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PIECE-WISE DETERMINISTIC SIGNALS

K. J. Astxom

Department of Automatic Control
Lund Institute of Technology
$-220 07 Lund 7, Sweden

There are cases where it is unnatural to model
disturbances as time series. Command signals and
large upsets in control systems are typical
examples. The notion of piece-wise deterministic
signals is introduced to capture the essential
features of such signals. A formal treatment of
the signals and their prediction theory is given.

INTRODUCTION

The problem of predicting the future value of a signal based on past
values occur in many different disciplines. To develop a suitable
theory it is necessary to have mathematical models of the signal. A
suitable model should allow for some degree of regularity. To be
realistic the model should, however, not allow the signal to be pre-
dicted exactly. This means, for example, that analytic functions are
not suitable because such functions can be predicted exactly if their
values on an arbitrarily small interval are known. Stochastic pro=-
cesses and time series have been used very successfully as signal
models. There are, however, many situations where it is unnatural to
model signals as random processes. Command signals (set points) in
industrial control systems are typical examples. The set point is
normally kept constant over long periods with occasional changes.
There is no particular pattern to the changes. They may appear regu-
larly or irregularly. The amplitudes of the changes may vary substan-
tially. Disturbances in industrial processes is another type of
signal. Over periods of time the disturbances are small or even neg-
ligible. There may, however, be periods when large upsets occur. The
amplitude of the disturbance during an upset may then be substan-
tially larger than during the normal operation. The character of the
signal may also be different.

In classical control theory disturbances are often described as
steps, ramps, and sinusoids, or more generally as signals, which are
the solutions of initial value problems for linear constant coeffi-
cient differential equations. In this paper a new class of signals
is introduced. These signals share properties both with deterministic
signals generated by difference equations and with stochastic pro-
cesses of the ARMA type. The ARMA processes can be thought of as gen-
erated from dynamical systems with white noise inputs. The piece-
-wise deterministic signals can be regarded in a similar way. The
input signal which drives the system is, however, a deterministic
signal instead of a random process. It is zero over long intervals
and different from zero only at isolated points. The points where
the signal is nonzero need not to be known apriori. Because of the
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similarity to ARMA processes, the formalism for predicting such pro-
cesses can be applied to piece-wise deterministic signals with only
small modifications.

Innovations representations play a central role in the theory of
stochastic processes [1]. In such representations a signal is repre~
sented as the output of a dynamical system whose input is a sequence
of independent (or uncorrelated) identically distributed random
variables. Similarly in deterministic control theory it has been
common to model disturbances as signals which are solutions to ordi-
nary difference or differential equations. Typical examples are
stepfunctions and sinusoids. The piece-wise deterministic signals
share properties both with stochastic processes and with determinis-
tic signals. They are described as solutions to ordinary difference
equations over certain time intervals but they change in an unpre-
dictable way at isolated points. The piece-wise deterministic sig-
nals are therefore also a special type of splines [2]. The plece-
-wise deterministic signals are also related to the shot-noise model
of random processes [3]. In the shot-noise model the random process
is generated by sending a random impulse train through a dynamical
system. Similar processes are also discussed in [4].

The paper is organized as follows. Piece-wise deterministic signals
with polynomial generators are first introduced. The signals are
defined and the prediction theory is developed. An extension to sig-
nals with rational generators is then given. State space description
are introduced and signals which are a sum of an ARMA process and
piece-wise deterministic signals are finally discussed.

PIECE~WISE DETERMINISTIC SIGNALS WITH POLYNOMIAL GENERATORS

Degindtions

A formal definition will now be given. Only discrete time signals
are considered. Therefore let time be the set of integers. Further-
more introduce a subset

T, ={..., t t

i or Bqv el

_l’
of the integers such that

t.) =42 > 1.
J

m%n (tj+l_

The elements of the set T; are obviously isolated. The spacing bet-
ween the points is at least . Furthermore let T, be the complement
of T, with respect to all integers.

