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1.

INTRODUCTION:

The purpose of this report is to illustrate via a "case" study how one
might use the direct method of Lyapunov to obtain a primitive control law
for a complex dynamical system. By a primitive control law, we simply
mean a control law which is designed so as to insure that the desired motions
of the system are asymptotically stable; this implies that small disturbances
to the system result in only small deviations of the motion. Such a control
law does not in general produce optimal performance, nor does it explicitly
consider system or control constraints. However, there are usually pa-
rameters in the primitive control law which can be adjusted so as to operate
the system within the constraints and even to approximate optimal behavior.
Furthermore, the development of an optimal control law in which constraints
are considered directly is both time-consuming and expensive. As a result,
in the preliminary phase of a systems study, where the key question is
feasibility, and the determination of the "existence' of a stable control law

is an essential step, one is often satisfied with a primitive control law.

The particular control problem with which this report is concerned was
derived from certain tasks that will be required of a proposed configuration
for a manned-orbiting-space-station. In this system, the crew would be
housed in a cabin, roughly described as a cylinder twenty feet in length, ten

feet in diameter, and weighing approximately twenty-thousand pounds,

In order to establish a reasonably uniform and controlled artificial
gravity in the orbiting cabin, it is proposed that two similar bodies be
assembled with a connecting cable of sufficient length, Then by spinning
the two bodies at constant angular velocity about the center of mass of the
system, the gravity in the cabin can be set at a desired level by the proper
choice of the cable length and the velocity. The second body of the system
will be the frame of the final stage of the rocket used to place the cabin in




orbit. The dimensions and weight of this body will be essentially the same
as those of the cabin., The connecting cable will be of steel and we shall

assume that its length is controllable up to a maximum of 75 meters.

The attitude control of this system must perform a number of functions.
Included among these tasks, as Markarian and Clancy [1] have pointed out,

are the following:

(a) To maintain precise earth orientation of reconnaissance

sensors and antennas;

(b) To maintain desired equilibrium motions against external
disturbances (e.g., the gravity gradient and solar pressures)
and internal disturbances (e.g., motion of the crew and

sloshing of fluids);

(c) To be capable of the extensive attitude maneuvers required

for ferry vehicle docking and the many experiments planned.

To efficiently carry out all of these functions, gas jets and/or reaction
fly-wheels will be necessary. In addition, it will be necessary to reel the
cable in and out as the cabin is maneuvered. Since hardware for this manip-
ulation of the cable length is already necessary equipment, an obvious

question is, '"Could any of the tasks listed above be performed by just

manipulating the cable length?"

Moreover, we limit our studies to plane motions, It is thus assumed
that the motions of the bodies are restricted to translations in a plane fixed
in inertial space and rotations with respect to an axis orthogonal to this
plane. We will thus neglect all problems associated with the orientation

of the system and rotations of the bodies around axes in the plane of motion.




The remainder of this report illustrates how the direct method of
Lyapunov can be used to aid in answering such a question. Some back-
ground material on the direct method is given in Section 2, In Section 3,

a mathematical model of the system is developed and an order of magnitude
analysis is carried out. With the simplifying assumption that the two bodies
can be treated as point masses, a stable control law is developed and the
controlled system analyzed in Section 4. In Section 5, the restriction to
point masses is relaxed and a control law for this system is developed. An
analog computer simulation and Fortran programs for the IBM 7090 which

are useful in the analysis of the system are documented in the appendices.

2. SOME BACKGROUND MATERIAL ON THE DIRECT METHOD:

The so-called direct method of Lyapunov permits one to answer questions

concerning the stability of the equilibrium solution of a differential equation,
utilizing the given form of the equation, but without explicit knowledge of its
solution. As usually stated, the direct method applies only to the equilibrium
motions of free dynamical systems; that is to say, to deviation about some

fixed motion.

Now consider the dynamical system
k= £(x,u(t) (2.1)

where x is the state of the system, X denotes the time derivative, and the

vector u is the control input to the system. Let x*(t) be a fixed motion of

(2. 1) corresponding to a particular control input u*(t), Let

X = X+ z




and

Then, substituting in (2. 1)
Revozo= fE4 oz, @Y . (2.2)
Now we can rewrite (2.2) in the following way
X+ z = f(x*,uf) + gz (2.3)
where the function g is defined by
g(z,y) = fx*+ zuf+ v) - fxFuh)

Obviously, for each fixed motion x* resulting from a u*, there is a

different function g.

Since x* is a solution of (2.1), it follows from (2.3) that

z = gy (2.4)
and

g0,0 =0 .
Thus, with a fixed u(t) = u*(t), deviation from the resulting motion x*(t)

are described by the dynamical system of (2.4).

In the context of control we can view the deviation z(t) from the
desired motion, as an error and the object of control (v(t)) is to keep

the error small in the presence of small persistent perturbations and




to return it to a small value following large disturbances of short duration.
With this point of view, it is natural to introduce the "direct method" of
Lyapunov, Let V(z) be a "measure" of the error z. V(z) is real-valued

and to be reasonable, at least locally, it must be positive definite, This

means that in some neighborhood Q of the origin, z = 0 ,
V(z) > 0 for z # 0

and (2.5)
V@©) = 0

Now define for the system (2.4)

dV(z
d(t—) = grad V). g .

This function we can compute directly, without a knowledge of the solutions
of (2.4). If the system is to keep the error small, then as a minimum we

must have

dv .
e 0 for all z in Q@ ,
and preferably
d
CX<O forall z in Q, z = 0 .

With this somewhat intuitive picture in mind, it is now necessary to be

precise in our statements, Let ¢(t;z o’to) denote the motion of (2.4) which

tart i i = ; =
starts at to in state _z_o. Cbviously for t to’ g(to,go,to) Eo .




Definition 1: The solution ¢(t;0, to) = 0 is stable if given any € > 0
there is a 6 > 0 such that II_Z_OH < & implies that [lo(t:z ,t) |<e for
all t > to .

Definition 2: The solution ¢ (t;0 ,to) = 0 is asymptotically stable if in

addition to being stable there is an 7 > 0 with the property that |z Oll <
implies that | @(tz %) | ~ 0 as t— . (H 7 includes the whole space,
then we say that the solution is asymptotically stable in the large.)

These concepts are physically concerned with the case in which a pertur-
pation suddenly moves the system from its equilibrium solution, but then
disappears. If the system is asymptotically stable in the large, the effect

of the perturbation tends to disappear regardless of its intensity.

In practice, systems are usually subjected to persistent perturbation,

which has led to a concept known as total stability.

