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Abstract

The field of robotics offers a wide array of estimation problems, ranging from
kinematic and dynamic calibration to pose estimation and computer vision. This
thesis presents a set of methods to solve estimation problems encountered in
robotics, with an emphasis on industrial robotics. The researched topics are all
practically motivated and have found immediate use in applications.

Industrial robotics often require high accuracy in the control of the tool posi-
tion, applied forces etc. This thesis presents a set of methods to solve commonly
encountered estimation problems, including accurate friction estimation, spec-
tral analysis of disturbances in electrical motors, kinematic calibration and pose
estimation under the influence of high external forces.

Common themes among the articles, such as the linear least-squares pro-
cedure, are introduced in greater detail in the beginning of the thesis for the
uninitiated reader.

3





Acknowledgements

I would most likely not have been in the position to write this thesis without the
influence of my PhD thesis supervisor Prof. Rolf Johansson and my Master’s thesis
advisor Dr. Vuong Ngoc Dung at SIMTech, who both encouraged me to pursue
the PhD degree, for which I am very thankful. Prof. Johansson has continuously
supported my ideas and let me define my work with great freedom, which makes
sure that I can spend time on what I believe in and that I look forward to every
new day, thank you.

My thesis co-supervisor, Prof. Anders Robertsson, thank you for your never-
ending enthusiasm, source of good mood and encouragement. When working
100% overtime during hot July nights in the robotlab, it helps to know that one is
never alone.

MARTINKA, THE ALMIGHTY GOD OF PROGRAMMING AND ENTERTAIN-
MENT AND ALSO ICE CREAM AND INTERNATIONAL BUSINESS RELATIONS,
thank you for many good times, discussion and execution of many ideas, good
and bad (bad in the best sense of the word), and of course, for sharing your great
knowledge and excellent material about defects in semiconductors.

The Department of Automatic Control at Lund University is a great place, not
because the building we are sitting in is so spectacular, or because the sun is always
shining in Lund, but because of the excellent co-workers who share the corridors
and offices. I appreciate the high level of motivation and interest people here have
for their jobs, but equally much how everyone working here is contributing to the
outstanding aura at the department. I like to think about the time when I was new
at the department and I was living in a nearby student corridor. During Sundays, I
was more or less the only one who did not dread the upcoming Monday, not only
because I like my job, but because I like the environment in which I am working. I
would also like to take this opportunity to thank my office mates in particular for
making our office come to life.

Lisbit, you have been amazing in your efforts to help with everything from
proof reading to keeping spirit on top, thank you!

5





Contents

1. Introduction 9
1.1 Friction and force estimation . . . . . . . . . . . . . . . . . . . . . 10
1.2 Friction stir welding . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Theoretical primer 12
2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 12
2.2 Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Basis Function Expansions . . . . . . . . . . . . . . . . . . . . . . . 17

3. Publications 19

Bibliography 22

Paper I. Modeling and Identification of Position and Temperature
Dependent Friction Phenomena without Temperature Sensing 23
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Models and Identification Procedures . . . . . . . . . . . . . . . 26
3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Paper II. Linear Parameter-Varying Spectral Decomposition 41
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 LPV Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . 43
3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B Additional proofs not part of the original article . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Paper III. Six DOF Eye-to-Hand Calibration from 2D Measurements
Using Planar Constraints 57
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7



Contents

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A Calibration of point lasers . . . . . . . . . . . . . . . . . . . . . . . 69

Paper IV. Particle Filter Framework for 6D Seam Tracking Under Large
External Forces Using 2D Laser Sensors 71
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4. Discussion and future work 89
4.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8



1
Introduction

The pending ubiquity of robots in everyday life, on the workshop floor and in
traffic, provides researchers with a seemingly never ending stream of research
problems. Many interesting problems in robotics can be categorized as estimation
problems, in which some quantity, relation or property of the robot or its envi-
ronment is to be estimated using data collected from the robots own or external
sensors. A common way of framing estimation problems is in the framework of
optimization. When formulating an estimation problem as an optimization prob-
lem, the goal is to minimize the model residuals, i.e., the misfit between the data
and the model output.

This thesis will consider a series of estimation problems that can be further
categorized as system identification, calibration and state estimation problems.
We consider the simple setup depicted in Fig. 1.1, where an input signal u(t ) is
fed into a system G that in response produces the output y(t ). System identifica-
tion considers the problem of estimating the properties of the system G , given
input-output data collected during experiments. Calibration is closely related
to system identification, and deals with estimation of a property of the system
that can somehow change, e.g., by changes in environmental conditions, aging of
components or system reconfiguration. State estimation deals with estimation of
the internal state of the system G as it operates, e.g., the positions and velocities
of the links in a robot arm. To this end, the state estimation algorithm makes use
of measurements of both u and y as well as a model of the system G .

The motivation for the research presented in this thesis mainly comes from
the projects Flexifab and SARAFun. The Flexifab project investigates the use of
industrial robots for friction stir welding, whereas the SARAFun project considers
robotic assembly. The following two sections present some background of the
challenges that have led to the presented work.

G
u y

Figure 1.1 A system G that when subjected to the input u, produces the output y .
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Chapter 1. Introduction

1.1 Friction and force estimation

Robotic applications have for a long time been concentrated around non-contact
operations, such as picking and placing objects, arc welding and painting. Re-
cently, robots have appeared also in applications that require establishing and
maintaining contact with the environment. Such applications include assembly,
machining, friction stir welding and surgery. The contact between the robot and
its environment gives rise to contact forces, the magnitude and direction of which
are of great importance for the quality of the job performed.

A straightforward way of measuring contact forces is to somehow equip the
robot, tool or workpiece with a force sensor. While often straight forward, a force
sensor typically adds cost, bulk, weight and complexity to the setup, all of which
are undesirable.

Another strategy to monitor the contact forces is to estimate them. Using equa-
tions describing the relations between forces and motions in the robot, one can in
theory estimate the external forces originating from contact with the environment.
A huge obstacle to this approach is friction.

All mechanical systems with moving parts are subject to friction. The friction
force is a product of interaction forces on an atomic level and is always resisting
relative motion between two elements in contact. Due to the nature of friction, the
force acting on a moving object is easy to estimate from observations of the motion
of the object and the forces acting upon it. When the object is at rest, however, the
motion is zero, but the forces acting on it can assume any value inside a non-zero
interval. This phenomenon is the reason objects placed on a table won’t slide off,
even if the table is slightly tilted. This many-to-one relationship between forces
and velocity when the sliding surfaces are at rest creates a problem when we
invert the relationship, which now becomes a one-to-many relationship between
velocity and force. When an object is at rest, we can thus not say anything about
the force acting upon it, other than that the force is smaller than the so-called
stiction force.

When estimating the external forces, accurate estimation of the friction force
is key to an accurate force estimate.

1.2 Friction stir welding

During traditional welding, the metal in the pieces to be welded are melted to-
gether to form a bond. This bond is typically a weak part in the construction, and
the pieces have to be made thicker, stronger and heavier to compensate for this
weak link. Performing fusion welding does not require any significant forces other
than to lift the tool, and can be performed by both humans and robots.

Friction stir welding (FSW) is a relatively recent welding technique in which
a solid state merging of the work pieces is obtained by a rotating tool inserted
between the pieces using a high force. The properties of the joint obtained with
FSW are usually far superior to those obtained using traditional fusion welding, but
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1.2 Friction stir welding

the high process forces involved have limited the applications of FSW. Historically,
special purpose machines with high stiffness and low flexibility have been used to
overcome the problems with high process forces. This has naturally made FSW
a much more expensive joining technique compared to fusion welding. Recent
research has, however, suggested that heavy-duty industrial robots might offer a
low-cost, flexible alternative to special purpose FSW equipment, while overcoming
problems with limited stiffness through modeling, perception and control [De
Backer, 2014].

