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Abstract

We study the problem of estimating the fundamental frequencies of a sig-
nal containing multiple harmonically related sinusoidal components using
a novel block sparse signal representation. An efficient algorithm for solv-
ing the resulting optimization problem is devised exploiting a novel variable
step-size alternating direction method of multipliers (ADMM). The resulting
algorithm has guaranteed convergence and shows notable robustness to the
f0 vs f0/2 ambiguity problem. The superiority of the proposed method, as
compared to earlier presented estimation techniques, is demonstrated using
both simulated and measured audio signals, clearly indicating the preferable
performance of the proposed technique.

Key words: Pitch estimation, block sparsity, total variation, spectral
smoothness, order estimation.

1. Introduction

Estimating the fundamental frequency of harmonically related signals
form an integral part in a wide range of signal processing applications, and
perhaps especially so in speech and audio processing. For example, the fun-
damental frequency, or pitch, is necessary when forming the long-term pre-
diction used in linear prediction-based speech codecs [2], and is similarly the
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key component in music information retrieval applications, such as automatic
music transcription, and in musical genre classification [3]. The fundamental
frequency is also of notable importance in problem such as source separa-
tion, enhancement, compression, and classification (see, e.g., [4, 5] and the
references therein), as well as in several biomedical, mechanical and acoustic
applications, and the topic has for these reasons attracted a notable interest
during the recent decades. Commonly, the pitch estimate is formed assum-
ing a single source model, such that only a single fundamental frequency
and its harmonics are assumed to be present in the signal, using different
kinds of similarity measures, such as the cross-correlation, cepstrum, or the
average squared difference function (see, e.g., [6–12]), although notable ex-
ceptions treating the multi-pitch problem can be found in, e.g., [4, 13–24].
Regrettably, the problem is hard, and most of these techniques will suffer
from not yielding unique estimates even in the ideal case, even for a single
source, and/or will typically also require perfect a priori knowledge of both
the number of sources and the model order of each of these sources. Often,
such limitations necessitate notable post-processing or correction steps in or-
der to improve on an initially poor pitch estimate. In this work, we focus on
improving the initial pitch estimate, proposing a novel multi-pitch estimation
approach making no a priori model order assumptions. The method is based
on a sparse signal recovery framework, wherein a signal is assumed to consist
of only a small number of components from a large set of potential signal
vectors. This approach has been found to yield high quality estimates in a
wide variety of fields (see, e.g., [25–27]), and has also earlier been exploited in
machine learning settings, where sparse modeling of pitch signals is accom-
plished by learning a dictionary of pitches from a training data set (see, e.g.,
[17, 22, 23]). For sinusoidal signals, it was early on shown that using a sparse
representation technique allowed for high resolution frequency estimates; typ-
ical examples include [28, 29], wherein the sparse signal reconstruction from
noisy observations was accomplished with the by now well-known sparse least
squares (LS) technique. A similar approach may clearly also be applied to
the pitch estimation problem, although one is then not fully exploiting the
harmonic signal structure. Herein, we instead propose a novel block sparse
signal representation, such that each signal source is grouped in one data
block for each pitch frequency. By then extending the representation to all
considered pitch frequencies, reminiscent to the extended dictionaries used
in, e.g., [14, 28, 30], the resulting model will be sparse in the sense that
it will be formed from only a few of the possible blocks in the dictionary.
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Different from estimates such as the ones presented in [17, 22, 23], the pre-
sented method does not exploit any training data, with the method inferring
the pitch parameters and the model orders from the spectral content of the
signal. The proposed pitch estimation method instead exploits the group
sparse structure, without requiring any prior knowledge of either the number
of sources present, or their number of harmonics. The presented algorithm,
in its presented form, does not take into account for any possible inharmonic-
ity in the pitch structure, such that the higher order frequencies would not
occur precisely as a multiple of the fundamental frequency. Such inharmonic-
ities are common in audio signals, and should be taken into account for such
signals. As we are here focusing on the general problem, occurring also for
numerous other forms of signals, we have here opted to exclude the treat-
ment of inharmonicity, although note that the algorithm may be extended
to allow for this along the lines presented in [31, 32], or using a dictionary
learning approach such as in [33, 34]. The theoretical study of block sparse
signals was initially suggested in [35], where it is shown that including this
structure in the estimation procedure has great practical consequences, im-
proving both theoretical recovery limits and numerical results in many cases
(see, e.g., [35–38]). Generally, this form of group sparse convex optimization
problems are computationally cumbersome; for this reason, we also derive an
efficient algorithm to form the estimate based on the alternating directions
methods of multipliers (ADMM) (see, e.g., [39, 40]). The resulting algorithm
will have a guaranteed convergence as well as exhibit a significant robustness
to the common problem of the f0 vs f0/2 ambiguity, i.e., when a pitch candi-
date at half the nominal frequency fits the observed signal as well, or possibly
even better, than the true pitch frequency. The remainder of this paper is
organized as follows: in the next section, we briefly present the data model.
Then, in Section 3, we introduce the proposed pitch estimation technique.
Section 4 introduces the efficient ADMM-based implementation, and Sec-
tion 5 includes numerical evaluations of the proposed method as compared
to earlier techniques. Finally, Section 6 concludes on the work.

