 14N
BC 32 J = 14N
R = 0,C
DO 33 K = 1,N
L0 33 L = 1N
33 R = R + FLUI,¢)aC22(KL)aF1(Jd,L)
Kl=]eMm
Ll=Je¢A
32 A(KlglL1)=R
C
CL 34 [ = 1N
CL 34 J = 1N
R = 0.C
CC 35 K = 14N
CC 35 L = 1,N
35 R = R + Q1T K)aCQ22{KsL)aClh(L,J)
Ki=M+N+]
34 AlK1l,4)==R
C

CU 36 I = 14N

B0 36 J = 1,N
R = ((.C

CC 37 K = 1N
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PROGRAM FORMA - Continued

00 37 L = 1,N
37T R ="+ QIITT,RTe0ZZ IR, LTeF1T{J,L)
Kl=MeN+]

RETURN
eNUTTo0,0+,0,0,051,0,0,0,050,0,0,07
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