The promise of greatly reduced initial investment and increased flexibility of
an industrial robot over a traditional FSW machine has sparked great research
interest into robotic FSW. The implications of a greater availability of FSW in the
industry are savings in both cost and environmental impact, as products produced
with FSW can be made lighter and more energy efficient. This is particularly true
for the transport and aviation sectors, where even a small increase in fuel efficiency
can have a large impact on cost and emissions.
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2
Theoretical primer

This chapter serves as an introduction to the reader unfamiliar with the concepts
of singular value decomposition and the linear least-squares problem. These
methods will be used extensively in the upcoming collection of articles, where
they are only briefly introduced as needed. Readers familiar with these topics can
skip this chapter.

2.1 Singular Value Decomposition

The singular value decomposition (SVD) was first developed in the late 1800s for
bilinear forms, and later extended to rectangular matrices by [Eckart and Young,
1936]. The SVD is a factorization of a matrix A ∈RN×M on the form

A =U SV T (2.1)

where the matrices U ∈ RN×N and V ∈ RM×M are orthonormal, such that
UTU =UUT= IN and V TV =V V T= IM , and S = diag(σ1, ...,σm) ∈RN×M is a rect-
angular, diagonal matrix with the singular values on the diagonal. The singular
values are the square roots of the eigenvalues of the matrices A AT and ATA and are
always non-negative and real. The orthonormal matrices U and V can be shown
to have columns consisting of a set of orthonormal eigenvectors of A AT and ATA
respectively.

One of many applications of the SVD that will be exploited in this thesis is
to find the equation for a plane that minimizes the sum of squared distances
between the plain and a set of points. The normal to this plane is simply the
singular vector corresponding to the smallest singular value of a matrix composed
of all point coordinates. The smallest singular value will in this case correspond to
the mean squared distance between the points and the plane, i.e., the variance of
the residuals.

12



2.2 Least-Squares

2.2 Least-Squares

This thesis will frequently deal with the estimation of models which are linear in
the parameters, and can thus be written on the form

y = Ak (2.2)

where A denotes the regressor matrix and k denotes a vector of coefficients to be
identified. Models on the form (2.2) are commonly identified with the well-known
least-squares procedure [Johansson, 1993]. As an example, we consider the model
yn = k1un +k2vn , where a measured signal y is a linear combination of two input
signals u and v . The identification task is to identify the parameters k1 and k2. In
this case, the procedure amounts to arranging the data according to

y =

 y1
...

yN

 , A =

 u1 v1
...

...
uN vN

 ∈RN×2, k =
[

k1
k2

]

and solving the optimization problem of Eq. (2.3) with solution (2.4).

THEOREM 1
The vector k∗ of parameters that solves the optimization problem

k∗ = argmin
k

∥∥y −Ak
∥∥2

2 (2.3)

is given by the closed-form expression

k∗ = (
ATA

)−1ATy (2.4)

Proof Completion of squares in the least-squares cost function J yields

J = ∥∥y −Ak
∥∥2

2 = (y −Ak)T(y −Ak)

= yTy − yTAk −kTATy +kTATAk

=
(
k − (

ATA
)−1ATy

)T
ATA

(
k − (

ATA
)−1ATy

)
+ yT(I −A

(
ATA

)−1AT)y

where we identify the last expression as a sum of two terms, one that does not
depend on k, and a term which is a positive definite quadratic form (ATA is always
positive (semi)definite). The estimate k∗ that minimizes J is thus the value that
makes the quadratic form equal to zero. 2

Equation (2.4) is known as the least-squares solution and the full-rank matrix
(ATA)−1AT is commonly referred to as the pseudo inverse of A. If A is a square
matrix, the pseudo inverse reduces to the standard matrix inverse. If A however is
a tall matrix, the equation y = Ak is over determined and Eq. (2.4) produces the
solution k∗ that minimizes Eq. (2.3).

13



Chapter 2. Theoretical primer

Consistency
The consistency of the least-squares estimate can be analyzed by calculating the
bias and variance properties. Consider the standard model, with an added noise
term v , for which consistency is given by the following theorem:

THEOREM 2
k̂ = (

ATA
)−1ATy is an unbiased and consistent estimate of k in the model

y = Ak + v

v ∼N (0,σ2)

E
{

ATv
}= 0

Proof The bias and variance of the resulting least-squares based estimate are:

Bias We begin be rewriting the expression for the estimate k̂ as

k̂ = (
ATA

)−1ATy

= (
ATA

)−1AT(Ak + v)

= k + (
ATA

)−1ATv

If the regressors are uncorrelated with the noise, E
{(

ATA
)−1ATv

}
= 0, we can con-

clude that E
{
k̂
}= k and the estimate is unbiased.

Variance The variance is given by

E
{
(k̂ −k)(k̂ −k)T

}= E{(
ATA

)−1ATv vTA(ATA)−T
}

= E{
A−1v vTA−T}

=σ2E
{
(ATA)−1}

=σ2(ATA)−1

where the third equality holds if v and A are uncorrelated. As N →∞, we have
σ2(ATA)−1 → 0, provided that the Euclidean length of all columns in A increases
as N increases. 2

Other loss functions
The least-squares loss function

k∗ = argmin
k

∥∥y −Ak
∥∥2

2 (2.5)

is convex and admits a particularly simple, closed-form expression for the min-
imum. If another norm is used instead of the L2 norm, the estimate will have

14



2.2 Least-Squares

different properties. The choice of other norms will, in general, not admit a solu-
tion on closed form, but for many norms of interest, the optimization problem
remains convex. This fact will in practice guarantee that a global minimum can
be found easily using iterative methods. Many of the methods described in this
thesis could equally well be solved with another convex loss function, such as
the L1 norm for increased robustness, or the L∞ norm for a minimum worst-case
scenario. For an introduction to convex optimization and a description of the
properties of different convex loss functions, see [Boyd and Vandenberghe, 2004].

Ridge regression
For certain problems, it might be desirable to add a term to the cost func-
tion Eq. (2.3) that penalizes the size of the estimated parameter vector. This might
be the case if the problem is ill-posed, or if we have the a priori knowledge that
the parameter vector is small. Depending on the norm in which we measure the
size of the parameter vector, this procedure has many names. For the common
L2 norm, the resulting method is commonly referred to as Tikhonov regularized
regression, ridge regression or weight decay if one adopts an optimization per-
spective, or maximum a posteriori (MAP) estimation with a Gaussian prior, if one
adopts a Bayesian view on the estimation problem. The solution to the resulting
optimization problem remains on a closed form, as indicated by the following
theorem. Here, we demonstrate an alternative way of proving the least-squares
solution, based on differentiation instead of completion of squares.

THEOREM 3
The vector k∗ of parameters that solves the optimization problem

k∗ = 1

2
argmin

k

∥∥y −Ak
∥∥2

2 +
λ

2

∥∥k
∥∥2

2 (2.6)

is given by the closed-form expression

k∗ = (ATA+λI )−1ATy (2.7)

Proof Differentiation of the cost function yields

J = 1

2

∥∥y −Ak
∥∥2

2 +
λ

2

∥∥k
∥∥2

2 =
1

2
(y −Ak)T(y −Ak)+ λ

2
kTk

d J

dk
=−AT(y −Ak)+λk

If we equate this last expression to zero we get

d J

dk
=−AT(y −Ak)+λk = 0

(ATA+λI )k = ATy

k = (ATA+λI )−1ATy

15



Chapter 2. Theoretical primer

Since ATA is positive semi-definite, both first- and second-order conditions for a
minimum are satisfied by k∗ = (ATA+λI )−1ATy . 2

We immediately notice that the solution to the regularized problem (2.6) reduces
to the solution of the ordinary least-squares problem (2.3) in the case λ= 0. The
regularization adds the positive term λ to all diagonal elements of ATA, which
reduces the condition number of the matrix to be inverted and ensures that the
problem is well posed [Golub and Van Loan, 2012]. The regularization reduces the
variance in the estimate at the expense of the introduction of a bias.

Computation
Although the solutions to the least-squares problems are available in closed form,

it is ill-advised to actually perform the calculation k = (
ATA

)−1ATy [Golub and Van
Loan, 2012]. Numerically more robust strategies include

• performing a Cholesky factorization of the symmetric matrix ATA.

• performing a QR-decomposition of A.