Definition 3: The solution ¢(t;0, to) = 0 is totally stable if given any

¢ thereis & > 0 andan 71 = 0 such that if H_z_o\l < & and the persistent
perturbations p(z,t) are such that |lp(z,t) |l < n for all z and t = to’
then

||9(t;_z_o,to) < € for t =t

Fortunately if a solution of (2.4) is asymptotically stable this implies

that it is totally stable [see 3} . We shall therefore seek to achieve asymp-

totic stability and in the large where possible. In so doing, we shall make

use of the following results:

Theorem 1: The solution of (2.4), ¢(t:0, to) =0 is asymptotically stable

in the large if there exists a scalar function V(z) with continuous first

partial derivatives with respect to z , such that V() =0 and




t

(i) Vizy > 0 forall z = 0
(ii) dZ’EE) < 0 forall z = 0

Experience has shown that in many cases it is only possible to find a
positive definite function V whose total derivative is non-positive rather
than being strictly negative. For this reason, the following Corollary of

Theorem 1 is very useful,

Corollary 1: In Theorem 1, condition (ii) may be replaced by:

(ii)1 @~ foran z

dt
o dav s . .
(ii)2 rr (o(t;z o’ to) does not vanish identically in

= t d # 0.
t to for any o andany z

These results are derived and discussed in a paper by Kalman and

Bertram. [2]

Results on the size of the region of asymptotic stability have been given
by LaSalle [3] and are of particular use in problems of the sort to be con-

sidered in this report. In particular:

Theorem 2: If the region R defined by V(z) = c¢ is bounded and if

condition (i) and (ii) of Theorem 1 hold fof all z in R, z # 0, then R

is contained in the region of asymptotic stability.
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The preceding is only a sketchy outline of the direct method, but it
summarizes the essential points for its application. The obvious and well-
known difficulty encountered in the application of the direct method is the
choice of an appropriate Lyapunov function V{z). While there are no known
methods for the generation of such a function for a general dynamical system,
experience has shown that for the conservative systems involved in attitude

contro! [4] the total energy of the system is often adequate,

THE MATHEMATICAL MODEL OF THE SYSTEM:

We will assume that the system can be described as two rigid bodies
M, and M connected by a cable with negligible mass whose length u can
be cortrolled. Furthermore, to illustrate the techniques, we will only con-
sider plane motions, i.e., the masses move in a plane and rotate only with
respect to an axis orthogonal to the plane of motion. The parameters my
and m, represent the masses of the two bodies, and J, and J, their
moments of inertia with respect to axes through their centers of mass and
orthogonal to the plane of motion. The cable is attached to the bodies at
points py and py at distances a, and a, from the centers of mass.
The cable is assumed to obey Hooke's law, i.e., the force is proportional

to the relative elongation

The spring constant k is given by
k = aE

where a is the cross section of the cable and E is Young's modulus, In
this preliminary study we will neglect the effect of the cable rubbing against

the bodies.




To describe the motion of the bodies M; and M, we introduce a
coordinate system OXY with the origin O at the center of mass of the
system, and with the direction of the axes fixed with respect to inertial
space. If we neglect the gravity gradient and the variation of the centrif-
ugal forces over the system, then OXY is an inertial system. To describe
the orientation of the rigid bodies relative to the coordinate system, we in-

troduce the notation of Figure 1,

The system has four degrees of freedom: two for the position of one
of the rigid bodies (say M;) and one each for the rotations of the bodies
M; and M;. (Given the position of one of the masses, the position of the

other is defined by the choice of the coordinate system. )

To obtain the equations of motion, we will use the Lagrangian formalism.

The kinetic energy T of the system is

2T = m % + m,+} + my(ry¢)? + my(r,¢)? + T (9+¢q)? + Ty (9+dy)2
3. 1)

The potential energy P, which is non-zero only when the cable is

stretched, is given by
2
9p = kL uh(L} 3.2)
where u is the unstretched length of the cable, k is the spring constant

for a cable of unit length, L is the elongation of the cable, and h, the

Heavyside function, is defined such that

1 for x=0
h(x) = {

0 for x<0
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Figure 1,




Lis

The elongation, L, of the cable is just

L = C-u (3. 3a)

where C is the distance between the points P, and P, in Figure l,

where

and

1
C = (A? + B?)? (3. 3b)
A =ry+7Ty -a,co8¢, - ayCcosdy (3. 3¢)
B = a; sin ¢4 + aysing, . (3.3d)

It is convenient to introduce the angle © defined by

A = Ccos© s B = Csin®©

Due to the choice of coordinates, we have the following relation between

ry and rj;

Now introducing the Lagrangian I" = T - P, we find the equations of

motion of the system,

m, ¥y - my¢lrg+ l:' Lh(L)cos® = 0 (3. 4a)
o - k '

Ji(dy + ¢) + " Lh(L)sin(¢p, + 6) = 0
. . k )

Jalpy + ¢) + 5 LhL)sin(g, + ©) = 0

d . d . . . ve -
my G (ri¢ ) + m, E(rgcp) + (P 9)+ Jy (9t 9)=0

(3.44d)

(3. 4b)

(3.4c)
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Carrying out the differentiation indicated in (3. 4d), and solving system

3.4 for ¢, we get

" (%)Lh(L)[aisin(%Jr ©) + a;sin(¢, + O - 2m ity - 2mTyTy @
¢ = 2 2

m1r2 + mzrz

but, since myry = MyTy, then

k N . . o
. Lh(L)[a,;sin(¢ 4+ O) + 2y sin(¢p,+0O)] - 2m, T (ry + Ty)
¢ = -
myry(ry + ry)
For ease of notation, let ¢ = F.

If we now let

Xy = Iy

X, = Ty

X3 = ¢y

Xy = &’1 5.5
X5 = @y .
Xg = ‘i’z

X = ¢

Xg = ‘P

the equations of motion (3.4a - 3.4d) can be written as eight first order

differential equations.
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X, = x (3. 6a)
X, = xxf - —— Lh(L)cos © (3. 6b)
2 1%8 m,u
5(3 = X4 (3. 60)
. k .
Xy = - T.u &t Lh(L)sin(x; + ©) - F (3. 6d)
1
X, = X (3. 6e)
e = - i ) £
Xg = - J,u a, Lh(L)sin(x; + ©) = F (3. 61f)
% = X (3. 68)
3(8 = F (3. 6h)
where
m 1
L = [(xy(+ 1y - a4CO8 X5 = a, cosx5)2 + (aysinxy + a, sin><:5)2]2 -u
my
(3.7)
k . . my
a Lh(L)[a,sin(x; + ©) + a,8in(x, + ©)] - 2m XX, X, (I+ I_n_z)
F =
2+ 2
m, x} (1+ m2) (3.8)
and
-1 aysinxg+ ay sinxg
© = tan = | 1 (3.9)

m
X1(1+ﬁ‘:) - 84COSXg = Ay COS Xy

These equations describe the motion of the system.
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A SIMPLIFIED CASE:

To illustrate the techniques that we plan to employ and to provide some
insight into the behavior of the general system, let us first consider a very
simple version of the problem. In this example we assume that the two
bodies M; and M, may be represented by point masses my and my,

respectively, and that my = m; =1m.