2. Block Sparse Signal Model

Consider a complex-valued signal, y(n), consisting of K harmonically
related (signal) sources with fundamental frequencies fk, for k = 1, . . . , K,
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such that (see also [4])

y(n) =
K∑
k=1

Lk∑
`=1

ak,`e
j2πfk`n + e(n) (1)

for n = 1, . . . , N, where ak,` and Lk denote the (complex-valued) amplitude of
the `:th harmonic of the k:th source, and the number of harmonically related
sinusoids for the k:th source, respectively, and where e(n) is an additive noise
term, here assumed to be an identically distributed independent circularly
symmetric complex Gaussian process with variance σ2

e . It is worth noting
that due to the restriction of the allowed frequency range, the number of
harmonics are restricted as a function of the fundamental frequency, such
that Lk < b1/fkc, ∀k, where b·c denotes the round-down to nearest integer
operation. Let

y =
[
y(1) . . . y(N)

]T
(2)

where (·)T denotes the transpose. Then, (1) may be expressed succinctly as

y =
K∑
k=1

Vkak + e
∆
= Wa + e (3)

where e is a vector of noise terms constructed in the same manner as y, and

W =
[

V1 . . . VK

]
(4)

Vk =
[

zk z2
k . . . zLk

k

]
(5)

a =
[

aT1 . . . aTK
]T

(6)

ak =
[
ak,1 . . . ak,Lk

]T
(7)

with the vector powers, z`k, being evaluated element-wise,

z`k =
[
ej2πfk` . . . ej2πfkN`

]T
(8)

Reminiscent to the models considered for line spectra (see, e.g., [14, 28, 30]),
the matrix W may be expanded to be formed instead over a (large) range
of possible fundamental frequencies, ν`, for ` = 1, . . . , P , where P denotes
the total number of considered frequencies, such that the corresponding am-
plitude vector, a, will have elements different from zero only for those fre-
quencies actually coinciding with the frequencies in the signal. Thus, for
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the signal in (1), for each source in the signal, there will be a corresponding
non-zero block in the amplitude vector, i.e., if the source has fundamental
frequency ν`, the sub-block a` will be non-zero. It should be noted that this
formulation thus implicitly assumes that P is selected large enough so that
the true pitch frequencies lie close to the used grid, such that a sparse so-
lution, that has correctly found the dictionary elements closest to the true
frequency, will result in a small approximation error. Practical experience
with similar methods, e.g., [28, 29], shows that they are quite robust to this
approximation (see also the related discussions in [30, 41, 42]). Given the
structure of (3), the resulting approximation of the signal is not only sparse,
but thus also block sparse, since for each source present, several harmonics
will be included in the signal.

3. Pitch Estimation using Block Sparsity

Reminiscent of the block sparse formulations introduced in [35], one may
thus form an estimate of the present sources as

minimize
a

1

2
||y−Wa||22 + α

P∑
k=1

||ak||2 (9)

where ||·||p denotes the `p norm, and with α > 0 denoting a tuning parameter
that controls the relative importance of the block sparsity promoting `2 norm
and the squared `2 norm fitting term, discussed further below. It should be
noted that the cost function is clearly convex as it is a sum of a norm and
the composition of a norm and an affine function. The second term in (9) is
included to promote a block sparse solution, i.e., a solution with the property
that most blocks, ai, are zero (see also Appendix A). As noted, the number
of harmonics of each source, Lk, is generally not known, and to be able to use
the presented sparse approximation model, one needs to set some maximum
allowed number of harmonics for all possible fundamental frequencies, say
Lmax. This implies that the data blocks, ak, as given in (7), will typically
contain some amplitudes that are close to zero, for those harmonics that are
not present in the source signal. To allow for this, we introduce a further
`1 penalty term, generally forcing small amplitudes to zero, resulting in the
following sparse group lasso (see also [43] and the discussion in Appendix B)

minimize
a

1

2
||y−Wa||22 + λ||a||1 + α

P∑
k=1

||ak||2 (10)
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where α > 0 is a tuning parameter. Using the formulation in (10), this would
imply that the (generic) f0 harmonics will make up a subset of the block
detailing the f0/2 harmonics, i.e., the frequencies {f0, 2f0, 3f0, ..., Lf0f0} will
be present in both blocks, and thus the minimization in (10) will then in
all cases prefer the block corresponding the lower frequency. In order to
partly resolve this problem, we introduce a further scaling of the norms in
the minimization, such that the blocks are given comparable weights, instead
forming the minimization as

minimize
a

1

2
||y−Wa||22 + λ||a||1 + α

P∑
k=1

√
Lk||ak||2 (11)

However, this does not completely remove the ambiguity from the model
since one might well consider, in certain scenarios, restricting the maximum
number of allowed harmonics such that the sub-vectors corresponding to
some f0 and f0/2 could have the same number of elements. Thus, a signal
composed of a fundamental frequency f0, with Lf0 harmonics, can be written
interchangeably using the first Lf0 elements of the sub-vector corresponding
to the fundamental frequency f0, or every other element of the first 2Lf0
elements of the sub-vector corresponding to f0/2. By instead including a
total variation penalty function

Tv(ak) =

Lk−1∑
i=1

|ak,i − ak,i+1|

in the cost function, blocks with constant amplitudes will not be penal-
ized, whereas f0/2 vectors, such as af0/2 mentioned above, will incur a large
penalty. Note that even for signals that contain only odd harmonics, such
as the clarinet, or other audio signals created with a closed cylindrical pipe
[44], the total variation penalty will resolve halvling ambiguity. The resulting
spectral smoothness is similar to often imposed assumption in the modeling
of audio signals, see e.g., [15]. Adding the total variation function to the
suggested criteria will still result in a convex problem as the total varia-
tion function is convex since it may be written as composition of an affine
function, say F, and the `1 norm, i.e.,

P∑
k=1

Tv(ak) = ||Fa||1 (12)
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where F ∈ R
∑P

k=1 Lk×
∑P

k=1 Lk is created such that the rows corresponding to
the first Lk− 1 elements of each block have a one on the diagonal and minus
one on the first super-diagonal, and the row corresponding to element Lk is
zero, or equivalently, a difference operator with rows L1, L1 +L2 . . . ,