DEFINITION 1. Let A(d) be a monic polynomial of degree n < & in the
backward shift operator d. A signal y is called piece-wise deteamin-
{4%&ic of degree n and index % with polynomial generator if

A(d) y(t) =0 if t € T (2.1)
and
A(d) y(t) # 0 if t € T;. O (2.2)

The polynomial A(d) is called the generator of the signal. The set
Ty is called the set of regular points and T; 1is called the
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set of Laxregular points. The properties of the set of irregular
points are not important as long as it is assumed that the distance
between two irregular points is larger than 2. When constructing
predictors it will be assumed that the .set T; is unknown. The pre-
dictors obtained will then be independent . of Ti.

In the early literature on stochastic processes the word completely
deteaministic was used to describe a stochastic process such that
A(d) y =0 vV t.

See [5]. This motivates the chosen terminology.

In analogy with the terminology for random processes the signal v
defined by

v(t) = A(d) y(t) (2.3)
is called the innovation of the signal y. The signal y can thus be
thought of as being generated by feeding the innovation seqguence
through a filter with the transfer function 1/A(d). Notice that the

innovations associated with a piece-wise deterministic signal are
different from zero only at the irregular points.

The generator of a piece-wise deterministic signal is unique. To
see this, let the set of irregular points be given and assume that
a signal y has two generators Ay and Ap. Let vy and vy denote the
corresponding innovations. Equation (2.3) gives

Vi = A1y = (A1/By) vy,

since vj and vy are zero except at T; and Ay and A, monic Aj; equals A,.
Some examples of piece-wise deterministic signals will now be given.

EXAMPLE 1. A piece-wise constant signal has the generator
A =1-4d.

The set of irregular points are all the points where the signal
changes level. o

EXAMPLE 2. A piece-wise linear signal has the generator
A=1-24+d2.

The set of irregular points are all points such that the change of
slope is immediately to the left of the points. See Figure 1. o

F T > T T
0 5 10 15 20 25

Figure 1
A piece-wise linear signal and its set of irregular points.

X
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EXAMPLE 3. A piece-wise sinusoidal signal with period 2m/w has the
generator

A=1-2d cos w+d?2. o

Prediction

Predictors for piece-wise deterministic signals will now be con-
structed. The choice of criteria will first be discussed. Predictors
which are optimal with respect to the chosen criterion are then
given.

Since the signals satisfy the deterministic equation (2.1) at the
regular points it may be expected that the signals can be predicted
exactly at those points. Furthermore there will always be an error
when the signal is predicted at an irregqular point. Since no specific
assumptions are made on the changes at the irregular points, it is
not natural to use criteria like mean square error etc. Instead it
will be attempted to find predictors which brings the prediction
error to zero as quickly as possible after an irregqgular point. The
following result then holds.

THEOREM 1. Consider a piece-wise deterministic signal with polyno-
mial generatdr A. Let F and G be polynomials which are the unique
solutions to

1 =F(d) A(d) + dk @) (2.4)
such that
deg F(d) < k.

Assume that

k< Q. (2.5)
The k-step predictor of y given by
g(t]lt-k) = G(d) y(t-k) (2.6)

brings the prediction error to zero k steps after each irregular
point. The prediction error is
e(t) = y(t) - v(t|t-k) = F(d) v(t),. (2.7)

where v 1s the innovation of the signal y.

Procg. It follows from (2.1), (2.4), and (2.5) that
[1-dkg(a)] y(t) = F(d) A(A) y(t) =0
for

t=ty+k, ty+k+1l, oo, b -1, (2.8)
where {ti} is the set of irregular points. The predictor (2.6) thus
predicts y(t) exactly in the interval (2.8). Since there will always
be a prediction error at the irregular points and their k-1 right
successors, the predictor (2.6) is optimal in the sense that it
brings the prediction error to zero as quickly as possible. The pre-
diction error is

e(t|t-k) = y(t) -9(t|t-k) = [1-d¥c(a)ly(t) = F(d) A(Q) y(t),

where the last equality follows from (2.4). The formula (2.7) then
follows from (2.3). o
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Remark 7. Notice that the predictor (2.6) is a moving average of
the signal. o

Remark 2. Notice that the predictor (2.6) is also optimal in the
sense of least squares. o

Piece-wise deterministic signals with polynomial generators share
many properties with autoregressive processes. The formulas for the
predictor (2.6) and the prediction error (2.7) are identical. See [6].
The main difference is that the innovations for autoregressive pro-
cesses are a sequence of independent (or uncorrelated) random vari-
ables, while the innovations for piece-wise deterministic signals
are zero except at the irregular points. This has as a conseguence
that the prediction error for piece-wise deterministic signals will
be zero over certain intervals while the prediction errors for auto-
regressive processes will be a moving average of white noise.