• performing a singular value decomposition (SVD) of A.

where the latter two methods avoid the calculation of ATA altogether, which can
be subject to numerical difficulties if A has a high condition number [Golub and
Van Loan, 2012]. In fact, the method of performing a Cholesky decomposition of
ATA can be implemented using the QR-decomposition since triangular matrix R
obtained by a QR-decomposition of A is a Cholesky factor of ATA:

ATA = (QR)T(QR) = RTR

Many numerical computation tools, including Julia, Matlab and numpy, pro-
vide numerically robust methods to calculate the solution to the least-squares
problem, indicated in Algorithm 1. These methods typically analyze the matrix
A and choose a suitable numerical algorithm to execute based on its properties
[Julialang, 2017].

Algorithm 1 Syntax for solving the least-squares problem k = (
ATA

)−1ATy in differ-
ent programming languages.

k = A\y # J u l i a
k = A\y % Matlab
k = numpy. l i n a l g . solve (A , y ) # Python with numpy
k <− solve (A , y ) # R

For numerically robust methods of solving the ridge regression problem, see,
e.g., the excellent manual by [Hansen, 1994].
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2.3 Basis Function Expansions

2.3 Basis Function Expansions

When estimating a functional relationship between two or more variables, i.e.,
y = f (v), a standard initial approach is linear regression using the least-squares
procedure. A strong motivation for this is the fact that the optimal linear combi-
nation of the chosen basis functions, or regressors, is available in closed form. A
typical choice of basis functions are low order monomials, e.g., a decomposition
of a signal y according to

y =φ(v)k = k0 +k1v1 +k2v2 + ...+k J v J (2.8)

where φ(v) = [v0 v1 ... v J ] is the set of basis function activations. The function
f (v) =φ(v)k can be highly nonlinear and even discontinuous in v , but is linear in
the parameters, making it easy to fit to data.

While the low order monomials v i are easy to work with and provide reason-
able fit when the relationship between y and v is simple, they tend to perform
worse when the relationship is complex.

Intuitively, a basis function expansion decomposes an intricate function or
signal as a linear combination of simple basis functions. The Fourier transform
can be given this interpretation, where an arbitrary signal is decomposed as a sum
of complex-valued sinusoids, similarly, a stair function can be decomposed as a
sum of step functions.

In many situations, there is no a priori information regarding the relationship
between the free variable v and the dependent variable y , and it might be hard
to choose a reasonable set of basis functions to use for a decomposition of the
signal y . In such situations, an alternative is to choose a set of functions with local
support, spread out to cover the domain of v . Some examples of basis functions
with local support are: radial basis functions κ(v) = exp

(−γ(v −µ)2
)
, triangular

functions κ(v) = max(0, 1−γ|v−µ|) and rectangular functions1 κ(v) = |v−µ| <∆µ.
In all cases, µ determines the center of the basis function and γ determines
the width. Examples of decompositions using these basis functions are shown
in Fig. 2.1.

The concept of basis function expansions will be used extensively in the initial
part of the thesis.2

1 Here we interpret the Boolean values true/false as 1/0.
2 The open-source software accompanying many of the papers in this thesis makes use of basis

function expansions. This functionality has been externalized into the package https://github.
com/baggepinnen/BasisFunctionExpansions.jl, which provides many convenient methods
for working with basis function expansions.
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Chapter 2. Theoretical primer

Gaussian Rectangular

Signal y = f (v) Reconstruction ŷ =φ(v)k

Triangular

Figure 2.1 Reconstructions of a sampled signal y = f (v) using different sets of
basis functions. The basis functions used for the decomposition of y is shown in
the background.
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Publications

This thesis is based on the following publications:

Paper I

Bagge Carlson, F., A. Robertsson, and R. Johansson (2015). “Modeling and identifi-
cation of position and temperature dependent friction phenomena without
temperature sensing”. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

The problem of friction estimation for systems with temperature and position
dependence is considered. Due to well-known issues with adaptive estimation
techniques in friction estimation, a classical system identification view is adopted
and a first order dependence between input power (heat generated by friction)
and the friction parameters is identified. The article further considers position
dependent friction, which is shown to be substantial in certain common industrial
robots. Combined, the two modeling and identification approaches greatly reduce
the friction modeling error, allowing for, e.g., more accurate estimation of external
forces. Open-source implementations of the algorithms presented are provided
in [Bagge Carlson, 2015].

Paper II

Bagge Carlson, F., A. Robertsson, and R. Johansson (2017). “Linear parameter-
varying spectral decomposition”. In: 2017 American Control Conference (ACC).
Accepted.

During analysis of modeling residuals from the experiments conducted in Pa-
per I, periodic patterns in the residuals were easily identified visually, but Fourier-
based spectral estimation methods failed to identify the spectral contents. Several
issues related to standard spectral estimation techniques were identified, where
the underlying problem was found related to a dependence between the spectral
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Chapter 3. Publications

properties and an auxiliary signal, in this case, the angular velocity of the robot
joint under investigation. This paper develops a novel spectral estimation tech-
nique that allows the spectral properties (phase and amplitude) of the analyzed
signal to vary with an auxiliary signal. Apart from a standard spectrum, a func-
tional relationship between the scheduling signal and the amplitude and phase of
each frequency is identified, providing high levels of detail from which the origin
of the signal is easier to identify. An open-source implementation of the algorithm
presented is provided in [Bagge Carlson, 2016].

Paper III

Bagge Carlson, F., R. Johansson, and A. Robertsson (2015). “Six DOF eye-to-hand
calibration from 2D measurements using planar constraints”. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

We consider the calibration of a 2D laser scanner for localization of weld
seams. The paper introduces a calibration algorithm tailored to the properties of
a class of sensors commonly referred to as laser-stripe profilers. While standard
eye-to-hand calibration methods could be used in theory, the properties of the
data recorded by the sensor creates the need for complex pre-processing and/or
additional estimation steps in order to obtain the desired calibration matrix. The
developed algorithm is easy to apply without pre-processing and is shown to
find the desired calibration given a wide range of initial guesses and under the
influence of noise. The sensor described in this paper reappears as the main
method of feedback in the following Paper IV. An open-source implementation of
the algorithm presented is provided in [Bagge Carlson, 2015].

Paper IV

Bagge Carlson, F., M. Karlsson, A. Robertsson, and R. Johansson (2016). “Particle
filter framework for 6D seam tracking under large external forces using 2D
laser sensors”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

The problem of pose estimation during friction stir welding (FSW) is consid-
ered. We present an open-source library for simulation of seam-tracking together
with a particle-filter based state estimation algorithm, utilizing stiffness models
and feedback from a class of laser sensors presented in Paper III. The developed
framework helps the user configure the sensor setup for the considered seam
geometry as well as tune the particle-filter based state estimator. An open-source
implementation of the framework presented is provided in [Bagge Carlson and
Karlsson, 2016].
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Other publications

The following papers, authored or co-authored by the author of this thesis, cover
related topics in robotics but are not included in this thesis:

Bagge Carlson, F., N. D. Vuong, and R. Johansson (2014). “Polynomial reconstruc-
tion of 3D sampled curves using auxiliary surface data”. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation.

Karlsson, M., F. Bagge Carlson, J. De Backer, M. Holmstrand, A. Robertsson, and
R. Johansson (2016). “Robotic seam tracking for friction stir welding under
large contact forces”. In: 7th Swedish Production Symposium (SPS).

Karlsson, M., F. Bagge Carlson, J. De Backer, M. Holmstrand, A. Robertsson, R.
Johansson, L. Quintino, and E. Assuncao (n.d.). “Robotic friction stir welding,
challenges and solutions”. Welding in the World, The International Journal of
Materials Joining. ISSN: 0043-2288. Submitted.

Karlsson, M., F. Bagge Carlson, A. Robertsson, and R. Johansson (2017). “Two-
degree-of-freedom control for trajectory tracking and perturbation recovery
during execution of dynamical movement primitives”. In: 20th IFAC World
Congress. Accepted.