∑P
k=1 Lk

set to zero. Thus, we propose forming the pitch estimate via the minimization

minimize
a

1

2
||y−Wa||22 + λ||a||1 + α

P∑
k=1

||ak||2 + γ
P∑
k=1

Tv(ak) (13)

where γ > 0 is a tuning parameter, which should be set small enough such
that the total effect of adding the TV term is only to resolve the f0 and f0/2
ambiguity in a consistent and correct manner; in the numerical section it
was set to 0.01 for all simulations.The tuning parameters, λ and α may, for
instance, be estimated for example with a cross validation approach. How-
ever, in our experience, if the signal to noise ratio (SNR) is high enough,
they may preferably be set by simply inspecting the amplitudes in the zero
padded discrete Fourier transform, as is shown in Appendix B, i.e., by setting
α as the smallest significant amplitude above the noise floor, and by setting
λ similarly, but for each pitch. It is worth noting that an alternative formu-
lation may be obtained by instead using a covariance fitting formulation; as
recently shown in [45, 46], the sparse SPICE covariance fitting algorithm [47]
may be equivalently expressed using an weighted penalized `1 formulation,
for a particular choice of λ. One may similarly form a covariance fitting style
minimization of the here proposed minimization by replacing the squared
`2 fitting term in (11) or (13) with a corresponding `1 fitting term; we will
below examine what such a choice would imply. Reminiscent of the work in
[29, 48–50], another approach would be to instead consider other penalties,
e.g., the `q penalties with 0 < q < 1, or the reweighted `1, which would both
lead to non-convex optimization problems, that can nevertheless often be effi-
ciently solved with the benefit of, in many cases, sparser solutions, with less
biased amplitude estimates, although with local minima being a recurring
problem and without the global optimality conditions of convex optimiza-
tion problems. Herein, given that our main objective is the estimation of
the non-linear fundamental frequency parameters, we restrict our attention
to convex criteria, but note that especially the re-weighted `1 algorithm and
the `q-like criteria suggested in [48] are easily adapted to the algorithm and
the here presented criteria.
Considering that the signals of interest are only approximately sparse in W,
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and as two closely spaced fundamental frequencies will result in that the cor-
responding matrices, Ws and Wr, will be rather similar, one cannot expect
the resulting (block) pseudo spectral solution, formed over the peaks of the
2-norm of the estimated amplitudes, ||âk||2, to have exactly as many non-zero
blocks as there are sources present in the signal. In order to determine the
number of sources present, we therefore introduce a novel BIC-style criterion,
such that the number of sources are selected as (cf. [30, 51])

K̂ = argmin
k∈[1,Kmax]

BICk(λ, α) (14)

where Kmax denotes the maximum number of considered sources, here se-
lected as the number of peaks present in the initially obtained (block) pseudo-
spectra, and where the (λ, α)-dependent BIC cost function is formed as

BICk(λ, α) = 2N ln(σ̂2
k) + (2Hk + 1) ln(N) (15)

with σ̂2
k denoting the variance of the estimation residual when modeling the

pitch signal using

Hk =
k∑
`=1

L̂k` (16)

(dependent) sinusoidal components (see also [4]), where L̂k` is the number
of frequencies corresponding to the non-zero elements of âk` . It should be

stressed that the L̂k` considered harmonics are not necessarily consecutive,
thereby allowing for the case of missing harmonics (including the possibility
that the signal lacks the fundamental frequency component), which is a case
commonly occurring in many form of acoustic signals.

4. An Efficient ADMM Implementation

As the minimizations in (11) and (13) are composed of simple convex
functions, they may be solved using one of the freely available interior point
based solvers, such as SeDuMi [52] and SDPT3 [53], although such solvers
will scale badly both with increased data length and with the use of a finer
grid size for the fundamental frequency. As a result, such a solution will
in many cases be too computationally intensive to be practically useful. In
order to form a more efficient implementation, we therefore reformulate the
minimization in (11) using an ADMM formulation, which may be used to
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solve convex optimization problems which are the sum of two convex func-
tions by decomposing the optimization into two simpler problems, which are
then solved in an iterative fashion (see, e.g., [39]). For completeness and
to introduce our notation, we here include a brief outline of the main steps
involved. Consider the convex optimization problem

minimize
z

f1(z) + f2(Gz) (17)

where z ∈ Rp is the optimization variable, f1(·) and f2(·) are convex func-
tions, and G ∈ RN×p is a known matrix. If one introduces an auxiliary
variable, u, then (17) may be equivalently be expressed as

minimize
z, u

f1(z) + f2(u) +
µ

2
||Gz− u||22

subject to Gz− u = 0
(18)

Under the assumption that there is no duality gap, which is true for all
the optimization problems considered herein, one can solve the optimization
problem via the dual function defined as the infimum with respect to u and
z of the augmented Lagrangian [39]

Lµ(z,u,d) = f1(z) + f2(u) + dT (Gz− u) +
µ

2
||Gz− u||22 (19)

which holds for all µ, since at any feasible point ||Gz−u||22 = 0. The ADMM
does this by iteratively maximizing the dual function, such that at step `+1,
one minimizes the Lagrangian for one of the variables, while holding the
other fixed at its most recent value, i.e.,

z(`+ 1) = argmin
z

Lµ(z,u(`),d(`)) (20)

u(`+ 1) = argmin
u

Lµ(z(`+ 1),u,d(`)) (21)

where the notation x(`) denotes the vector x at iteration `. Finally one
updates the dual variable by taking a gradient ascent step to maximize the
dual function, resulting in

d̃(`+ 1) = d̃(`)− µ(Gz(`+ 1)− u(`+ 1)) (22)

from which the interpretation of µ as the dual variable step size may be seen
(see also [39] for further details). The general ADMM steps are outlined in
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Algorithm 1, using the scaled version of the dual variable d(`) = d̃(`)/µ,
which is more convenient for implementation. As a stopping criterion, it is
shown in [39] that by studying the necessary and sufficient conditions for the
optimality of a solution, say z∗,u∗, and d∗, of the minimization in (18), i.e.,
the primal feasibility

Gz∗ − u∗ = 0 (23)

and the dual feasibility

0 ∈ ∂f1(z∗) + GTd∗ (24)