The objective of this example is to show via the direct method of

Lyapunov that the desired motion of the system can be made asymptotically
stable by just controlling the length of the cable.

In this simplified case, the system has only one degree of freedom (the

position of one of the point masses) and the equations of motion reduce to

. Kk
T _ 2 B _ - — )
r-Tet + o (2r —u) h(2r ~u) 0 4.1
r2¢ + 2rre = 0 (4. 2)
If we let
X = T
(4. 3)
X3 = ¢
Xy = ®

then (4. 1) and (4. 2) can be written as four first order differential equations,

5(1 = Xy (4:. 43)
. k

Xy = XiXq - o 2x -u) h(2x4 -u) (4. 4b)
3(3 = X4 (4. 4:C)
. XX

k, = -2 =4 4. 4d)

X4
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(a) The desired motion: The motion which is desired and whose asymp-

totic stability we wish to insure in the following:

Xf(t) = a
xF(t) =0
4.5)
xf(t) = ot
Xft) = w

In other words, we want M; and M, to move at radius a with constant

angular velocity w about the center of mass of the system.

Substituting (4, 5) into the equations of motion (4.4), yields (see (4.4b))
that the unstretched length of the cable u* which produces the desired

motion is
k
* = o —_—
" 22 ¥ maw? (+.6)
() The dynamical equations for the motion relative to the desired motion:

In order to study the asymptotic stability of the desired motion (4. 6), it is
necessary to obtain the dynamical equations of motion relative to the desired

motion, To do this, introduce the perturbations from the desired motion

Xy = Zy

Xy = Zgt+wt 4.7)
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Now, substituting (4.7) into (4.4), we find

7, = g (4. 8a)
e - 2 k —- * h(27 *
Zy = (Zy+a)(zytw)® - (V) [2(z+a)-u*~v] h(2z;+2a-u*-vV)
(4. 8b)
Zy = 2y (4.8c)
'Z4 = - ____..,2Z2 (Zii&)_). (4. 8d)
(z1+a)

In terms of these variables, we see that z, =z, = 73 = z4 = 0 defines
the desired solution. Furthermore, we see that this is an equilibrium solu-
tion of (4.8). Actually we are only interested in the asymptotic stability of
the state variables z,, z,, Z, the deviations in r, t, and q> from the
desired solution. Consequently, since zs, the deviation in ¢, does not
enter into the right hand members of equations (4.8a), (4. 8b), and (4. 8d),

we can drop (4. 8¢c) from further consideration.

{c) Development of a class of primitive control laws via the direct

method of Lyapunov: As a Lyapunov function we choose a guantity which is

equal to the total energy in the system minus an appropriate constant so that

it vanishes at z = 0 ; thus,

V(z{,23,24) = (T+P) - constant

k
mz3 + m(z,+a)?(z4+w)?+ sox 271+ 2a-u*)h(2z+ 2a-u¥*)

k(2a-u*)?
- [ma?w? + —(Ea;k—l‘ | 4.9)
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Unfortunately, V is not a positive definite function of z,,z,,2z4. Due
to the particular form of the equations of motion, the variable z; can,

however, be eliminated. Integration of (4.8d) yields

(zy+a)(zy+w) = alw (4. 10)

which can also be obtained directly from the conservation of angular momen-

tum. Using this relation to eliminate z,, the equations of motion become

7y = 1z (4. 11a)
4,2
Zy = a e . k [2(z4+a)-u*~V] h(2(z;+a)-u*-v) . (4.11b)

(zy+2)° - m(uk+v)

If we can show that the trivial solution, z, =z, = 0, of these equations
is asymptotically stable, we have also proven that the trivial solution of

(4.8), z, =2z, =24 =0, is asymptotically stable because

z, ~ 0 and Zy =~ 0
implies by (4. 10) that

Z4—"'O o

To show the asymptotic stability of the null solution of (4.11) we use the

function V of (4.9) with z, eliminated by (4. 10) as a Lyapunov function,

i.e.,
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atw?

m T our (221+Za—u*)2 h(2z+ 2a-u*)
1

V(zy, 29} = mz% + m

- [ma?w? + k@%%ﬁ] (4.12)
We can easily verify that
(1) V(©0,0) = 0
(i1) V{zy,29) > O for Zy,Zg # 0 and z; > -a
(iily  V{(zy,2Z9) —~ zy—~-a Or Z;—~ %

and also as |z | — » .
Further, we notice that the total derivative of V(zy,Zy) »

v av , _ 8V

becomes
dv 1
G T % k[a; (22+ 2a-u*)h(2z,+ 2a-u*)
1
= Ty (224 + 2a-u*=V) h(2z,+2a~-u*-v)] . (4.13)

To analyze the sign of % in the z,, z, plane, we consider the four cases

L. 2z +2a-u* =0 , 2z.4+2a-u*-v =0

then
dav

a - °




IL 2zy+2a-u* =0 , 2z,;+2a-u*-v> 0
then
v< 0
and
dv Zy
= - r. T
at k u*+v(2Z1+za u*-v) .,
11, 2z4+2a-u* >0 , 2z;+2a-u*-v= 0
then
v>0
and
dv Z2
e k. - (2z+2a-u*)
Iv. 2z4+2a-u*> 0 , 2z;+2a-u¥-v> 0
_— = o e ——— +
dt 2K wk (uw¥+ 0) (z+2)

From this summary, it is clear that %% will be negative definite in

cases II, III, and IV if v is chosen to have the form

Vo= -f(zy) (4. 14)

where f(x) is a function with the following properties:

@) £(0)

Il
o

i) xfx) >0 , x=0

(iii) [f(x)] < u*x .

Choosing the control law (4. 14), we can then summarize the investigation

of the sign of c:l—z in Figure 2,
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Figure 2.




To show the asymptotic stability of the solution z, = z, = 0, it remains

to be shown that:

1. Starting in the region z; > -a all motions remain in this
region,

2,  There are no closed trajectories of (13) in the region where

dv
a = O

To show (1), we note that V(zy,z,) — «» as z; — -a, which means

that infinite energy is required to get zy < -a,

To show (2), we notice that in the shaded region that the equations of

motion (4, 11) can be integrated in closed form, yielding trajectories

&% 2
z5 + (zgra)? c (4. 15)

It is obvious that these trajectories cannot be closed in the shaded region
and we have thus shown that the control (4. 14) gives an asymptotically stable

system,

Remark: It should be physically obvious that r and r cannot be stabi-
lized asymptotically unless there is some angular momentum. This follows

since for aw? =0 in the previous equation, the arguments would all break

down,

(d) The choice of a particular control law: So far we have only been

concerned with the problem of finding a class of control laws that yields an
asymp'totically stable system. We will now show that by choosing a partic-
ular member of this class we can obtain suitable dynamic behavior of the

system. We will consider the control law :
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-af zg = P
v = { -aZp lzo| < B
af zy = P

In particular, we shall consider the asymptotic stability of the motion

r = a = 30 meters
=0
¢ = « = 0,5 radians/sec

and with the physical parameters

10* Kilograms

Il

k 1.284 x 10® Newtons.