Stolt, A., F. Bagge Carlson, M. M. G. Ardakani, I. Lundberg, A. Robertsson, and
R. Johansson (2015). “Sensorless friction-compensated passive lead-through
programming for industrial robots”. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).
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Paper I

Modeling and Identification of Position and
Temperature Dependent Friction

Phenomena without Temperature Sensing

Fredrik Bagge Carlson Anders Robertsson Rolf Johansson

Abstract

This paper investigates both positional dependence in systems with fric-
tion and the influence an increase in temperature has on the friction behavior.
The positional dependence is modeled with a Radial Basis Function network
and the temperature dependence is modeled as a first order system with the
power loss due to friction as input, eliminating the need for temperature
sensing. The proposed methods are evaluated in both simulations and ex-
periments on two industrial robots with strong positional and temperature
friction dependence.

Originally published in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Reprinted with permission. Open-source implemen-
tations of the algorithms presented are provided in [Bagge Carlson, 2015].
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Figure 1. Illustrations of simple friction models.

1. Introduction

All mechanical systems with moving parts are subject to friction. The friction
force is a product of interaction forces on an atomic level and is always resisting
relative motion between two elements in contact. Due to the complex nature of
the interaction forces, friction is usually modeled based on empirical observations.
The simplest model of friction is the Coulomb model, Eq (1), which assumes a
constant friction force acting in the reverse direction of motion

F f = kc sign(v) (1)

where kc is the Coulomb friction constant and v is the relative velocity between
the interacting surfaces.

A slight extension to the Coulomb model includes also velocity dependent
terms

F f = kv v +kc sign(v) (2)

where kv is the viscous friction coefficient. The Coulomb model and the viscous
model are illustrated in Fig. 1. If the friction is observed to vary with sign(v), the
model (2) can be extended to

F f = kv v +k+
c sign(v+)+k−

c sign(v−) (3)

where the sign operator is defined to be zero for v = 0, v+ = max(0, v) and
v− = min(0, v).

It is commonly observed that the force needed to initiate movement from a
resting position is higher than the force required to maintain a low velocity. This
phenomenon, called stiction, is illustrated in Fig. 1. The friction for zero velocity
and an external force Fe can be modeled as

F f =
{

Fe if v = 0 and |Fe | < ks
ks signFe if v = 0 and |Fe | ≥ ks

(4)

where ks is the stiction friction coefficient. An external force greater than the
stiction force will, according to model (4), cause an instantaneous acceleration
and a discontinuity in the friction force.
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1 Introduction

The models above suffice for many purposes but can not explain several
commonly observed friction-related phenomena, such as the Stribeck effect and
dynamical behavior etc. [Olsson et al., 1998]. To explain more complicated behav-
ior, dynamical models such as the Dahl model [Dahl, 1968] and the LuGre model
[De Wit et al., 1995] have been proposed.

Most proposed friction models include velocity-dependent effects, but no po-
sition dependence. A dependence upon position is however often observed, and
may stem from, for instance, imperfect assembly, irregularities in the contact sur-
faces or application of lubricant etc. [Armstrong-Hélouvry et al., 1994]. Modeling
of the position dependence is unfortunately nontrivial due to an often irregular
relationship between the position and the friction force. Several authors have
however made efforts in the area. In [Armstrong, 1988] the author uses accurate
friction measurements to implement a look-up table for the position dependence
and in [Huang et al., 1998] the authors adaptively identify a sinusoidal position
dependence.

More recent endeavors include [Kruif and Vries, 2002] where an Iterative Learn-
ing Control approach is used to learn a feedforward model including position
dependent friction terms.

In [Bittencourt and Gunnarsson, 2012], no significant positional dependence
of the friction in a robot joint was found, however, a clear dependence upon the
temperature of contact region was reported. To allow for temperature sensing, the
grease in the gear box was replaced by an oil-based lubricant which allowed for
temperature sensing in the oil flow circuit.

A standard approach in dealing with systems with varying parameters is recur-
sive identification during normal operation [Johansson, 1993]. Recursive identifi-
cation of the models (1) and (2) could account for both position- and temperature
dependence. Whereas straight forward in theory, it is often hard to perform in a
robust manner in practical situations. Presence of external forces, accelerating
motions etc. require either a break in the adaptation, or an accurate model of the
additional dynamics. Many control programs, such as time-optimal programs,
never exhibit zero acceleration, and thus no chance for parameter adaptation.

This paper suggests a model that incorporates positional friction dependence
as well as a temperature dependent term. Since many industrially relevant systems
lack temperature sensing in areas of importance for friction modeling, a sensor-
less approach is proposed. Both models are used for identification of friction in the
joint of an ABB YuMi robot, see Fig. 2, and special aspects of position dependence
are verified on an ABB IRB140. The models and identification procedures are
introduced in Sec. 2 and verification is performed in Sec. 3 and Sec. 4. The paper
is summarized in Sec. 6.
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Figure 2. ABB YuMi and ABB IRB140 used for experimental verification of pro-
posed models and identification procedures.

2. Models and Identification Procedures

This section first introduces a general identification procedure for linear models,
based on the least-squares method, followed by the introduction of a model
which allows for the friction to vary with position. Third, a model which accounts
for temperature varying friction phenomena is introduced. Here, a sensor-less
approach where the power loss due to friction is used as an input to a first order
system, is adopted.

As the models are equally suited for friction due to linear and angular move-
ments, the terms force and torque are here used interchangeably.

2.1 Least-Squares Identification
A standard model of the torques in rigid-body dynamical systems, such as indus-
trial robots, is [Spong et al., 2006]

τ= M(p)a +C (p, v)v +G(p)+F (v) (5)

where a = v̇ = p̈ is the acceleration, τ the control torque, M ,C ,G are matrices
representing inertia-, Coriolis-, centrifugal- and gravitational forces and F is a
friction model. If a single joint at the time is operated, at constant velocity, Coriolis
effects disappear [Spong et al., 2006] and

C (p, v) = 0

a = 0

}
⇒ τ=G(p)+F (v) (6)

To further simplify the presentation, it is assumed that G(p) = 0. This can easily be
achieved by either aligning the axis of rotation with the gravitational vector such
that gravitational forces vanish, by identifying and compensating for a gravity
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2 Models and Identification Procedures

model1 or, as in [Bittencourt and Gunnarsson, 2012], performing a symmetric
experiment with both positive and negative velocities and calculating the torque
difference.

The simple models described in Sec. 1 are commonly identified with the
well-known least-squares procedure [Johansson, 1993; Golub and Van Loan, 2012;
Rugh, 1996]. For the model (2), this amounts to arranging data that satisfies Eq. (6)
according to

y =

τ1
...
τN

 , A =

 v1 sign(v1)
...

...
vN sign(vN )

 ∈RN×2, k =
[

kv
kc

]
(7)

and solving optimization problem (8) with solution (9).

k∗ = argmin
k

∥∥Ak − y
∥∥ (8)

k∗ = (
ATA

)−1ATy (9)

2.2 Position Dependent Model
As mentioned in Sec. 1, a positional, repeatable friction dependence is often
observed in mechanical systems. This section extends the simple nominal models
presented in Sec. 1 with position dependent terms, where the position depen-
dence is modeled with a radial basis function network (RBFN)2 [Murphy, 2012].

Define the Gaussian RBF kernel κ and the kernel vector φ

κ(p,µ,σ) = exp

(
− (p −µ)2

2σ2

)
(10)

φ(p) : (p ∈P) →R1×K

φ(p) = [
κ(p,µ1,σ), · · · ,κ(p,µK ,σ)

]
(11)

whereµi ∈P , i = 1, ...,K is a set of K evenly spaced centers. For each input position
p ∈P ⊆ R, the kernel vector φ(p) will have activated (>0) entries for the kernels
with centers close to p. The parameter σ in Eq. (10) determines the bandwidth
of the RBFs. A large value of σ will result in a smooth estimate of the position
dependence with low variance. Smaller values increase the variance but are able
to capture finer detail. Refer to Fig. 3 for an illustration of RBFs. The kernel vector
is appended the matrix A from Sec. 2.1 such that

A =

 v1 sign(v1) φ(p1)
...