0 ∈ ∂f2(u∗)− d∗ (25)

where ∂ is the sub-differential operator, imply that the so-called primal
and dual residuals, which are defined as r(`) = Gz(`) − u(`) and s(`) =
µGT (u(`)−u(`−1)), respectively, will converge to zero. Thus, as a stopping
criterion, one may use that the norm of the primal and dual residuals are
small enough. Clearly, the ADMM is only relevant when the optimizations
in steps 3 and 4 in Algorithm 1 can be carried out easily as compared to the
original problem. We begin by examining the implementation of (11), and
then proceed to extending this to form (13). One possibility to reformulate
(11) in this fashion would be to choose f1(·) as the 2-norm fitting term and
f2(·) as the sum of the sparse regularization term, i.e., with G = I and

f1(z) =
1

2
||y −Wz||22 (26)

f2(u) = λ||u||1 + α
P∑
k=1

√
∆k||uk||2 (27)

which yields

z(`+ 1) = argmin
z

1

2
||y −Wz||22 +

µ

2
||z− u(`)− d(`)||22 (28)

=
(
WHW + µI

)−1 (
WHy − u(`)− d(`)

)
(29)

where (·)H denotes the Hermitian (conjugate) transpose. It should be noted
that the matrix inversion lemma can be used such that the solution can be
calculated by solving an N×N system corresponding to the matrix WWH+
I/µ, i.e., (

WHW + µI
)−1

κ =
y

µ
+ 1/µWH

(
I/µ+ WWH

)−1
Wκ (30)
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for some vector κ ∈ Cp, thus transforming the P × P matrix inversion into
that of an N ×N matrix inversion. Moreover,

u(`+ 1) = argmin
u

λ||u||1 + α

P∑
k=1

√
∆k||uk||2 +

µ

2
||z(`+ 1)− u− d(`)||22

(31)

which decouples into P optimization problems as

uk(`+ 1) = argmin
uk

λ||uk||1 + α
√

∆k||uk||2 +
µ

2
||zk(`+ 1)− uk − dk(`)||22

(32)

One can easily solve the sub-differential equations

λr + α
√

∆ks + µ(z̃(`+ 1)− ũk − d̃(`)) = 0 (33)

where the notation x̃ denotes the real valued version of the complex vector x,
created as specified in Appendix A, and the vectors s and r are real-valued
and are defined such that

s =

{ ũk

||ũk||2
if ũk 6= 0

v otherwise
(34)

with ||v||2 ≤ 1, and

[
ri

ri+Lk

]
=

 [ũk,i, ũk,i+Lk ]
T

‖[ũk,i, ũk,i+Lk ]‖
2

if [ũk,i, ũk,i+Lk
]T 6= 0

p otherwise
(35)

with ||pi||2 ≤ 1, for i = 1, . . . , Lk, where ai,j denotes element j of sub-vector
i and [a, b] denoting a vector with two scalars a and b, and

r =
[
r1 . . . r2Lk

]T
(36)

This leads to

uk(`+ 1) = Ψ̄

(
Ψ

(
zk(`+ 1)− dk(`),

λ

µ

)
,
α
√

∆k

µ

)
(37)
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where Ψ(·) is an element-wise shrinkage function, defined as

Ψ(a, γ) =
max(|a| − γ, 0)

max(|a| − γ, 0) + γ
� a (38)

where the max function acts element-wise on the vector, and � denotes
the element-wise multiplication of two vectors. Similarly, Ψ̄(·) is a vector
shrinkage functions formed as

Ψ̄(a, γ) =
max(||a||2 − γ, 0)

max(||a||2 − γ, 0) + γ
a

The resulting ADMM algorithm for (11), here termed the Pitch Estimation
using `2 norm and Block Sparsity (PEBS2), is summarized in Algorithm 2.
For (13), one could similarly define f1(·) as the sum of all the regularization
terms. However, the subdifferential equations can then unfortunately not
be solved as easily as before. Instead, we exploit the recent idea introduced
in [40], where, by a clever choice of functions the f1(·) and f2(·), one may
extend (17) to a minimization of a sum of B convex functions, i.e.,

minimize
z

B∑
k=1

gk(Hz) (39)

where Hk ∈ RN×p are known matrices, and gk(·) convex functions. This is
accomplished by setting f1(z) = 0, and

f2(Gu) =
B∑
k=1

gk(Gu) =
B∑
k=1

gk(Hku
(k)) (40)

where

G =
[

HT
1 . . . HT

K

]T
(41)

u =
[

(u(1))T . . . (u(K))T
]T

(42)

Thereby step 4 in Algorithm 1 is allowed to be decomposed into B indepen-
dent optimization problems. Rewriting (13) on the form in (39), noting that
for this case, B = 3, and

f2(Gu) =
1

2
||u(1) − y||+ λ||u(2)||1 + α

P∑
k=1

√
∆k||u(2)

k ||2 + γ||u(3)||1 (43)
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where G =
[

AT I FT
]T

, and

u =
[

(u(1))T (u(2))T (u(3))T
]T

(44)

This implies that step 3 in Algorithm 1 can be solved as

z(`+ 1) = argmin
z
||Gz− u(`)− d(`)||22 (45)

=
[
AHA + FHF + I

]−1
(
AHξ(1)(`) + ξ(2)(`) + FHξ(3)(`)

)
(46)

where d is decomposed in the same manner as u, and

ξ(m)(`)
∆
= u(m)(`) + d(m)(`) (47)

for m = 1, 2, 3. Here, we are mostly interested in situations where the
number of parameters far outnumbers the number of measurements, i.e.,
N � p. Thus, since (45) needs to be solved at each iteration, one may solve
it efficiently using the matrix inversion lemma, i.e.,

z(`+ 1) = χ(`)−
(
FHF + I

)−1
AH

(
I + A

(
FHF + I

)−1
AH
)−1

Aχ(`)