Note that this motion gives an artificial gravity in the cabin of 0. 76g.

Figures 3 -7 show the time response of the system when it is released

from the initial conditions

r(0) = 15 meters
£0) = 0
$(0) = 2 radians/sec

At these initial conditions, the cabin has an artificial gravity of 6. 1g.

A constraint of considerable physical importance is the fact that the
cable would break if the percent elongation were ever to exceed 1%. From
Figures 3 and 7 we see that for o= 0.1 that this limit is exceeded but for
a = 10 the percent elongation does not exceed 0.6%. From this data, it

would seem that a =10 represents a reasonable control law,
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However, to qualitatively find the influence of the parameter o Wwe
linearize the equations of motion around the equilibrium solution. Neglecting
terms of second and higher order in z,, we find

a k .

. 2k
= 2 L -
7, + 211* u-*(:1.Z1+(3w + u*)zi..o .

Introducing the numerical values used, we find that for a > 0.1 the

characteristic roots are

A, ® 2l4a

A, ® 2/

The smallest root will thus decrease with increasing a. This is clear
from the Figures 3-7. With the orders of magnitude of a considered,

it is clear that the mode corresponding to the highest eigenvalues will
tend to zero very quickly after an initial disturbance and that the following
motion is then governed by the mode associated with the small eigenvalue.

This can also be verified quantitatively from the Figures 3 -7.

5., ANALYSIS OF THE COMPLETE PROBLEM:

We will now return to the complete problem whose mathematical model

was given in Section 3. We will follow the same path as in the simplified
example of the previous section. The equations of motion of the system are

given by (3. 6).

(a) The desired motion: The motion which is desired and whose

asymptotic stability we wish to insure is the following:




b
e
il
®

e
vd%
It
»
CQ*
il
P
e
I
e
S
i
H
o

(5. 1)

where a and w are given. In other words, we want the arms lined up with
the center of masses m; and m,, and the bodies M; and M, moving at

constant angular velocity w about the center of mass of the system.

Substituting the solution (5. 1) into the equations of motion (3. 6), yields
the condition (see 3, 6b) that the length of cable u = u* which produces the

desired motion (5. 1) is

a(1+ﬂ) ~ a4y = 4y
wk o= o.M (5.2)
1+ T2®
b) The dynamical equations for motions relative to the desired motion:

In order to study the asymptotic stability of the desired motion (4), it is
necessary to obtain the dynamical equations for motions relative to the

desired motion, To do this, we let

Xy = 24+ a (5.3a)
Xy = Iy (5. 3b)
X3 = Z3 (5.3c)
Xy = 24 (5.3d)

X5 = Zg (5. 3e)
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Xg = Zg (5. 31)
X = zZg+ ot (5. 3g)
Xg = Zgt+ W | (5.3h)
u = u*¥+ v (5. 31)

Now substituting (5. 3) into (3. 6), we find

Zq = I (5.4a)
° k
- 2 _ K
Zg = (24 + T)(zg + W)* - (W ) L h(L)cos © (5. 4b)
z, = z, (5. 4c)
24 = - ——=— a LRh(L)sin(z + ©) - F 5.4d
4 - Ji(u*+V) ay ( )Sln( 3 ) ( . 4d)
Zs = 1z (5.4€)
7o = - —= — 4 Lh(L)sin(z + ©) - F 5.4
6 - J2(u*+V) 2 ( ( 5 ) ( e f)
Zq = Zg (5.4g)
2 = F (5. 4h)
where
m 1
L =[((zy+2a)(+—1)-a,cos z; -a, cos z;)% + (a; sinzg + a, sinz;)%]°-v-u*
m, ,
(5. 5)

L h(L)[a, sin (z3+ ©)+ a, sin(zs+©)] -2m, (z,+a)(z;+ ©)z, (1+I_mn_1)

%k
p oWy 9

m
1
m, (z,+a)% 1+ =

(5.6)




(5. 31)
(5. 3g) _ tan—l [ ii sin z4 + a, sin zg . (5.7)
z,+a)(l+ ~1)-a, cosz, -a, cos z
(5. 3h) (zy+a)( i, 1 3 "8 5
(5. 31) We find immediately that the trivial equilibrium solution
7y = Zog=Zg= Zy =Zg = Zg = Zy = 7g = 0 of (5.7) is the desired equilibrium
solution whose asymptotic stability we wish to insure. However, we also
(5.4a) find that the following are equilibrium solutions of (5. 7):
(5. 4b) zy = 2z, =0
(5.4c) zg = 2nm - , n= ...,-2,=1,1,2,...
(5.44d) zg, = 0
(5.4e) Zg = 2nT , n=...,~2,-1,,2,..,.
(5~4f)7 Zg = 7; = zg = 0 (5.8)
(5.4g)
. These equilibrium solutions are the result of cable "wrap around' and
5.4
( ) are to be avoided.
(c) Development of control via the second method of Lyapunov: Again we
will choose as the Lyapunov function a quantity which is proportional to the
¥
total energy of the system for u = u*, The total energy is
(5.5)
A V(rpi‘pl‘z,i'g,q)i,cf:i, ¢2,¢1'>2,q>,q3) =T+ Po - constant (5.9
L)
h
L L 2 L] L[] o ° L
(5. 6) 2T = myr} + myr} + my(r;0)* + my(ry9)? + Iy (¢ + ¢y)°

+ Ty (¢ + ¢y)? (5. 10)
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and

_ k. 2
2P = = L h(L ) (5.11)

(¢}

and where the parameter L0 is

1
L0 = [(ry+Ty -2, COS $y ~3p COS q>2)2 + (a;singy + 2y sin¢,)?]% -u*.

(5.12)

The constant is chosen in such a way that the energy is zero for the desired
equilibrium solution (5. 1).

The existence of several equilibria of the perturbed equations is due to

the non-physical assumption made in Section 3 that the cable does not wrap
up around the bodies. We also notice that the right member of the equations
is independent of z; = . Therefore, since we are not concerned about the
values of ¢, we can thus ignore the state z; and only consider the states

Zys Zg, 235 Z4s Z5s Z6» and Zg.