Simple examples of predictors are given in the following examples.

EXAMPLE 4. A piece-wise constant signal has the generator A = 1-4d.
Simple calculations give

F(d) =1 +d+ ...+ ak-1
G(d) = 1.

The predictor is thus
gtlt-k) = y(t-k). o

I

EXAMPLE 5. A piece-wise linear signal has the generator A = 1- a+ a2,
Simple calculations give

F(d) =1 +d+ ... + kak™1
G(d) = k + 1 - kd.
The predictor is thus
Fltlt-k) = y(t-k) + kly(t-k) - y(t-k-1)]. =

The problem of predicting a piece-wise deterministic signal can be
formulated as the problem of finding a causal operator R such that

Ry (t) = 0.

It follows from Definition 1 that R = A makes Ry = 0 except at the
irregular points. Since
R

Ry (t) = = t

y (£) 2 v (t)
and v(ti)¢ 0, it follows that the signal y can not be predicted
exactly by a rational predictor of order less than £. If the order
of the operator is larger thdn £ it may be possible to predict the
signal. This is illustrated by the following example.

EXAMPLE 6. Consider a square wave with period 2p. The signal can be
predicted using the predictor
ye+l|t) = y(v). (2.9)

This predictor gives the correct prediction except at those points
where the square wave changes level. The square wave can thus be
regarded as a plece-wise deterministic signal with generator Q=1-d.
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The square wave can, however, also be predicted exactly by the pre-
dictor

F(e+1|t) = y(t) - y(t-p+l) + y(t-p) (2.10)

which requires that p+ 1 past values of the signal are stored. The
square wave can thus be regarded in two different ways. If it is con~
sidered as a piece-wise constant signal it can be predicted by the
simple predictor (2.9) which does not require any storage of past
data. The predictor (2.9) gives an error each time the signal changes.
An exact predictor (2.10) can be obtained by considering the square
wave as a periodic signal. The exact predictor (2.10) is, however,
complex in the sense that many past values must be stored if the
period p is large. Whether it is worthwhile to use the fact that the
square wave 1is periodic and not just piece-wise constant will thus
depend on the circumstances. Notice also that the simple predictor is
more robust. The exact predictor requires that the signal is an exact
square wave with known period. o

PIECE-WISE DETERMINISTIC SIGNALS WITH RATIONAL GENERATORS

The class of signals introduced in the preceding section will now be
generalized. Rational functions will be used as generators instead
of polynomials. The signal class will first be defined and the pre-
diction theory is then given.

Definditions

The sets of regular and irregular points are defined as before.
Introduce

DEFINITION 2. Let A(d) and C(d) be polynomials of degrees n < ¢ in
the backward shift operator d. A signal y is called piece-wise
deterministic with rational generator if

A(d)

Eﬁ-)— y(t) = O, if t € Tr, (3.1)
and
%E—g} y(t) # 0, if ter.a (3.2)

The rational function A(d)/C(d) is called the generator of the
signal. As before the signal v defined by
_A(d)
v(t) = Frgy v(©) (3.3)
is called the {nnovation of the signal. The signal y can also be
represented as

vty = Sl v,

where v is the innovation. It follows from the definition that the
innovation is zero at all regular points and different from zero
only at the irregular points. Notice that the_ irregular points are
isolated and that they have a minimum distance £. Piece-wise deter-
ministic signals with rational generators share many propertieg with
mixed autoregressive moving average stochastic processes. Compare
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the references [6], [71, and [8].