(48)

with

χ(`) =
(
FHF + I

)−1
(
AHξ(1)(`) + ξ(2)(`) + FHξ(3)(`)

)
(49)

where we instead of solving one full p × p system of equations solve two
tridiagonal systems of equations, which may be solved using O(p) operations
[54, p. 153] and one N ×N system of equations. Furthermore, since(

I + A
(
FHF + I

)−1
AH
)−1

Aχk (50)

needs to be calculated at each step, the computational complexity can be
decreased even further by calculating the Cholesky factor, and at each stop
solving two triangular systems of equations. Thus, for a one time cost of
O(N3) operations, one can at each step solve two triangular systems of equa-
tions at cost of O(N2) operations. Step 4 in Algorithm 1 thereby decomposes
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into three different and decoupled optimization problems; firstly, for the first
block,

u(1)(`+ 1) = argmin
u

1

2

∥∥∥u− y
∥∥∥2

2
+
µ

2

∥∥Az(`+ 1)− u− d(1)(`)
∥∥2

2

=
y− µ

(
Az(`+ 1)− d(1)(`)

)
1 + µ

(51)

Secondly, the optimization problem for the second block is equivalent to (31),
leading again to

u
(2)
k (`+ 1) = argmin

uk

λ||u||1 + α
P∑
k=1

√
∆k||uk||2 +

µ

2
||z(`+ 1)− u− d(2)(`)||22

(52)

= Ψ̄

(
Ψ

(
zk(`+ 1)− d

(2)
k (`),

λ

µ

)
,
α
√

∆k

µ

)
(53)

Finally, the third block can be similarly updated to

u(3)(`+ 1) = argmin
u

γ||u||1 +
µ

2
||Fzk+1 − u− d

(3)
k ||

2
2 (54)

= Ψ

(
Fz(`+ 1)− d(3)(`),

γ

µ

)
(55)

The resulting ADMM algorithm for the block sparse pitch estimation prob-
lem, including the TV penalty (PEBS2TV), is summarized in Algorithm 3.
Alternatively, if one wish to use a covariance fitting formulation, as discussed
above, one may simply change the appropriate step, e.g., the update for u

(1)
k+1

in Algorithm 3 leads to

u(1)(`+ 1) = argmin
u

1

2

∥∥∥u− y
∥∥∥

1
+
µ

2

∥∥Az(`+ 1)− u− d(1)(`)
∥∥2

2

= y + Ψ

(
Az(1)(`+ 1)− d(1)(`),

1

µ

)
We denote the thus resulting estimators the PEBS1 and PEBS1TV, where
the latter includes the TV penalty. The computational cost of each iteration
of Algorithm 2 and 3 is, for typical problem dimensions, dominated by calcu-
lating Ax and AHy, for various vectors x and y, and requires considerably
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less operations than the O(p3) needed for the solvers mentioned earlier. It
is worth noting that the cost of the PEBS algorithms may be significantly
reduced for signals sampled at equidistant time-points by using fast Fourier
transform (FFT) techniques. Further improvements are possible by address-
ing the choice of the dual variable step size, µ. Instead of tuning it for each
problem depending on the typical sizes of the various inputs and outputs, an
adaptive approach is possible using the following heuristic [39]: considering
the fact that µ can be seen as controlling the relative importance of the dual
and primal feasibility condition suggests an adaptive choice by comparing
the norms of the primal and dual residuals and adjusting µ appropriately,
i.e., after step 9 in Algorithm 3, one may update µ according to

µ(`+ 1) =


µ(`)τ if ||r(`)||2 > ρ||s(`)||2
µ(`)/τ if ||s(`)||2 > ρ||r(`)||2
µ(`) otherwise

(56)

where τ is the multiplicative change in the step size, and µ set such that the
step size is changed to keep the ratio between the norms of the primal and
dual residuals within a factor µ. In our experience, setting τ = 2 and ρ = 10
results in about an order of magnitude fewer steps being needed. Note that
changing µ here does not cause any additional computational cost in any of
the above steps, except for the negligible cost of rescaling the dual variables,
i.e., d̃(`+ 1) = µ(`)/µ(`+ 1)d(`+ 1).

5. Numerical Results

We proceed to examine the robustness and performance of the proposed
estimators, using both simulated and real audio signals, comparing with the
optimal filtering (Capon), approximative nonlinear least squares (ANLS),
and multi-pitch estimator based on subspace orthogonality (ORTH) algo-
rithms [10, 55]. These estimators have in several studies been found to
offer state-of-the-art performance, and have freely available implementa-
tions, allowing for easily reproducible comparisons in future studies1. Ini-
tially, examining simulated signals, the performance of the estimates for the
different algorithms are computed using 250 Monte-Carlo simulations and

1The implementation of the proposed PEBS2TV estimator will be provided online in
case of publication.
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N = 160 samples, wherein the number of harmonics are selected uniformly
over [3,min(floor(1/f), 10)] in each simulation, where f denotes the fun-
damental frequency, in order to ensure that all frequencies are below the
Nyquist limit. Here, frequencies are given as normalized frequencies with
unit cycles/sample, in the interval [0, 1], unless otherwise specified. The sig-
nal to noise ratio (SNR), defined as 10log10(||y||2/||w||2), is set to 18 dB,
unless otherwise stated. To ensure the best possible performance, the refer-
ence methods are allowed perfect a priori knowledge of both the number of
present sources and their respective number of harmonics, whereas the pro-
posed estimators are only given that the maximum number of harmonics for
any present source is 10. All methods are given the same grid size, equivalent
to 1000 equally spaced points in [0.025, 0.1].