Again we find that the total energy is not positive definite. To obtain a

positive definite function, we proceed in the same way as in Section 4 and

eliminate the variables ¢ and q> Integrating (3. 6h), we get

R . o e " . m
mrdp+ myrde+ Iy @+ ee) + T2 (F 92) = [m,a’(+ ;E:“ 3, +3,19,

(5.13)

which also can be obtained directly from the conservation of angular

momentum. Using (5. 10), we can now eliminate ¢ from the equations
of motion. We further notice that q> does not appear in the right member

of the equations of motion and that the choice of coordinate systems gives




a linear relation between r; and r,. We can thus express the equations

- 11) of motion in terms of the six variables ry,T;,¢,$,¢, and dy. (Since
we never use these equations explicitly, we will not write them down.) We
will now show that the function (5.9) is positive definite in these variables

1 and that we can find a control law for the system such that the motion is

2

|© -u*. asymptotically stable. Notice that in this case we cannot show global

.12) ~tability as the total energy vanishes for all the solutions (5. 8).

d d. The non-negative definiteness of V: To show that V is positive

e
definite in r,T,¢4,¢4,¢, and ¢,, we will simply eliminate ¢ from (5.9)
and (5. 13) and make a series expansion of the function obtained.

to

The kinetic energy (5. 10) can be written as

ap

ons : : e .

he 2T = Mri + M(r19)? + Jy(¢+¢4)% + Iy (+ ¢3) (5. 10a)

2S

M 1+ = ) (5. 14)
g m — o

1 1( 1,

d ¥ 3
Rewriting equation (5.13), we get

Mrf Iy (§+ 1) + T (§+dy) = Jo (5. 132)

Jo]w,

5.13)

J =Ma"-+J1+J2
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Elimination of ¢ between (5.10a) and (5.13a) gives

b, Jlw?- (J1¢1+J2¢2)2
Mri* 5y 2Maz, + Mz}

2T + 392+ T,

A series expansion around the equilibrium solution gives

Z Zy 2 Zy 2
2T = J{w2—2w273—§- + wlyg(@ys-l) (‘;) Yy (yg) *

+ y(=yq) z5- 2v1ve2i% * yy=y ) zd + 0 (z1)}

where N

Ja

f2_ 73
J)

_d1 vy, =

Y1 = 21
J)

Similarly a series expansion of the potential energy around the equilibrium

solution (5.1) gives
_k 2 2,2
2P, =g {(L'-uwH? + 2B (¢’ - u¥)zy+ Pz

a aa a
+ (L - uk 1+ 21 yg2 122 ZZ gl
(L )M a4 ( LI 2 —r %% a2(1+22 yzi] +

3
+ 0 (zi )t

where

aﬁ "a.i "3-2 °

S e



Now collecting the terms we get

k k 1
2T + 2P = Jo? + — (0"~ w2+ 2, (B2 (7 + J0? y3(dy5-1))

a
z a a a
2 2 1 * hat 8 2 172

todys (F) Ty (UM ay (T ) B2z g
)

2
+oag(rgryzg ]l F Iy A=) 2] 2yyvezdzg + vo(l-v,y) 7]

+0(zd),

where the terms which are linear in z, cancel due to (5.2), It is now obvious
that T + P and thus also V(Zys Zg, 23, 24, Zg, Zg) is positive definite. We

further notice that V(z 19ZgyZ3,y 2y, Zg, Zg) 18 periodic in z4 and 7. We can
thus conclude that the function V vanishes for all the equilibrium solutions (5.8)

and that it is positive definite around these equilibria,

(d) The sign of the total derivative of V, Now, to obtain the total derivative
of V



§_¥_2= m,T, ’ vy = T2® T,
%;{—1=J1(&>+ﬁi>1) J - _%-1%{‘1
mel o R
3V _ o ' b=¢

ov 2 2 e o o e o
5’;' mry¢ + MT2é b T (@+ )+ T2 @)
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.. YETY iT1 2727 2
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Now combining terms we find
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°© 0Po 8P
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m
av_ - 1 9Po 8P : 89P0 9P
—_— = 1+ [ — — — o —
dt 1‘1( ms )(Bri 81‘1)+¢1 (8¢1 84)1) +
oPo aP
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+ agzgsin (z5+ ©)
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To analyze the sign of V we will now separately consider the following cases.

I, L =0,L=L +V50,thend—v=0
4] o dt
1L, L =0, L>0
o
then V>0
dv L
and dat kZ uk+V
111, L >0, L=0
o
then V<o
dv Lo
and Frae kZ o
V. L0 >0, L>0
V (L _=-u*
then v _ kZ ( 2 )
dat wk(wk+ V)
. . dv . , o
It is now easily seen that 3t will be negative definite in the cases II,
III and I'V if the control signal V is chosen as
v =-1(Z)

where the function f(z) has the properties (i), (ii) and (iii) as stated on page 19.
It now remains to analyze the behaviour of the system in the region I

In this regionl the equations of motion can be integrated. As they represent the

motion of two free bodies it is obvious that there can be closed trajectories in

this region, e.g.

ry = const.

6 = 0




3‘9 ™

where

m 4 '
ri[(lJrE) -ay- 32:,2 flajwi+ a,0,)

In this case, the desired motion thus is not globally asymptotically
stable, However, in a small neighborhood of the desired solution we have
casé IV and the total derivation of V is thus negative definite. Again we
point out that this phenomena is partly due to the unphysical assumption that
the rope does not wind upon the bodies. If this is taken into account, it will
rule out at least the particular class of solutions given above,

(e) The properties of a particular control law: So far we have only

obtained a class of control laws which leads to an asymptotically stable
system. We will now briefly consider a particular law, namely the linear
saturated control law,

In table 1 we have shown a solution obtained for a = 10. We find that
the statevariables ¢4 , ¢, b, and ¢, associated with the angular motions of
the rigid bodies are very slightly coupled and very slightly damped. The
motion of these states is very close to that of two coupled slightly damped
oscillators. The period of the oscillation is approximatively 3 seconds and
the damping is such that after 10 complete oscillations the amptitude of the
motion 0.0326 compared to the initial amptitude 0. 0350, The control law
proposed is thus not very effective in damping out small angular motions of
the system, This is easily seen from the linearized version of the equations

of motions,
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Linearization around the desired equilibrium gives

O.l. 1 ¢1
b oA— A =0 , =],
Cb 1+L 4) ¢ @32

u*
6,85 0.807
A

0.606 8,058

The matrix A has the eigenvalues

y, = 6.53 and y, = 8.38

The corresponding periods are

T, = 2,17 sec T, = 2,46 sec.

of small motions,

From the above equation we immediately find that the control law introduces

terms of the third order in the statevariables, which explains the low damping
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APPENDIX I) Digital Computer Simulations

A 7090 Fortran program (see following 3 pages) has been written to
integrate the equations of motion. To the 8 state variables considered in
our problem, time has been added as a ninth state and the system of
differential equations given by (5.4 ) is solved through a 4th. order classical
Runge-Kutta method (e.g., [5] p. 120) . The computation of a thousand
consecutive states takes approximately one hundredth of a second.