...
...

vN sign(vN ) φ(pN )

 ∈RN×(2+K ), k =
kv

kc
kκ

 (12)

1 For a single joint, this simply amounts to appending the regressor matrix A in Eq. (7) with[
sin(p) cos(p)

]
2 Other common terms are Kernel Machines and RBF expansions.
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where kκ ∈RK denotes the parameters corresponding to the kernel vector entries.
The number of RBFs to include and the bandwidth σ is usually chosen based on
evidence maximization or cross validation [Murphy, 2012].

The position dependent model can now be summarized as

F f = Fn +φ(p)kκ (13)

where Fn is one of the nominal models from Sec. 1.
The above method is valid for position-varying Coulomb friction. It is conceiv-

able that the position dependence is affected by the velocity, in which case the
model (13) will produce a sub-optimal result. The RBF network can however be
designed to cover the space (P ×V) ⊆R2. The inclusion of velocity dependence
comes at the cost of an increase in the number of parameters from Kp to Kp Kv ,
where Kp and Kv denote the number of basis function centers in the position and
velocity input spaces respectively.

The expression for the RBF kernel will in this extended model assume the form

κ(x,µ,Σ) = exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
(14)

where x = [
p v

]T ∈P ×V ,µ ∈P ×V and Σ is the covariance matrix determining
the bandwidth. The kernel vector will be

φ(x) : (x ∈P ×V) →R1×(Kp Kv )

φ(x) = [
κ(x,µ1,Σ), · · · ,κ(x,µKp Kv ,Σ)

]
(15)

This concept extends to higher dimensions, at the cost of an exponential growth
in the number of model parameters.

Normalization For some applications, it may be beneficial to normalize the
kernel vector for each input point [Bugmann, 1998] such that

φ̄(x) =
(

Kp Kv∑
i=1

κ(x,µi ,Σ)

)−1

φ(x) (16)

One major difference between a standard RBF network and a normalized RBF
network (NRBFN) is the behavior far (in terms of Mahalanobis distance) from
the training data. The prediction of an RBFN will tend towards zero, whereas the
prediction from an NRBFN keeps its value. Figure 3 shows two networks fit to the
function f (t ) = 0.3t 2 −0.5 together with the basis functions used. The RBF tends
towards zero both outside the data points and in the interval of missing data in
the center. The NRBF on the other hand generalizes better and keeps its current
prediction trend outside the data. The performance of NRBF networks is studied
in detail in [Bugmann, 1998].
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Figure 3. RBF networks fit to noisy data from the function f (t ) = 0.3t 2 −0.5 using
normalized (-) and non-normalized (- -) basis functions. Non-normalized basis
functions are shown mirrored in the x-axis.

2.3 Energy Dependent Model
Friction is often observed to vary with the temperature of the contact surfaces
and lubricants involved [Bittencourt and Gunnarsson, 2012]. Many systems of
industrial relevance lack the sensors needed to measure the temperature of the
contact regions, thus rendering temperature dependent models unusable.

The rise in temperature that occurs during operation is mostly due to friction
losses. This section introduces a model which includes the generated energy, and
estimates its influence on the friction.

A simple model for the temperature change in a system with temperature T ,
surrounding temperature Ts , and power input W , is given by

dT (t )

d t
= ks

(
Ts −T (t )

)+kW W (t ) (17)

for some constants ks > 0,kW > 0. After the variable change∆T (t ) = T (t )−Ts , and
transformation to the Laplace domain, the model (17) can be written

∆T (s) = kW

s +ks
W (s) (18)

where the power input generated by friction losses is equal to the product of the
friction force and the velocity

W (t ) = |F f (t )v(t )| (19)

We are now ready to introduce the proposed model, which takes on the form

F f = Fn + sign(v)E (20)

E(s) =G(s)W (s) = k̄e

1+ sτ̄e
W (s) (21)
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where the friction force F f has been divided into the nominal friction Fn and the
signal E , corresponding to the influence of the thermal energy stored in the joint.
The nominal model Fn can be chosen as any of the models previously introduced,
including (13). The energy is assumed supplied by the instantaneous power
due to friction, W , and is dissipating as a first order system with time constant
τ̄e . A discrete representation is obtained after Zero-Order-Hold (ZOH) sampling
[Wittenmark et al., 2002] according to

E(z) = H(z)W (z) = ke

z −τe
W (z) (22)

In the suggested model form, Eqs. (20) to (22), the transfer function H(z)
incorporates both the notion of energy being stored and dissipated, as well as the
influence of the stored energy on the friction.

The proposed model suggests that the change in friction due to the temper-
ature change occurs in the Coulomb friction. This assumption is always valid
for the nominal model (1), and a reasonable approximation for the model (2)
if kc À kv v or if the system is both operated and identified in a small interval of
velocities. If, however, the temperature change has a large effect on the viscous
friction or on the position dependence, a 3D basis function expansion can be
performed in the space P ×V ×E , E ∈ E . This general model can handle arbitrary
nonlinear dependencies between position, velocity and estimated temperature.
The energy signal E can then be estimated using a simple nominal model, and
included in the kernel expansion for an extended model. Further discussion on
this is held in Sec. 5.

Denote by τ̂n the output of the nominal model Fn . Estimation of the signal E
can now be done by rewriting Eq. (20) in two different ways

Ê = (τ− τ̂n)sign(v) (23)

Fn = τ− sign(v)Ê (24)

The joint estimation of the parameters in the nominal model and in H(z) in
Eq. (22) can be carried out in an Expectation-Maximization like fashion [Murphy,
2012]. This amounts to iteratively finding an estimate F̂n of the nominal model,
using F̂n to find an estimate Ê of E according to Eq. (23), using Ê to estimate H (z)
in Eq. (22) and, using H(z), filter Ê = H(z)W .

Initial Guess For this scheme to work, an initial estimate of the paramters in
H(z) is needed. This can be easily obtained by observing the raw torque data
from an experiment. Consider for example Fig. 4, where the system (20) and
(21) has been simulated. The figure depicts the torque signal as well as the energy
signal E . The envelope of the torque signal decays approximately as the signal E ,
which allows for easy estimation of the gain k̄e and the time constant τ̄e . The time
constant τ̄e is determined by the time it takes for the signal to reach (1−e−1) ≈ 63%
of its final value. Since G(s) is essentially a low-pass filter, the output E =G(s)W
will approximately reach E∞ =G(0)E(W ) = k̄eE(W ) if sent a stationary, stochastic
input W with fast enough time constant (¿ τ̄e ). Here, E(·) denotes the statistical
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Figure 4. A realization of simulated signals. The figure shows how the envelope
of the applied torque approximately decays as the signal E . Dashed, blue lines are
drawn to illustrate the determination of initial guesses for the time constant τ̄e and
the gain k̄e .

expectation operator and E∞ is the final value of the signal E . An initial estimate
of the gain k̄e can thus be obtained from the envelope of the torque signal as

k̄e ≈ E∞
E(W )

≈ E∞
1
N

∑
n Wn

(25)

Refer to Fig. 4 for an illustration, where dashed guides have been drawn to illus-
trate the initial guesses.

The discrete counterpart to G(s) can be obtained by discretization with rele-
vant sampling time [Wittenmark et al., 2002].

Estimating the Model An algorithm for the estimation of all parameters in
Eqs. (20) to (22) is given in Algorithm 2. The estimation of Ĥ(z) in Eq. (22) can be
done with, e.g., the Output Error Method [Johansson, 1993] and the estimation of
the nominal model is carried out using the LS procedure from Sec. 2.1.

Algorithm 2 Estimation of the parameters and the signal E in the energy depen-
dent friction model.
Require: Initial estimate Ĥ(z,ke ,τe );

repeat
Calculate Ê according to Eq. (23);
Update Ĥ(z) using Eq. (22) . E.g., command oe() in Matlab;
Ê ← Ĥ(z)W . Filter W through Ĥ(z);
Update Fn according to (24) using Eq. (9);

until Convergence

31



Paper I. Modeling and Identification of ... Friction Phenomena ...

3. Simulations

To analyze the validity of the proposed technique for estimation of the energy
dependent model, a simulation experiment was performed. The system described
by (20) and (21) was simulated to create 50 realizations of the relevant signals, and
the proposed method was run for 50 iterations to identify the model parameters.
The parameters used in the simulation are provided in Table 1. Initial guesses

were chosen at random from the uniform distributions ˆ̄ke ∼U (0,3k̄e ) ˆ̄τe ∼U (0,3τ̄).