We begin by examining the performance of the estimators in a case with
one source when random harmonics are allowed to be missing. As shown in
earlier studies (see, e.g., [10]), the reference methods are well able to estimate
the pitch of a single source, but can be expected to suffer somewhat of a loss
of performance when the number of assumed harmonics differ from the actual
number present in the signal. To illustrate this, we simulate a signal with
the fundamental frequency drawn uniformly on [0.025, 0.05], with L1 = 10
with 2 − 8 harmonics missing at random, with all the amplitudes set to
1 with uniformly distributed phases. The results are shown in Figure 1,
illustrating the ratio of estimates for which the estimated pitch is within
±0.0002, i.e., approximately within two grid points from the true value,
for a varying number of missing harmonics. As seen in the figure, it is
clear that the PEBS estimators are performing as well as, or even better,
than the reference methods. Of the methods, only ORTH is seen to suffer
noticeably by the missing harmonics, which is natural due to the resulting
loss of orthogonality between the subspaces. It is worth noting that the
fundamental frequency is here allowed to be one of the randomly missing
harmonics. We have here used α = cχ, λ = (1− c)χ, for c = 0.5 and χ = 0.2.

Next, we illustrate how the TV penalty influences the performance of the
estimate. Figure 2 shows the results for a single pitch signal with fundamental
frequency chosen uniformly in [0.04, 0.0625], with four harmonics, where, as
before, all the amplitudes are set to 1 with random phases, and the dictionary
for both methods is chosen such that a maximum of 8 harmonics are allowed
for the frequency range [0.02, 0.1]. The result of this choice of signal and
dictionary is that the cost function for PEBS2 will not be able to distinguish
between the block corresponding to f0 and f0/2 in a consistent manner.
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This is clearly visible in the figure, where one can see that the fundamental
frequency is only correctly identified in roughly 60 % of the simulation for the
PEBS2 estimator, with noise in the spectrum basically deciding if f0 or f0/2
is chosen, whereas the PEBS2TV estimate yields consistent performance for
all SNRs. Here, and in all other simulations, γ was set to 0.01.

We proceed with the more interesting case of more than one signal source,
forming a signal consisting of two sources with the fundamental frequencies,
fk, drawn uniformly on [0.025, 0.1], where we have ensured that the min-
imum difference between the frequencies is at least 1/25 of the frequency
range. To illustrate the effect of non-equal amplitudes, the amplitudes are
here drawn such that both pitches have equal power, with ai,k ∼ N(1, 1),
i.e., Gaussian with expected value one and variance one, with uniformly dis-
tributed phase, which also means that no harmonics will be missing, but
some might have small amplitudes. Figure 3 shows the ratio of estimates
where the estimated pitches are both within two grid points from the true
value, for varying SNR, clearly showing the preferable performance of the
proposed PEBS algorithms. As seen from the figure, the PEBS2 estimates
achieve almost perfect performance for SNRs greater than 5 dB, whereas the
other examined estimators fail to do so, even for larger SNRs. The reference
methods thus fail to properly identify the pitches for the two sources, even
though being provided perfect a priori information of the number of sources
and harmonics. This can to some extent be explained by the fact that, being
random variables, some of the amplitudes may well be quite small, mimick-
ing the missing harmonics case previously studied. Also, as the fundamental
frequency decreases, the harmonics become more closely spaced, implying a
more difficult estimation problem.

To examine the effects of closely spaced fundamental frequencies, we pro-
ceed to consider the pitches f1 = 0.02 + ξ, where the random variable ξ,
uniformly distributed on [0, 0.00005] and redrawn for each Monte-Carlo
simulation, is added to make sure that the signal is not lying exactly on
the grid of proposed fundamental frequencies, and with f2 = f1 + ∆f . Here,
to clarify the effects of the source separation, L1 = 4 and L2 = 4, αk,l = 1,
∀k, l, with the amplitudes having a uniformly distributed phase. Figure 4
shows the resulting performance as a function of ∆f , again confirming the
preferable performance of the proposed estimators. In particular, it is worth
noting how the Capon and ORTH estimators suffers loss in performance as
frequencies corresponding to the overtones of the fundamental frequencies.
Here, the performance of the reference methods can be largely explained
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by the difficulty of estimating lower fundamental frequencies. To illustrate
this, Figure 5 shows the ratio when selecting larger fundamental frequencies,
f0 = 0.05 instead of 0.025 in the previous example. As can be seen in the
figure, the more well separated pitches are easier for the reference methods
to resolve. As is clear from both figures, the proposed estimator does not
suffer this shortcoming, and offer a uniformly preferable performance.

We continue on to examine the robustness to the selection of the user
parameters. Figure 6 illustrates the resulting performance as a function of χ
for different values of c, for SNR=15 dB, while the other signal parameters
are the same as for the signals used for Figure 3. To increase clarity, the
results are here only compared to the ORTH estimator, which exhibited the
best performance of the reference methods. As shown in the figure, the
performance of the PEBS estimate is quite insensitive to the choice of the
user parameters, although their relative ratio, typically estimated using a
modified cross validation approach, where the prediction of the estimated
model is done with a re-estimated LS solution using only the non-zero blocks
chosen (see, e.g., [56]), does make some difference in performance. The figure
illustrates that a better results was obtained by including the `1 penalty
(c 6= 0), as compared to using only the block penalty (c = 0).