The printout of this program is one line giving ordinately the nine state
variables and, in the next line, giving the corresponding Lyapunov function,

its time derivative and the control signal v.
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THE FOLLOWING PROGRAM 1S A 7090 FORTRAN PROGRAM TO SOLVEs BY A FOURTH ORDER
RUNGE-~KUTTA ROUTINEs A SYSTEM OF 9 FIRST ORDER DIFFERENTIAL EQUATIONSs AS
SPECIFIED IN THE ATTACHED REPORT.

WE NOW PROCEED WITH THE DEFINITION OF FORTRAN NAMES RELATED TO THE REPORT

1) PROBLEM CONSTANTS

FORTRAN NAME REPORT NAME DEFINITION OR UNIT

Al LOWER CASE As INDEX 1 RADIUS 1 IN METERS.

A2 LOWER CASE Ay INDEX 2 RADIUS 2 IN METERS

AM1 LOWER CASE Ms INDEX 1 MASS 1 IN KGe

AM2 LOWER CASE My INDEX 2 MASS 2 IN KGe.

XA LOWER CASE ALPHA CONTROL GAIN

XK LOWER CASE K NEWTONS

u U ASTERISK INITIAL LENGTH OF CABLE, IN METERS
YSF1 X ASTERISKs INDEX 1 EQUILIBRIUM RADIUS R1

YSF8 X ASTERISK, INDEX 8 EQUILIBRIUM ANGULAR SPEED

I1} AUXILIARY CONSTANTS

AT RUNGE-KUTTA AUXILIARY CONSTANTS (SEE HENRICIsS BOOK)

P(1) IDEM

H INTEGRATION STEP SIZE

-] TIME COMPUTATION ENDS SECONDS

K COUNTING FOR PRINTING PURPOSES

NU COUNTING TO COMPLETE THE FOUR STEPS OF RUNGE=-KUTTA ROUTINE

I11) PROBLEM VARIABLES
NOTE= THE DIMENSION OF THE STATE IS 9 TIME IS THE NINTH STATE VARIABLE

ETA INITIAL STATE (ETAl1) IN METERSs ETA(2) IN M/SECs ETA{3) IN RADIANSSs
ETA(4) IN RD/SECs ETA(S5) IN RADIANSs ETAL6) IN RD/SECe ETA(7) IN RO«
ETA(B8) IN RD/SECs, ETA(9) IN SEC )

Ys SYSTEM STATE {SAME D'MENSIONS AS ETA)

CAPV LYAPUNOV FUNCTION (CAPITAL V)

TETA ANGLE TETA

v CONTROL LENGTH (LOWER CASE V)

vDOT TIME DERIVATIVE OF THE LYAPUNOV FUNCTION

XF ANGULAR ACCELERATION (CAPITAL F)

XLHL ELONGATION (CAPITAL L TIMES THE HEAVYSIDE FUNCTION OF L)

Xu CABLEsS LENGTH (LOWER CASE MU}

ALL OTHER VARIABLES ARE AUXILIARY VARIABLES FOR THE RUNGE~KUTTA ROUTINE

IN THIS PROGRAMs TWO SUBROUTINES ARE CONSTRUCTEDs ONE (DICK) TO GET THE

FUNCTION F APPEARING IN THE RIGHT HAND SIDE OF THE BASIC SYSTEM
YSDOT=F(YS) »

AND ANOTHER (GETLHL) TO GET THE PRODUCT OF THE ELONGATION L BY THE HEAVYSIDE
FUNCTION OF L,

THE COMPUTATION TIME REQUIRED FOR THIS PROGRAM 1S APPROXIMATELY 0.01 OF AN
HOUR FOR EACH 1000 CALCULATIONS OF THE STATE. IN OTHER WORDSs THE COMPUTATION
TIME T IN HUNDREDS OF AN HOUR 1S GIVEN BY

T=(B ~ ETA(9))/(1000%#H)

DIMENSION ETA(9)9YS(9)oFI(9{vA(Q)'YARG(9)-RK(9)vP(h)
READ INPUT TAPE 5,1010(ETA(I)s0=1s9)




READ INPUT TAPE 59102+ (A(1)slx1sk)s(P([}1slnlré)
READ INPUT TAPE 55103+HsBsAlsA2yAMLsAM2s XK 9 Y SF1]
READ INPUT TAPE 55 101sXA

101 FORMAT (S5F10.7)

102 FORMAT (BFS5.1)

103 FORMAT (F90693F5.294E12.3)

YSEBa(AM1# (1. 0+AM1/AM2) #ETA(1 )R8 28ETA(B) 40,4 FAMLBAL1 #8208 (ETALB)+ETA
103) 1400 4%AM2#A2%# 228 (ETA(B)+ETA(5)))/(AMI#(1.0+4AM1/AM2)#YSF1882+044
1HAMI#AT #5240 4BAM2 HA2HR2 )

U={YSF1#(1¢0+AM1/AM2)~A1-A2}/ 11, 0+AMI#YSF1#YSFB2#2/XK)

CONST=0.58U/XK# (AM1#YSF1#YSFBAR2 ) #82+AM] #YSFBAR2 (YSF1082(100+AM1/
LAM2)+024# (Al ##2+AM2 /AM1 #A2#%2) 1 #0465

K=0

DO 10 1=1,9
10 YSUII=ETA(T)

11 DO 20 1=1,9

YARG(1)=YS(1)

20 FI{1)=0,0

NU=1

G0 TO 30

21 NU=NU+1

DO 22 1=1,9

22 YARG(I)=YARG (1)+0,5%P (NU)#H#RK (1}

30 TETA=ATANF((AL¥SINF{YARG(3})+A2%#SINF(YARG(5)})}/{YARG(1)#(1,04AM1/A
IM2)-A1#COSF{YARG(3))~A2#COSF{YARG(5))})

XUsU - XA#%({(1.0+AM1/AM2}%#YARG(2)*COSF(TETA)+A1%YARG(4)4SINF{YARG(3
11+TETA)+A2#YARG(6) #SINF {YARG[5)+TETA) }

XU=MIN1F (MAX1F{XUs0,00001)5130.0)}

CALL GETLHL (YARG»ALsA2sAM1sAM2yXLHL s XU)

XF=(XK/XURXLHL® (A1#SINF (YARG(3)+TETA)+A2#SINF{YARG(S)+TETA) ) =2.0%A
1M1%YARG( 1) #YARG(2) #YARG(8)# (1.0+AM1/AM2) )/ {AM1#YARG(1)#82%({1,0+AM]1
1/7AM2))