Table 1. Parameter values used in simulation. Values given on the format x/y
represent continuous/discrete values.

Parameter Value

kv 5
kc 15
ke -3/-0.5
τe 10/0.9983
Measurement noise στ 0.5 Nm
Sample time h 1 s
Duration 3600 s
Iterations 50

Figure 5 shows that the estimated parameters converge rapidly to their true
values, and Fig. 6 indicates that the Root Mean Square output Error (RMSE)
converges to the level of the added measurement noise. Figure 6 further shows
that the errors in the parameter estimates, as defined by Eq. (26), were typically
below 5 % of the parameter values.

NPE =
√√√√Np∑

i=1

(
x̂i −xi

|xi |
)2

(26)

4. Experiments

The proposed models and identification procedures were applied to data from
experiments with the ABB YuMi, and the ABB IRB140 industrial robots, see Fig. 2.

4.1 Procedure
For IRB140, the first joint was used. The rest of the arms were positioned so as
to minimize the moment of inertia. For YuMi, joint four in one of the arms was
positioned such that the influence of gravity vanished.
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Figure 5. Estimated parameters during 50 simulations. The horizontal axis dis-
plays the iteration number and the vertical axis the current parameter value. True
parameter values are indicated with dashed lines.
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Figure 6. Evolution of errors during the simulation experiment, the horizontal
axis displays the iteration number. The left plot shows normalized norms of param-
eter errors, defined in Eq. (26), and the right plot shows the RMS output error using
the estimated parameters. The standard deviation of the added measurement noise
is shown with a dashed line.
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Figure 7. Illustration of the torque dependence upon the motor position for the
IRB140 robot.

A program which moved the selected joint at piecewise constant velocities
between the two joint limits was executed for approximately 20 min. Torque-,
velocity-, and position data were sampled and filtered at 250 Hz and subsequently
sub-sampled and stored at 20 Hz, resulting in 25000 data points. Points approxi-
mately satisfying Eq. (6) were selected for identification, resulting in a set of 16000
data points.

Nominal Model The viscous model (3) was fit using the ordinary LS procedure
from Sec. 2.1. This model was also used as the nominal model in the subsequent
fitting of position model (13) and energy model, Eqs. (20) to (22).

Position Model For the position dependent model, the number of basis func-
tions and their bandwidth was determined using cross validation. A large value
of σ has a strong regularizing effect and resulted in a model that generalized well
outside the training data. The model was fit using normalized basis functions.

Due to the characteristics of the gear box in many industrial robots, there is a
clear dependence not only on the arm position, but also on the motor position.
Figure 7 shows the torque versus the motor position when the joint is operated at
constant velocity. This is especially strong on the IRB140 and results are therefore
illustrated for this robot. Both arm and motor positions are available through the
simple relationship pmotor = mod 2π(g ·par m), where g denotes the gear ratio.
This allows for basis function expansion also for the motor positions. To illustrate
this, pmotor was expanded into Kpm Kv = 36×6 basis functions,corresponding to
the periodicity observed in Fig. 7. The results for the model with motor position
dependence are reported separately.

To reduce variance in the estimated kernel parameters, all position-dependent
models were estimated using ridge regression [Murphy, 2012], where a Gaussian
prior was put on the kernel parameters. The strength of the prior was determined
using cross validation. All basis function expansions were performed with normal-
ized basis functions.

Energy Model The energy dependent model was identified for YuMi using the
procedure described in Algorithm 2. The initial guesses for H (z) were τ̄e = 10min
and k̄e =−0.1. The nominal model was chosen as the viscous friction model
Eq. (3). Once the signal E was estimated, a kernel expansion in the space P ×V ×E
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Figure 8. Estimated parameters from experimental data. The horizontal axis
displays the iteration number and the vertical axis the current parameter value.

Table 2. Performance indicators for the identified models, YuMi.

Nominal Position Position + Energy

Fit 86.968 93.193 96.674
FPE 3.63e-03 1.03e-03 2.65e-04

RMSE 6.03e-02 3.15e-02 1.54e-02
MAE 4.71e-02 2.36e-02 1.22e-02

with 40×6×3 basis functions was performed to capture temperature dependent
effects in both the Coulomb and viscous friction parameters.

4.2 Results
The convergence of the model parameters is shown in Fig. 8 and Fig. 9 illustrates
how the models identified for YuMi fit the experimental data. The upper plot shows
an early stage of the experiment when the joint is cold. At this stage, the model
without the energy term underestimates the torque needed, whereas the energy
model does a better job. The lower plot shows a later stage of the experiment where
the mean torque level is significantly lower. Here, the model without energy term
is instead slightly over estimating the friction torque. The observed behavior is
expected, since the model without energy dependence will fit the average friction
level during the entire experiment. The two models correspond well in the middle
of the experiments (not shown). The nominal model (3), can not account for
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Figure 9. Model fit to experimental data (YuMi). Upper plot shows an early stage
of the experiment when the joint is cold. Lower plot a later stage, when the joint
has been warmed up.

any of the positional effects and produces an overall, much worse fit. Different
measures of model fit for the three models are presented in Table 2 and Fig. 11
(Fit (%), Final Prediction Error, Root Mean Square Error, Mean Absolute Error). For
definitions, see e.g. [Johansson, 1993].

For the IRB140, three models are compared. The nominal model Eq. (3), a
model with a basis function expansion in the space Par m and a model with an
additional basis function expansion in the space Pmotor ×V . The resulting model
fits are shown in Fig. 10. What may seem like random measurement noise in
the torque signal is in fact predictable using a relatively small set of parameters.
Figure 12 illustrates that the large dependence of the torque on the motor position
results in large errors. The inclusion of a basis function expansion of the motor
position in the model reduces the error significantly.
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4 Experiments
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Figure 10. Model fit including kernel expansion for motor position on IRB140.
During t = [0s,22s], the joint traverses a full revolution of 2π rad. The same dis-
tance was traversed backwards with a higher velocity during t = [22s,33s]. Notice
the repeatable pattern as identified by the position dependent models.
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Figure 11. Performance indicators for the identified models, YuMi.
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Figure 12. Performance indicators for the identified models, IRB140.
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5. Discussion

The proposed models try to increase the predictive power of common friction
models by incorporating position- and temperature dependence. Systems with
varying parameters can in theory be estimated with recursive algorithms, so
called online identification. As elaborated on in Sec. 1, online or observer-based
identification of friction models is often difficult in practice due to the presence
of additional dynamics or external forces. The proposed methods are identified
offline, during a controlled experiment, and are thus not subject to the problems
associated with online identification. However, apart from the temperature related
parameters, all suggested models are linear in the parameters, and could be
updated recursively using for instance the well-known recursive least squares or
Kalman filter algorithms [Johansson, 1993].

Although outside the scope of this work, effects of joint load on the friction be-
havior can be significant [Bittencourt and Gunnarsson, 2012]. Such dependencies
could be incorporated in the proposed models using the same RBF approach as
for the incorporation of position dependence, i.e. through an RBF expansion in
the joint load (l ∈L) dimension according to φ(x) : (x ∈P ×E ×L) →R1×(Kp Ke Kl ),
with Kl basis function centers along dimension L. This strategy would capture
possible position and temperature dependencies in the load-friction interaction.

In its simplest form, the proposed energy dependent model assumes that the
change in friction occurs in the Coulomb friction level. This is always valid for the
Coulomb model, and a reasonable approximation for the viscous friction model
if kc À kv v or if the system is both operated and identified in a small interval of
velocities. If the viscous friction kv v is large, the approximation will be worse. This
suggests modeling the friction as

F f = kv (E)v +kc (E)sign(v) (27)

where the Coulomb- and viscous constants are seen as functions of the estimated
energy signal E , i.e., a Linear Parameter-Varying model (LPV). To accomplish
this, a kernel expansion including the estimated energy signal was suggested and
evaluated experimentally.