Turning our attention to actual audio recordings, we consider a real audio
signal2 using a recorded guitar playing in succession three chords, first a sin-
gle note, then a 2-note chord, and, finally, a 3-note chord. Figures 7-9 show
the spectrogram of the recorded signal as well as the resulting PEBS2TV
and ORTH estimates, respectively. For this signal, where one may expect a
fundamental frequency in the range 80 to 1600 Hz, and with varying number
of pitches and harmonics, the f0 vs f0/2 ambiguity should be expected. As
can be seen in the figures, the PEBS2TV method estimates the fundamental
frequencies consistently with the actual number of sources, as well as the
fundamental frequencies of the underlying notes. Figure 8 also shows the
(estimated) scaled standard deviation of the signal, clearly illustrating the
initial uncertainty in the measurement when the chord is struck. The dic-
tionary is chosen using the entire span of the fundamental frequency range
of a guitar, and the number of harmonics is chosen to be at a maximum 8,
c was set to 0.3 and χ was set to equal the standard deviation of the signal.
Overall, PEBS2TV manages to find the correct number of pitches and the

2The authors are grateful to Mr Tommy Nilsson for this recording.
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true fundamental frequency. Since the estimator is not given the number
of pitches, artificial fundamental frequency estimates appear when string is
struck or damped. This shows the importance of better preprocessing or
modeling for music signal applications. Furthermore, the frequency estimate
at around 990 Hz might be due to the inharmonicity in the guitar (see, e.g.,
[44]). For comparison, we in Figure 9 show, the resulting estimates for the
ORTH estimator, which was best performing of the reference methods for this
signal. The model order was here set using oracle information of the num-
ber of pitches and manually tuning the number of pitches to give the best
results. As can be seen, the ORTH estimator manages to do reasonably well,
with the most troublesome region being between 1 and 1.5 seconds, where
several cases of f0/2 or 2f0 being chosen instead of the correct fundamental
frequency.

Finally, we examine a signal obtained by superimposing two recordings
from the SQAM database [57], being a viola and the voice of a female speaker.
The viola has a single fundamental frequency of about 131 Hz with roughly
15 overtones, although it may be noted that both the first and fifth harmon-
ics are missing, and several other harmonics are quite small. For the speech
signal, we have selected a part of the phrase ”to administer”, analyzing the
two vowels ”o” and ”a”, corresponding to the first third of the spectrogram
in Figure 10. To allow the speech signal to be reasonably stationary, we use
(non-overlapping and un-windowed) 20 ms time windows. During the exam-
ined time period, the voice varies considerable, and the number of harmonics
can be seen to vary over the segments from one to eight with a fundamental
frequency varying between 180 and 220 Hz. The spectrogram of the resulting
signal is shown in Figure 10. To allow for the range of possible pitch frequen-
cies a viola and a female voice may be expected to span, the dictionary was
selected to cover the frequency range 130–1200 Hz, using 500 grid points,
with the maximum number of harmonics set to Lmax = 15. Figures 11 and
12 show the resulting pitch estimates for PEBS2TV and the ORTH estimator,
respectively. Here, ORTH has been allowed oracle knowledge of the number
of harmonics of each source, as well as the number of sources. As can be seen
from the figures, the PEBS2TV estimator is able to correctly identify the two
pitch signals throughout, except in the transition period when the speech sig-
nal is too weak to be detected, whereas the ORTH estimate gives poor pitch
estimates for the latter part of the signal, where it yields pitch estimates
which are multiples of the correct pitch, corresponding to the higher order
overtones. As the PEBS2TV estimator does not assume prior knowledge of
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the number of sources, it may yield spurious pitches. This may be seen, for
instance, at time 0.15 s, where a (weak) third pitch appears. By tuning the
estimator better, or by allowing for information from previous frames, for
instance via pitch tracking (see, e.g., [58]), this may easily be remedied.

6. Conclusions

In this work, we introduced the idea of using block sparsity in the estima-
tion of the fundamental frequencies of a multi-pitch signal. Formulating the
estimation as a sum of a fitting term and convex sparsity inducing norms,
ensuring a block sparse solution, the proposed algorithm is shown to offer
significantly improved performance as compared to a range of state-of-the-art
multi-pitch estimators. Furthermore, by including a total variation penalty
on each block, the algorithm avoids the f0 vs f0/2 ambiguity that many esti-
mators suffer from. The algorithm is shown to be capable of handling issues
such as missing harmonics as well as closely spaced fundamental frequencies.
Furthermore, novel ADMM algorithms are devised for the entailing opti-
mizations, resulting in a iterative dual ascent method, where each step has a
simple closed form expression that scales well with the problem dimensions.

A.

Insight into how the penalty term in (9) induces a block sparse solution
can be gained by studying the sub-differential equations of the equivalent
real-valued cost function (see also [43]), which may be expressed as

W̃T
`

(
ỹ −

P∑
k=1

W̃kãk

)
+ αs` = 0 (57)

for ` = 1, 2, . . . , P , where s` is either a vector such that ||s`||2 ≤ 1, or equal
to ã`/||ã`||, depending on if ã` = 0 or not, W̃ is the real counterpart of W,
created such that

W̃` =

[
Re {W`} −Im {W`}
Im {W`} Re {W`}

]
where Re{·} and Im{·} denote the real and imaginary part of a matrix, and
ỹ and ã are formed similarly, i.e.,

ỹ =
[
Re {y} Im {y}

]
ã` =

[
Re {a`} Im {a`}

]
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Thus, for any minimizing vector ă, a necessary and sufficient condition for a
sub-vector, or block, ă`, to be zero is that [43]∥∥∥∥∥W̃T

`

(
ỹ −

P∑
k=1

W̃k
˘̃ak

)∥∥∥∥∥
2

< α (58)

which shows the (block) sparsifying effect of the (block) 2-norm. Note further
that if the inequality does not hold, ã` could have been found by solving

ã` =

(
W̃T

` W̃` + α/||ã`||

)−1

W̃T
`

(
y −

∑
k 6=`

W̃kãk

)
(59)

This can be recognized as being similar to the solution of a Tikhonov regu-
larized LS, or ridge regression, solution which is known to lack a sparsifying
effect. Thus, if the block is non-zero, one may expect each element in the
block to be non-zero.

B.