Preddiction

Some notation is needed to describe the predictor. A polynomial

A(d) is called stabfe if all its zeros are strictly outside the
unit disc. A key problem in the prediction is to calculate the inno-
vations from the measurements. For signals with polynomial genera-
tors this is easy because it follows from (2.3) that the innovation
is simply a moving average of the observations. It also follows from
(2.3) that the value v(tj) of the innovation at time t; can be com-
puted from the value of the signal at time ti{ and n past values. The
problem is more involved for signals with rational generators. It
follows from equation (3.3) that the innovations are obtained as a
solution of a difference equation. The value v(ti) of the innovation
at time t; then depends on the value of the signal at time ty, all
past values of y, and on the initial conditions for the difference
equation (3.3).

Instead of calculating the innovation v from the signal y it is then
possible to calculate the signal

n(t) = C(d) v(t) = A(d) y(t).

The signal n is, however, different from zero at the irregular
points and their deg C successors. To determine the signal n it is
thus necessary to wait deg C time units after each irregular point.
When n is known it is possible to predict y exactly until next
irregular point occur. A predictor for signals with rational gener-
ators is given by

THEOREM 2. Consider a piece-wise deterministic signal with rational
generator A/C. Let F and G be polynomials which are the unique solu-
tion of the equation

C(d) = A(d) F(d) + daX c(@) G(d) (3.4)
such that

deg F < k + deg C. (3.5)
Assume that

k < 4 - deg C. (3.6)

Then a k-step predictor of y which brings the prediction error to
zero in k+degC steps after each irregular point is given by

gtlt-k) = G(d) y(t-k). (3.7)
The prediction error is

e(t) = y(t) - 9(t|t-k) = F(d) v(t) (3.8)

where v is the innovation of the signal y.

Proog. It follows from (3.3) and (3.4) that

Fue) =2 ye) = 11-dkel ye) = o (3.9)
for
t = ti + deg F, ti + deg F+1, ..., ti+l_ 1, (3.10)

where {t;} are the irregular points. The predictor (3.7) thus pre-
dicts y exactly in the interval (3.10). It follows from (3.6) that
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the interval (3.10) is not empty. The formula for the predictor
error follows from (3.9). o

Remask. Notice that the predictor (3.7) is a moving average. Since
the polynomial C divides the polynomial F, the predictor polynomial
G is identical to the polynomial G in Theorem 1. o

Steady State Predictons

It will now be shown that it is possible to obtain other predictors
where the prediction errors goes to zero quicker. These predictors
are, however, dynamical systems and will thus require initial condi-
tions. In steady state the initial conditions are unimportant.

If the polynomial C(d) is stable the innovation v can be computed
from y using the stable difference equation (3.3). Since the differ-
ence equation is stable the influence of the initial conditions will
decrease exponentially as time increases. In steady state the initial
conditions are thus unimportant. A straightforward extension of the
arguments in the proof of Theorem 2 shows that the steady-state pre~
dictor is given by

G(d)

vit|t-x) = Tiay Yt (3.11)
and that the prediction error is

y(t) = Y(t|t-k) = F(d) v(t). (3.12)
The polynomials F and G are the unigue solutions to the equation

c(d) = a(@ r(a) + da* c(a) (3.13)
such that

deg F < k. (3.14)

Notice that the predictor (3.11) is a dynamical system and that
initial conditions are required. Since C is stable the initial condi-
tions are unimportant in steady state.

To handle cases when the polynomial C(d) also has zeros in the unit
disc the polynomial C is factored as

c(d) = ct(d) c™(a) ' (3.15)
where all the zeros of ct(d) are strictly outside the unit disc and
all zeros of C~(d) are inside the unit disc or on the unit circle.
The factors CT and C~ are called the sfable and unstable factons,
respectively. If C has an unstable factor it is not possible to
generate the innovations from the measurements in real time. The
signal
A(d)
ct (@)
can be generated in real time from y{t). The signal n(t) is however
different from zero at the irregular point and their deg C™ succes-

sors. The steady-state predictor for signals with rational generators
is given by

n(t) = Cc7(a) v(t) = y{t)

THEOREM 3. Consider a piece-wise deterministic signal with rational
generator A/C. Let F and G be polynomials which are the unique solu-
tion to the equation
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c(@) = a(d) F(a) + ak ¢~ (@) &(d) (3.16)
such that

deg F < k + deg C™. (3.17)
Assume that

k < & - deg C™. (3.18)
The k-step predictor of y given by

Sit]t-k) = giié) v (£-k) (3.19)

is then the stable steady-state predictor which brings the predic-
tion error to zero in deg F steps after each irregular point. The
prediction error is

e(t) = y(t) - y(t]t-k) = F(d) v(t) (3.20)

where v is the innovation of the signal y.