IF (K191591+95
91 GO TO (93495595995} sNU
93 V=XU ~ U

CALL GETLHL (YARG»sAl»A2sAM1oAM29XLOHLOSU
VDOT=XK/XA#VE (XLHL /XU = XLOHLO/U} -

CAPV=0o5% (AM1#(1o0+AM1/AM2)#(YS(2)#%24(YSI1)2YS(B))##2)+0.6FAM12A]
1HE2HE{YS(B8)+YS{4) ) R8240, 4HAM2RA2##24(YS(B)+YS(6)1a%H2)+0.58(IXK/URXLO
1HLO®##2) =CONST
WRITE OUTPUT TAPE 63105sCAPV,VDOToV
105 FORMAT (1X3E18.7)

IF {XLHL) 2005200920}

200 WRITE OUTPUT TAPE 6,106

106 FORMAT (23H NOW THE CABLE IS LOOSE )
201 CONTINUE

ANS o
RD ¢

DE

95
40

50
60

CALL DICK{YARGIRKsTETAsXFsAloA29XKoXUsAMLoAMZ s XLHL)
D0 40 =149

FI{IIaFI(I)+1.0/6.0%A(NU)#RK(T)

IF(NU-4)21+50+50

DO 60 I=1,9

YSUI)=YS{I)+H=FI(])

KeK+1
IF{K=10) 80+905+90
90 WRITE OUTPUT TAPE 651049(YS(I)s1=21,9)
104 FORMAT (1X9F12.7)
K=0
80 IF(YS(9)-B)11511+70
70 CALL EXIT
END
LABEL

ION
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CDICK
SUBROUTINE DlCK(YARGoRK»TETAuXFoAloAZnXK'XU-AMl-AM29XLHL)

DIMENSION YARG{9)sRKI(9)
RK(1)=YARG(2)
RK(Z)!YARG(I)'YARG(&)"Z-XK/(AMI'XU)*XLHL'COSF(TETA)
RK{31=YARG(4)
RK(Ql’-XK/XU*l-O/(O.b*AMl*Al)'XLHL*SINF(YARG(3)+TETA'-XF
RK{3)aYARG(6)
RK(6)a=XK/XU#1e0/(0s47AM2#A2) #XLHL#SINF (YARG(5)+TETA)=-XF
RK{T)=YARG(8)
RK(8)=XF
RK(9)=1.0
RETURN
END

# LABEL

CGETLHL
SUBROUT INE GETLHL [YARGoAL A2 AML s AM2 9 XLHL XU}

DIMENSTION YARG(9)
DIST=SQRTF(({YARGI 1)*(1.0+AM1/AMZ)-Al'COSF(YARG(3))—A2'COSF(YARG(5

1)))‘*2+(A1*51NF(YARG(3))+A2*SlNFlYARG(5)il**Z)
IF{DIST=-XU) 1192
1 XLHL=0,0
GO 1O 10
2 XLHL=DIST~-XU
10 RETURN
END

-
o
-
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APPENDIX II) Analog Computer Simulations,

A couple of different analog computer simulations were run to back up
some of the ideas related to this problem. This appendix will just describe,
programwise, these simulations,

The computer used was an Electronic Associated 131-R PACE and the
notations or conventions used below are the standard ones for E. A. 's
machines.

II. A) Simulation of the simplified case.

Referring to equations 4.1l.a and 4.11.b and to the numerical values
indicated in section 4(d) the following system of scaled equations - where the

brackets indicate analog computer voltages, as usual - has been programmed:

d(2xi)
i T 2K mmmmmm e e L 1.1
d)  8x2.025 x 10° ]
dt 10¢ (2x1)(2%,)(2%4)
I /102
10
1,284 x 104 (elongation) .
- o2 Tength/102 H (elongation) IL 1.2
(length) = u* - a(x,) ~ = === == = = = 0 = o oo~ — o~ IL 1.3
(elongation) = (2x4) - (length) =~ = = = = = = = = = = = = _ IL. 1.4

A time scaling of 2, which makes the analog computer solution twice slower

than the real time, transforms the equations to:

d(2xy)
dr B

m ™ mm em wm R CE e e G e Em e e Gm omm e o mm e M




d(X2 ) 3 1 +

dr (2%1)(2%1) (2%4)

102
10 /

- 0. 6420 x 10? %ﬁ% H (elongation)|- - - IL 2. 2
(S)

The diagram for these equations is shown on next page. Notice that amplifier
no, 24 performs exactly the division specified in the rightmost term of

equation 11.2.2.. The output of amplifier 24 is, in volts,

(elongation) | | 100 (elongation)
(length) /10% |~ (length)

Therefore 1 volt in the output of 24 corresponds to AQL =1%

II, B) Simulation of the complete problem

Only the final set of time scaled-amplitude scaled equations for the
complete case will be presented here. The nune rical values used for the
parameters are those described next page (see APACHE), Before introducing
these scaled eciuations one must mention that the analog computer diagram
was checked against the equations with the help of an APACHE code program
(Analod Programming And CHEcking, see IBM Research Note N J44),

The very non-linear nature of this problem could make it serve almost as a

counter-example of the utility of APACHE. If however, the function




(RSP0

~¢_\ no!
K:.::.-NJ -

e e e
'




generators are all checked independently of the patching, APACHE can and

has been of some help for us.
A copy of our APACHE program can be found in next pages. The

following few comments will halp its understanding. Firstly, notice that the

initial conditions given fo the problem are not only different from the example

we are giving here but also they are not consistent, For instance, the initial

elongation is not equal to the initial distance between attaching points minus
the initial length of the cable. These two facts are not program mistakes:
a) the first one is justified by the fact that the initial conditions outlined for

Apache are 'static check" conditions, i.e., just intended for a check of the

s

patching and potentiometer settings. If these are correct, then any initial
values can be given to the state variables for the actual runs; b) the second

one, i.e., the unconsistency, is justified by the fact that Apache will compute

e

the initial values of all variables standing at the left hand side of the equations’
statements, given those of the right hand side and this computed initial values
are used by Apache, Further, a diagnostic is given which tells the programmer
this substitution. The procedure is very practical to save the programmer the
work of computing by hand the initial condition of a variable which is an
algebraic function of other ones with known initial values.