Similarily as in Appendix A, the sparsity of the solution of (11) may
be understood by studying the subdifferential equations for the equivalent
real-valued problem, which are given by

W̃T
`

(
ỹ −

P∑
k=1

W̃kãk

)
+ αs` + λr` = 0 (60)

for ` = 1, . . . , P , where s` and r` are real-valued vectors defined such that

s` =

{ ã`

||ã`||2
if ã` 6= 0

v otherwise
(61)

where ||v||2 ≤ 1, and[
r`,i

r`,i+L`

]
=

 [ã`,i, ãk,i+L` ]
T

‖[ã`,i, ã`,i+L` ]‖2
if [ã`,i, ã`,i+L`

]T 6= 0

pi otherwise
(62)

with ||pi||2 ≤ 1, for i = 1, . . . , Lk, where ai,j denotes element j of sub-vector
i, [a, b] a vector with two scalars a and b, and

r` =
[
r`,1 . . . r`,2Lk

]T
(63)
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This implies that for any minimizing vector ă, it holds that ă` = 0 if∥∥∥∥∥W̃T
`

(
ỹ −

P∑
k=1

W̃k
˘̃ak

)
− λr

∥∥∥∥∥
2

≤ α (64)

or, equivalently, if

L∑̀
k=1

∥∥zk(‖zk‖2 − λ)+
∥∥2

2
≤ α2 (65)

where zk is a vector composed of the elements k and k + L` of the vector

z = W̃T
`

(
ỹ −

P∑
k=1

W̃k
˘̃ak

)
(66)

Interestingly, but perhaps not surprisingly, this is a similar solution as one
would obtain from the analysis of the real-valued version of (10) analyzed in
[43]. However, in this case, the analysis holds for any kind of non-overlapping
sub-division of the sub-vectors, not only into the two variables corresponding
to the same complex variables. This insight was used in [59] to generalize
the above results to the case of multiple measurements vectors (array) case.
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Algorithm 1 The general ADMM algorithm

1: Initiate z = z(0),u = u(0), and ` = 0
2: repeat
3: z(`+ 1) = argmin

z
f1(z) + µ

2
||Gz− u(`)− d(`)||22

4: u(`+ 1) = argmin
u

f2(u) + µ
2
||Gz(`+ 1)− u− d(`)||22

5: d(`+ 1) = d(`)− (Gz(`+ 1)− u(`+ 1))
6: `← `+ 1
7: until convergence
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Algorithm 2 PEBS2 via ADMM

1: Initiate z = z(0),u = u(0), and ` := 0
2: repeat

3: z(`+ 1) =
(
WHW + µI

)−1
(y − u(`)− d(`))

4: uk(`+ 1) = Ψ̄
(

Ψ
(
zk(`+ 1)− dk(`+ 1), λ

µ

)
, α
√

∆k

µ

)
for k = 1, . . . , P

5: d(`+ 1) = d(`)− (z(`+ 1)− u(`+ 1))
6: `← `+ 1
7: until convergence
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Algorithm 3 PEBS2TV via ADMM

1: Initiate z = z(0),u = u(0), and ` := 0
2: repeat

3: z(`) =
[
AHA + FHF + I

]−1
(
AHξ(1)(`) + ξ(2)(`) + FHξ(3)(`)

)
4: u(1)(`+ 1) =

y−µ(Az(`+1)−d(1)(`))
1+µ

5: u
(2)
k (`+ 1) = Ψ̄

(
Ψ
(
zk(`+ 1)− d

(2)
k (`), λ

µ

)
, α
√

∆k

µ

)
for k = 1, . . . , P

6: u(3)(`+ 1) = Ψ
(
Fz(`+ 1)− d(3)(`), γ

µ

)
7: d(`+ 1) = d(`)− (Gz(`+ 1)− u(`+ 1))
8: `← `+ 1
9: until convergence
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Figure 1: Ratio of estimated pitches where the fundamental frequency lies at most 0.0002
from the ground truth, plotted as a function of the number of harmonics that are missing
for α = λ = 0.5χ and χ = 0.2. The fundamental frequency is uniformly distributed on
[0.025, 0.05].
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Figure 2: Ratio of estimated pitches where both fundamental frequencies lie at most two
grid points from the ground truth, plotted as a function of SNR. The dictionary and signal
are chosen such that there is ambiguity in the choice of f0 vs f0/2 .
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Figure 3: Ratio of estimated pitches where both fundamental frequencies lie at most two
gridpoints from the ground truth, plotted as a function of SNR for α = λ = 0.5χ and
χ = 2.1σe. The fundamental frequency is uniformly distributed on [0.025, 0.1].
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Figure 4: Ratio of estimated pitches where both fundamental frequencies lie at most
two grid points from the ground truth, plotted as a function of ∆f , for f0 = 0.025,
α = λ = 0.5χ, L1 = 7, L2 = 5 and χ = 0.2.
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Figure 5: Ratio of estimated pitches where both fundamental frequencies lie at most two
grid points from the ground truth, plotted as a function of ∆f , for f0 = 0.05, α = λ = 0.5χ,
L1 = 7, L2 = 5 and χ = 0.2.
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Figure 6: Ratio of estimated pitches where both fundamental frequencies lie at most two
grid points from the ground truth, plotted as a function of χ for α = cχ, λ = (1− c)χ, for
c ∈ {0, 1/2, 1/3, 2/3}.
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Figure 7: Spectrogram of recorded guitar sound.
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Figure 8: The PEBS estimate of the guitar recording, showing that the correct number of
pitches and their corresponding frequencies are revealed. The scaled standard deviation of
the signal is superimposed to illustrate at what time points the notes are struck or muted.
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Figure 9: The ORTH estimate of the guitar recording, using oracle information of the
model-orders. The scaled standard deviation of the signal is superimposed to illustrate at
what time points the notes are struck or muted.
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Figure 10: Spectrogram of recorded speech and viola.
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Figure 11: The PEBS2TV estimate of the speech and viola recording. The scaled standard
deviation of the signal is superimposed to illustrate at what time points the voice is silent.
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Figure 12: The ORTH estimate of the speech and viola recording, using oracle information
of the model-orders. The scaled standard deviation of the signal is superimposed to
illustrate at what time points the voice is silent.
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