Proof. The proof is analogous to the proof of Theorem 2. It follows
from (3.3) and (3.16) that

_ FA _ _ sk G
P =2y = [1-d &y,

The predictor is thus given by (3.19) and the prediction error by
(3.20). o

Remark. Notice that the predictor is a dynamical system whose
characteristic polynomial is equal to the stable factor C*(d). o

Mean Square Predictoxns

For signals with polynomial generators the minimum time predictor

was the same as the mean square predictor when this exists. For
signals with rational generators the predictors are however differ-
ent. The notion of reciprocal polynomial is necessary to describe the
the mean square predictor. If A(d) is the polynomial

= n
A(d) ag +a;d+ ... +agd
then the reciprocal polynomial is given by
_ n n-1
Aygld) = agd” + aqd toootoan.
Further introduce
Ay = (A7)

Notice that this is different from (A,)

Let the prediction error be e. The mean square predictor minimizes
the criterion

N
lim 2 % e2(t).
N-+oo t=1

This predictor is given by

THEOREM 4. Consider a piece-wise deterministic signal with rational
generator A/C. Assume that the polynomial C has no zeros on the unit
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circle. Factor C into its stable and unstable factors as
c(d)y = ct(a) c—(a). (3.21)

Let F and G be polynomials which are the unique solution to the
equation

ct(d) cz(d) = a(@) r(a) + a* ¢(@ c (a) (3.22)
such that
deg F < k + deg C™. (3.23)
The steady-state mean square predictor of Yy is then given by
A G(d)
(tjt-k) = ———~—— y(t-k) (3.24)
yiel ct@ cz@ ¥
and the prediction error is
2 C~(d)
(£) - y(t|t-k) = =—== y(t). o (3.25)
y y(t] TS

Remark. Notice that the predictor (3.24) is a dynamical system with
the characteristic polynomial C*CI. o

Multivariable Extensions

The results can be extended to multivariable signals by considering
signal models of the type

A(d) y(t) = C(d) v(t),

where the signal y and the innovation are vectors of the same dimen-
sion and A(d) and C(d) are matrix polynomials in the delay operator.

STATE SPACE MODELS

Dynamical systems can be described by internal or external models.
The external models only describe the input-output properties while
the internal models give a detailed account of the internal coup-
lings in the system. It is of course useful to consider a problem in
different ways. The discussion of plece-wise deterministic signals
in the previous sections was based on external models. Piece-wise
deterministic signals will now be described using internal models.

Defdnitions

Let v be a signal which is zero at the regular points T, and differ-
ent from zero only at the irregular points T,. As before it is
assumed that the irregular points are isolated with a minimal spac-
ing %. The signal v may, however, now take values in RP. Consider
the signal

x(t+l) = Ax(t) + Bv(t+l)
(4.1)
y(t) = Cx(t)

where x(t) is an n-vector and y(t) is an m-vector. Equation (4.1)
describes a piece-wise deterministic signal as the output y of a
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dynamical system driven by the innovation v. The model (4.1) is an
internal description. The corresponding external description is
given by

y(t) = clgi-al"1 Bu(t+l), (4.2)

where g is the forward shift operator. When the signal y and the
innovation v are scalars (4.2) is equivalent to (3.3).