The Apache equations rather than those described by system (3.6) are
used in the analog simulation. The difference is in a conversion from radians

to degrees since the resolvers in the analog computer work for angles in

degrees (and scaled 0.5 volts/degree).




rdr 38 TTIM IYIH YYIddY HIIHM SITEYIYVA AUVITIXNY 3IHL 9¢

rdr INIWWO)D G¢e
rdr

rdr 1OVX3¢L.9°2/6+30°T%,+30°1=080g Y€

rdr 0T+30°T¢0=T111g €€

rdr %+30°T¢0=NV3Ir [4

rdr #+30660=D1%3 1€

rdr Z+30G6%0=HIW 0€

rdr 1O¥X3%9/01¢0=3NVYH 62

rdr . LOovX3¢9/001¢0=M4Dvr 82

rdr 00T1¢16=D L2

rdr T¢02TL°0=(LILSXINIS 92

rdr LOV¥X3¢6.°€/001%0=4 (¥4

rdr T9L906°0=(LIIEXIN]IS 2

rdr 1¢6666°0=(¥131150> €2

rdr T¢T=THT 4

rdr 00T°06=0NW" 12

rdr 1°0¢0=09N0T3 02

rdr 00T¢0S=8X 61

rdr 001¢0=4X et

rdr 00Z2¢0=9X L .
rdr 00T*GH=6X 91 .
rdr . 00Z¢0=%X ST m
rdr 00I¢0E=€X 41

—v&j OmaO"NX [ 4

rdr 00T*0%=1X 21

rdr S3718VIdvA 11

rdr

rdr H+30°T=2W 01

rar %+36°1=TW &
rdr B+3H@ZeT=> 8

rdr CV2ZV2ZWeH° 0= L

rdr Iv2TIVeTWewO=Ir 9

rdr L=2Y 9

rdar S=1Y &

rdr SYIL3WVAVL €

rdr .

rdr - W3780dd AY0LVY09YT 3IDVdS F4

rdr ) ANIWWOD 1

rdr
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rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rdr
rar
rdr
rdr
rdr
r4r
fdr
rde
rdr
rdar
rdr
rdr

rdr
rdr
rdr
rdr
rdr
rdr
rdr

aN3

gog/n1g=4

NY3Irx (ZW/TW+N) #TW=808

DIMI%(CHW/TW + T)=#TWxd - MUNVHxA=TTIG
. IX%1X=NvV3r

8X#HIW=DIY3

ZX#TX=HIW

ADVI#ONOTI=ANVH

(1ILIGXINIS*ZY + (LILeXINIS#TV=DVr
AW - D> =11

NW/IHI=ONO3

4=(8X) T¥3Q

) 8X=(/.X)Td3q

4 = (L3L1GXINISHONOTII»CV#Er/A%x82°9/09¢€~ =(9X1T¥3d
9X=(gX)1y3d

4 = (LILEXINISxONOTIIxTVxTIr/%82°9/09¢ - =(%X]1T¥3Q
yX=(eX)T¥3a

{VI3L)SOO%ONOII%THW/ S ~ 8X%B8X#TXx09€/09€/82°9%82°9=(ZX)Ty3Q
ZX=(1X) 1434

SNO11vNo3
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Here follows the complete set of equations, as prepared for analog computa-

tion, with a time scale factor p=l0.

d_(xi)—0052 ————— II. B.1
dr T Ve (Xz) o .

d(2x,) 0. 608 [(Xi) . (Xa)(XB)] 171 [LlO“‘elong)leO cos G)J

dr 100 100 . 100
II.B.2
d(O. 5X3) 3
s = 0.1(0.5%y) - - - - - e e . B.

d(0.5x4) (10 elong)(100 sin X TET)
—=-12.2 - 0. 0134 (3.75F)

dr 100
Il. B. 4
d(0.5x4)
d'T 001(0. 5X6) ________________ II. Bq 5

d(0. 5xg) (10% elong) (100 sin X5 TET)
=-13.2 -~ 0.0134 (3.75F)

dr 100
IL B. 6
. 1 . B. 7
dr O l(Xg) === === == e e e e oo . B,
d(xg)
= 0,0267(3,75F) ~ = = = = = = = = = = = = = II. B, 8




b4,

(6 Jack) - 0.3(100 sin X3 TET) + 0.42 (100 sin X5 TET)

II. B. 9
3
(0.6x107 Hank) = | 1020080 Ja"k)} --------- I B. 10
: - (x)(2xy)
(2x10%2 Mih) = BT et IL. B. 11
: [_ =9 . Xg
(2x10 ¢ Eriey - | X0 loghh) x { )] —————— I B. 12
) B o0
(10 “ Jean) 100 IL. B. 13

@10 ® Bill) = 0.0213(0. 6x10* Hank) - 3.75 (2x10 * Eric)

L.
(2.67x10"7 Bob) = (102 Jean) — = = == = == = = = - II.
| @o~8 Bill ] ___________
(3.75F) = (2.67x10 " Bob)/100] .
LH
(10?2 elong) = mu/L ———————————————— IL
100

(A) = 2.5(x4) - 0,05(100 cos x3) - 0,07 (100 cos x;) - IL,

(B) = 0.05(100 sin x3) + 0,07(100 sin X5) - = - - - - - II,

(Mu) = u¥F + (V) = = = = = = = = = m = m 11,

14

15

16

17

18

19

20
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(2x4)(100 cos ©) (0.5x4)(100 sin X3TET)
(v) = - al]1.25 ™ + 10 m =

II, B, 21

0.6x4)(100 sin X5 TET)
+ 14
100

The diagram corresponding to these equations follows next pages. Some
comments about the equations and the diagram have to be made here to show
the nature of this problem and its non fitness for analog computation,

By observing the first eight differential equations, one sees that the
coefficients range from 10 -2 to 26. This immediately places the problem
out of the normal range of analog computers, where the extreme coefficients
should have a maximum ratio of 100 to 1, All the big coefficients, however,
are multiplying terms containing the relative elongation in equations IL B. 4
and IL B.6., This relative elongation is underscaled (by « factor of 5 - ag-
éuming its maximum to be 2%). But the nature of the elongation is such that
it is produced from the difference of two voltages: (C) (the distance between
the attaching points of the cable) and the length of the cable, This difference
is of the order of a few hundredths or tenths of milli-volts and the analog
computer obviously superposes an equal noise to this voltage. It would be
impossible to amplify this by a thousand ti mes. What is done, however, is to
write the equation . .

c~4 c

elongation = ——— = -1
ng u*+ v uwk+ v

and write this equation analog computer-wise, therefore decreasing consider-
ably the noise - but not eliminating it entirely, This noise shakes continuously
servo-multiplier 3 and introduces imprecisions in the solution., Notice that

in the equilibrium solution this fact is of no concern, since we mainly (and

hopefully "only') use the differential equations II, B. 1, II B.2.
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which are well fitted for analog computation.

Another source of imprecision is that the control law v may not be
zero when it should, because of offset of function generators giving sinus and
cosinus functions and also of the electronic multipliers. This fact is more
accentuated the greater is a, of course, This will not only introduce errors
in the correction of the length of the cable, but it can also occasion short
intervals of time during which the Lyapunov function and its time derivative

have the same sign.

The malignous effects of both the above mentioned effects did not

hesitate in showing up when we tried a few runs in this simulation. . .