Although models based on the internally generated power remove the need for
temperature sensing in some scenarios, they do not cover significant variations in
the surrounding temperature. The power generated in, for instance, an industrial
robot is, however, often high enough to cause a much larger increase in tempera-
ture than the expected temperature variations of its surrounding [Bittencourt and
Gunnarsson, 2012].
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6 Conclusions

6. Conclusions

The modeling of both position and temperature dependence in systems with
friction have been investigated. To model position varying friction, a Radial Basis
Function network approach was adopted. It has been experimentally verified
that taking position dependence into account can significantly reduce the model
output error. It has also been reported that friction phenomena on both sides of a
gearbox can be modeled using the proposed approach.

The influence of an increase in temperature due to power generated by friction
has been modeled and estimated. The proposed approach was based on a first-
order temperature input-output model where the power generated by friction was
used as input. The model together with the proposed identification procedure
was shown to capture the decrease in friction seen in an industrial robot during a
long term experiment, this was accomplished without the need of temperature
sensing.

39



Paper I. Modeling and Identification of ... Friction Phenomena ...

References

Armstrong, B. (1988). “Friction: experimental determination, modeling and com-
pensation”. In: Robotics and Automation, Proc. 1988 IEEE Int. Conf. Pennsylva-
nia, pp. 1422–1427.

Armstrong-Hélouvry, B., P. Dupont, and C. C. De Wit (1994). “A survey of models,
analysis tools and compensation methods for the control of machines with
friction”. Automatica 30:7, pp. 1083–1138.

Bagge Carlson, F. (2015). Robotlib.jl. Dept. Automatic Control. URL: https://
gitlab.control.lth.se/cont-frb/robotlib.

Bittencourt, A. C. and S. Gunnarsson (2012). “Static friction in a robot joint - mod-
eling and identification of load and temperature effects”. Journal of Dynamic
Systems, Measurement, and Control 134:5.

Bugmann, G. (1998). “Normalized gaussian radial basis function networks”. Neu-
rocomputing 20:13, pp. 97–110. ISSN: 0925-2312. DOI: http://dx.doi.org/
10.1016/S0925-2312(98)00027-7. URL: http://www.sciencedirect.
com/science/article/pii/S0925231298000277.

Dahl, P. (1968). A solid friction model. Tech. rep. DTIC.

De Wit, C. C., H. Olsson, K. J. Åström, and P. Lischinsky (1995). “A new model
for control of systems with friction”. Automatic Control, IEEE Trans. on 40:3,
pp. 419–425.

Golub, G. H. and C. F. Van Loan (2012). Matrix computations. Vol. 3. Johns Hopkins
University Press, Baltimore.

Huang, P.-Y., Y.-Y. Chen, and M.-S. Chen (1998). “Position-dependent friction
compensation for ballscrew tables”. In: Control Applications, 1998. Proc. 1998
IEEE Int. Conf., Trieste, Italy. Vol. 2, pp. 863–867.

Johansson, R. (1993). System modeling & identification. Prentice-Hall, Englewood
Cliffs, NJ.

Kruif, B. J. de and T. J. de Vries (2002). “Support-vector-based least squares for
learning non-linear dynamics”. In: Decision and Control, 2002, Proc. IEEE Conf.,
Las Vegas. Vol. 2, pp. 1343–1348.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press,
Cambridge, Massachusetts.

Olsson, H., K. J. Åström, C. C. de Wit, M. Gäfvert, and P. Lischinsky (1998). “Friction
models and friction compensation”. European Journal of Control 4:3, pp. 176–
195.

Rugh, W. J. (1996). Linear system theory. Prentice-Hall, Englewood Cliffs.

Spong, M. W., S. Hutchinson, and M. Vidyasagar (2006). Robot modeling and
control. Vol. 3. Wiley, New York.

Wittenmark, B., K. J. Åström, and K.-E. Årzén (2002). “Computer control: an
overview”. IFAC Professional Brief.

40



Paper II

Linear Parameter-Varying Spectral
Decomposition

Fredrik Bagge Carlson Anders Robertsson Rolf Johansson

Abstract

We develop a linear parameter-varying (LPV) spectral decomposition
method, based on least-squares estimation and kernel expansions. Statis-
tical properties of the estimator are analyzed and verified in simulations.
The method is linear in the parameters, applicable to both the analysis and
modeling problems and is demonstrated on both simulated signals as well as
measurements of the torque in an electrical motor.

Originally published in The 2017 American Control Conference. Reprinted with
permission. An open-source implementation of the algorithm presented is pro-
vided in [Bagge Carlson, 2016].
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1. Introduction

Standard spectral density estimations techniques such as the discrete Fourier
transform (DFT) exhibit several well-known limitations. These methods are typ-
ically designed for data sampled equidistantly in time or space. Whenever this
property fails to hold, typical approaches employ some interpolation technique
in order to perform spectral estimation on equidistantly sampled data. Other
possibilities include employing a method suitable for non-equidistant data, such
as least-squares spectral analysis [Wells et al., 1985]. Fourier transform-based
methods further suffer from spectral leakage due to the assumption that all sinu-
soidal basis functions are orthogonal over the data window [Puryear et al., 2012].
Least-squares spectral estimation takes the correlation of the basis functions into
account and further allows for estimation of arbitrary/known frequencies without
modification [Wells et al., 1985].

In some applications, the spectral content is varying with an external variable,
for instance, a controlled input. As motivating example, we consider the torque
ripple induced by the rotation of an electrical motor. Spectral analysis of the
torque signal is made difficult by equidistant, time-based sampling, which causes
the spectrum to vary with the velocity of the motor, both due to the frequency of
the ripple being directly proportional to the velocity, but also due to the properties
of an electric DC-motor. A higher velocity both induces higher magnitude torque
ripple, but also a higher filtering effect due to the inertia of the rotating parts.
The effect of a sampling delay on the phase of the measured ripple is similarly
proportional to the velocity.

Time-frequency analysis traditionally employ windowing techniques [Johans-
son, 1993] in order to reduce spectral leakage [Harris, 1978; Stoica and Moses,
2005], mitigate effects of non-stationarity, reduce the influence of ill-posed auto-
correlation estimates [Stoica and Moses, 2005] and allow for time-varying spectral
estimates [Puryear et al., 2012]. The motivating example considers estimation
of the spectral content of a signal which is periodic over the space of angular
positions X , with a spectral content varying with time solely due to the fact that
the velocity is varying with time. Time does thus not hold any intrinsic meaning
to the modification of the spectrum, and the traditional windowing in time is no
longer essential.

This paper develops a spectral estimation technique using basis function
expansions identified with the least-squares method, that allows the spectral
properties (phase and amplitude) of the analyzed signal to vary with an exter-
nal signal. Apart from a standard spectrum, functional relationships between
the scheduling signal and the amplitude and phase of each frequency will be
identified.
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2. LPV Spectral Decomposition

2.1 Basis function expansions
In order to decompose the spectrum along an external dimension, we consider
basis function expansions. Intuitively, a basis function expansion decomposes
an intricate function or signal as a linear combination of simple basis functions.
The Fourier transform can be given this interpretation, where an arbitrary signal
is decomposed as a sum of complex-valued sinusoids, similarly, a stair function
can be decomposed as a sum of step functions. With this intuition, we aim for a
method which allow decomposition of the spectrum of a signal along an external
dimension, in LPV terminology called the scheduling dimension, V . If we consider
a single sinusoid in the spectrum, the functional dependence decomposed by the
basis function expansion will thus be the complex-valued coefficient k in ke iω as
a function of the scheduling variable, v , which in the motivating example is the
angular velocity of the motor. Using complex valued calculations, we simultane-
ously model the dependence of both amplitude and phase of a real frequency by
considering the complex frequency.

Radial Basis Functions (RBFs) have been widely used in nonlinear modeling
through RBF expansions or RBF networks [Murphy, 2012]. The motivation for
considering RBFs as opposed to other basis functions include their, in practice,
local support, which often make the modeling more intuitive and the result eas-
ier to interpret. This in contrast to basis functions with global support, such as
sigmoid-type functions. Another motivation for the use of RBFs is the implicit
assumption that the underlying functional dependence is smooth. The method
proposed in this paper is not limited to the use of RBFs as basis functions, and
extend without difficulty to other basis functions when motivated. A typical set of
RBFs is shown in Fig. 1.