Prediction

It will now be shown how the problem of predicting a piece-wise
deterministic signal can be solved using the state space formalism.
The results are closely related to Kalman filters [9] and Luenberger
observers [10]. As for systems with rational generators there are
several different cases that are of interest. It is assumed that the
following condition holds:

rank CA = n. (4.3)

A predictor for the signal (4.1) is given by

THEOREM 5. Consider a piece-wise deterministic signal generated by
the observable model (4.1). Let K be a matrix such that all eigen-
values of [I-KC]A are zero. Assume that

2 > k+n. (4.4)
The predictor

yt|t-k) = cakg(t-x), (4.5)
where X is given by the difference equation

X(t+1l) = [1-rcla%(t) + Ky(t+1), (4.6)

gives a prediction error which is zero in the intervals

tjfntk gt <,

where {ti} are the irregular points.

Proof. Introduce
x(t) = x(£) - &(t).

It follows from (4.1) and (4.6) that
X(t+l) = [I-RCI[AX(t) + Bv(t+l)].

Since all eigenvalues of the matrix [I-KC]A are zero it follows that
{[I-KC]A}® = 0, (4.8)

Furthermore, since v (t) is different from zero only at the irregular
points, it follows that

x(t) =0 for ti+-n < t < ti+l‘

The prediction error ¥
~ ~ k=~ k i-1
F(t) = y(t) - ¥(t]t~-k) = CA®X(t-k) +C I AT TBv(t-i+l)

i=1
is thus zero on the set (4.7) which is not empty because of (4.4). o
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Remart 1. Notice that because of (4.8) the predictor (4.6) can be
written as

(t) = {1-alr-xcla}™t Ry (t) = p(a) y(t),

where P(d) is a polynomial. The predictor is thus a polynomial
operator. o

Remark 2. Notice that in special cases the prediction error may be
zero in fewer than n+ k steps after the irregular points. o

Steady State Predictons

It is possible to obtain predictors which are more efficient than
those given by Theorem 5 in the sense that the prediction errors go
to zero guicker. These predictors will, however, be dynamical systems
which can not be characterized as polynomial operators. Initial con-
ditions are thus important. If the difference equations are stable
the influence of the initial conditions will be negligible as time
increases. There are many different possibilities. A typical result
is given by

THEOREM 6. Consider a piece-wise deterministic signal y generated
by the observable model (4.1). Assume that m=p, that all eigenvalues
of the matrix

[I-B(cB) lcla (4.9)
are inside the unit disc and that

£ > n. (4.10)
The predictor

gt|t-x) = cak Z(e-x), (4.11)
where X is given by the difference equation

R(t+1) = AR(t) + B(CB)~liy(t+1) - ca%(t)], (4.12)

gives a prediction error which in the steady state is zero in the
interval

ti+k gt < (4.13)

Eit1r

where'{ti} are the irregular points.

Proof. Introduce
®(t) = x(t) -~ %(t).
It follows from (4.1) and (4.12) that
% (t+1) [I-B(CB)~Lc] [A%(t) +Bv(t+l)] =
[I-B(cB) " Icl a%(t). (4.14)

Since the matrix (4.9) has all eigenvalues inside the unit disc it
follows from (4.14) that x(t) » 0 as t » =, Consider now a time t
between two irregular points. Then

k .
F(t]t-k) = y(t) - 9(t]t-k) = cakz(t-x) +c = al7lmy(t-i+1).
i=1
For large t it thus follows that §(t[t—k) = 0 in the interval

(4.13). o
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Remaxrk. Equation (4.12) has the same form as a Kalman filter. The
filter gain is X = B(CB)~l. Notice that the filter gain reflects
how the disturbances enter the system. o

MIXED PROCESSES

Piece-wise deterministic signals and ARMA processes are simple to
deal with. Both capture certain aspects of real disturbances. It is
thus natural to combine the models to obtain more realistic models

of real signals. One possibility is simply to add a piece-wise deter-
ministic signal and an ARMA signal. The prediction theory for mixed
signals of this type is unfortunately quite complicated. In this
section it is indicated how simple suboptimal predictors for mixed
signals can be constructed. An example indicates that the simple
predictors have interesting properties.

A Signal Model

Let y, be a pilece-wise deterministic signal with polynomial generator
Ay, T%e signal Yy, can be represented as

A (d) y (8) = v(t), (5.1)

where
- n

Ay (d) = l+ald+ c..tayd
and

v{t) = 0, t €T,

vit) # 0, t €Ty,
Furthermore let Yy, be a mixed autoregressive moving average process
represented by

Ay (d) y,(t) = Cy(d) elt), (5.2)

where {e(t)} is a sequence of independent equally distributed random
variables. Consider the signal

y(t) = yi(e) + y2(t). (5.3)

Prediction

Both the formulation and the solution of an exact prediction problem
for the signal (5.3) is complicated. It will therefore be attempted
to postulate a predictor for the signal (5.3) and to explore its
properties. If the model (5.3) should be reasonable the innovations
v of the piece-wise deterministic signal should be larger than the
innovations of the ARMA process. If this is not the case the piece-
-wise deterministic signal could probably be absorbed in an ARMA
model. A predictor for y can heuristically be formulated as follows.
For simplicity the discussion is limited to one~step prediction.

The predictors for the signals y; and y,; are given by
¥1(elt-1) = G (@) vy (t-1)
and
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v, (tle-1) = G, (d)/Cy(d) y,(t-1),

where
Gy(@) = [l1-a,(d1/4a
Gy(d) = [Cy(d) - a,(d) 1/ 4.

These predictors can, however, not be realized since the signals Y1
and yp can not be measured separately. Assume for a moment that
approximate predictors for y1 and y, can be constructed. Let the
residual be defined by

elt) = y(t) - §(t) - §,(t).

If |e(t)| <a it is assumed that v(t) = 0. The predictions are then
updated as

I1 (1) = 61 (@) 9y (1)

¥, (E+1) = G,(d)/C,(d) ly(t) -y, (8) 1.
If |e(t)|>a it is instead assumed that v(t) = e(t) and the predic-

tions are updated as
g1(t) = y(t) - §,(t)
97 (£+1) = G1 (@) 3 (¢)
Yo (t+1) = G,(d)/Cy(d) [y(t) -9 (£)].

The selection of the test level a is a crucial part of this predic-
tor. A simple example illustrates that the proposed predictor has
interesting prospects.

Example

Consider a mixed signal characterized by
A(d) = 1-~-4d
2
A, (d) 1-1.8d4+0.84a
C,(d) = 1+0.84d+0.8 a2,

il

A realization of the signal is shown in Pigure 2. The prediction
errors are also shown in this figure. Figure 3 shows the signal and
its prediction on an expanded scale. The figures show that the pre-~
dictor succeeds quite well in following both the jumps and the
random fluctuations.

CONCLUSIONS

Random processes like time series can be thought of as being gener-
ated by dynamical systems whose inputs are sequences of independent
random variables. Piece-wise deterministic signals can similarly be
thought of as outputs of dynamical systems whose inputs are zero
except at isolated points. These points are not known apriori. Many
properties of time series and piece-wise deterministic signals are
characterized by the dynamical systems which generates them. In par-
ticular the predictors for the signals are uniquely given by the
systems which generates the signals. In this paper different classes
of piece-wise deterministic signals have been discussed and
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Figure 2
A realization of the signal and its prediction error.
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Figure 3
Signal and prediction.
The signal is denoted by o and the prediction by x.
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predictors have been constructed. A natural criterion for prediction
is to bring the prediction error to zero in a short time after the
occurrence of a nonzero input. It has been shown that the prediction
problem for piece-wise deterministic signals leads to mathematical
problems which are very similar to mean square prediction problems
for time series. The systems which generates the signals have been
characterized both by external and internal models. This leads to
slightly different approaches. Processes which are mixes of random
processes and piece-wise deterministic signals have also been dis-
cussed briefly. There are several problem which merit further stud-
ies. There are some additional details to be worked out for the
multivariable problem. This is straightforward. The mixed processes
appear interesting. The simple example discussed indicates that use-
ful predictors for real signals could be obtained by this approach.
It would also be of interest to bring in probabilistic descriptions
of the irregular points. The processes obtained will then be closely
related to branching processes [1ll]. The parameter estimation prob-
lems for piece-wise deterministic signals are also of interest.
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