2.2 Least-squares identification of periodic signals
This paper deals with estimations of models which are linear in the parameters,
and can thus be written on the form

y = Ak (1)

where A denotes a regressor matrix and k denotes a vector of coefficients to be
identified. Models on the form (1) are commonly identified with the well-known
least-squares procedure [Johansson, 1993]. For the model y(n) = k1 sin(ωn)+
k2 cos(ωn), this amounts to arranging the data according to

y =

 y(1)
...

y(N )

 , A =

 sin(ω1) cos(ω1)
...

...
sin(ωN ) cos(ωN )

 ∈RN×2, k =
[

k1
k2

]

43



Paper II. Linear Parameter-Varying Spectral Decomposition

-2 -1 0 1 2
−1

−0.5

0

0.5

1

Scheduling variable v

A
ct

iv
at

io
n
κ

(v
,θ

)

Figure 1. Gaussian (dashed) and normalized Gaussian (solid) windows. Regular
windows are shown mirrored in the x-axis for clarity.

and solving the optimization problem1 of Eq. (2) with solution (3).

k∗ = argmin
k

∥∥Ak − y
∥∥ (2)

= (
ATA

)−1ATy (3)

This can be written in compact form by noting that e iω = cosω+ i sinω, which
will be used extensively throughout the paper to simplify notation.2

We will now proceed to formalize a method for spectral decomposition using
a perspective based on basis function expansions.

2.3 Model
We start by establishing some notation. Let k denote the Fourier series coefficients
of interest. The kernel activation vector φ(vn) : (v ∈V) →RK maps the input to a
set of basis function activations and is given by

φ(vn) = [
κ(vn ,θ1) · · · κ(vn ,θJ )

]T ∈RJ (4)

κ(v,θ j ) = κ j (v) = exp

(
− (v −µ j )2

2σ2
j

)
(5)

where κ is a basis function parameterized by θ j = (µ j ,σ j ), µ ∈V is the center of
the kernel and σ2 is determining the width.

Let y denote the signal to be decomposed and denote the location of the
sampling of yn by xn ∈X . The space X is commonly time or space, in the moti-
vating example of the electrical motor, X is the space of motor positions.3 Let the

1 This problem can easily be solved also for other norms or convex loss functions.
2 Note that solving the complex LS problem using complex regressors eiω is not equivalent to solving

the real LS problem using sin/cos regressors.
3 We note at this stage that x ∈ X can be arbitrarily sampled and are not restricted to lie on an

equidistant grid, as is the case for, e.g., Fourier transform-based methods.
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intensities of a set of complex frequencies iω∀ω ∈Ω be given by basis function
expansions along V , according to

ŷn = ∑
ω∈Ω

J∑
j=1

kω, j κ j (vn)e−iωxn (6)

= ∑
ω∈Ω

kT
ωφ(vn)e−iωxn , kω ∈CJ (7)

The complex coefficients to be estimated, k ∈CO×J , O = card(Ω), constitute the
Fourier series coefficients, with intensities split over V . This formulation reduces
to the standard Fourier style spectral relation (8) in the case φ(v) ≡ 1

ŷ = ∑
ω∈Ω

kω e−iωx =Φk (8)

whereΦ= [e−iω1x ... e−iωO x ]. If the number J of basis functions equals the number
of data points N , the model will exactly interpolate the signal, i.e., ŷ = y . If in
addition to J = N , the basis function centers are placed at µ j = v j , we obtain a
Gaussian process regression interpretation where κ is the covariance function.
Due to the numerical properties of the analytical solution of the least-squares
problem, it is often beneficial to reduce the number of parameters significantly,
so that J ¿ N . If the chosen basis functions are suitable for the signal of interest,
the error induced by this dimensionality reduction is small. In a particular case,
the number of RBFs to include, J , and the bandwidth Σ is usually chosen based
on evidence maximization or cross validation [Murphy, 2012].

To facilitate estimation of the parameters in Eq. (6), we rewrite the model by
stacking the regressor vectors in a regressor matrix A, see Sec. 2.2, such that

An,: = vec
(
φ(vn)ΦT

)T ∈CO·J ,n = 1...N

We further define Ã by expanding the regressor matrix into its real and imaginary
parts

Ã = [ℜA ℑA
] ∈RN×2O J

such that routines for real-valued least-squares problems can be used. The com-
plex coefficients are, after solving the real-valued problem (3), retrieved as
k =ℜk + iℑk where

[ℜkT ℑkT]T= argmin
k̃

∥∥Ãk̃ − y
∥∥

Since the purpose of the decomposition is spectral analysis, it is important to
normalize the basis function activations such that the total activation over V for
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each data point is unity, to this end, the expressions (6) and (7) are modified to

ŷ = ∑
ω∈Ω

J∑
j=1

kω, j κ̄ j (v)e−iωx

= ∑
ω∈Ω

kT
ωφ̄(v)e−iωx

κ̄ j (v) = κ j (v)∑
j κ j (v)

, φ̄(v) = φ(v)∑
φ(v)

(9)

This ensures that the spectral content for a single frequency ω is a convex com-
bination of contributions from each basis function in the scheduling dimension.
Without this normalization, the power of the spectrum would be ill-defined and
depend on an arbitrary scaling of the basis functions. The difference between a set
of Gaussian functions and a set of normalized Gaussian functions is demonstrated
in Fig. 1. The normalization performed in Eq. (9) can be viewed as the kernel
function being made data adaptive by normalizing φ(v) to sum to one.

2.4 Amplitude and phase functions
In spectral analysis, two functions of the Fourier series coefficients are typically of
interest, the amplitude and phase functions, which are easily obtained and are
stated here without proof4:

PROPOSITION 1
Let a signal y be composed by the linear combination y = k1 cos(x)+k2 sin(x),
then y can be written on the form

y = A cos(x −ϕ)

with

A =
√

k2
1 +k2

2 ϕ= arctan

(
k2

k1

)
2

From this we obtain the following two functions for a single frequency ω

A(ω) = |kω| =
√
ℜkω

2 +ℑkω
2

ϕ(ω) = arg(kω) = arctan(ℑkω/ℜkω)

In the proposed spectral decomposition method, these functions are further
dependent on v , and are approximated by

A(ω, v) =
∣∣∣∣∣ J∑

j=1
kω, j κ̄(v)

∣∣∣∣∣= ∣∣kT
ω φ̄(v)

∣∣ (10)

ϕ(ω, v) = arg

(
J∑

j=1
kω, j κ̄(v)

)
= arg

(
kT
ω φ̄(v)

)
(11)

4 The proof is added to this thesis in the article appendix.
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2.5 Covariance properties
We will now investigate and prove that Eqs. Eq. (10) and Eq. (11) lead to asymptot-
ically unbiased and consistent estimates of A and ϕ and will provide a strategy to
obtain confidence intervals. We will initially consider a special case for which anal-
ysis is simple, whereafter we invoke the RBF universal approximation results of
Park [Park and Sandberg, 1991] to show that the estimators are well motivated for a
general class of functions. We start by considering signals on the form Eq. (12), for
which unbiased and consistent estimates of the parameters are readily available:

PROPOSITION 2
Let a signal y be given by

y = a(v)cos(x)+b(v)sin(x)+e

a(v) =αTφv

b(v) =βTφv

e ∈N (0,σ2) (12)

with φv =φ(v) and let α̂ and β̂ denote unbiased estimates of α and β, then

Â(α̂, β̂) =
√(

α̂Tφv
)2 + (

β̂Tφv
)2 (13)

is a biased estimate of A with

A < E{
Â

}<√
A2 +φT

vΣαφv +φT
vΣβφv (14)

Proof Since α, β and e appear linearly in Eq. (12), unbiased and consistent
estimates α̂ and β̂ are available from the least-squares procedure [Johansson,
1993]. The expected value of Â2 is given by

E
{

Â2}= E{(
α̂Tφv

)2 + (
β̂Tφv

)2
}

= E
{(
α̂Tφv

)2
}
+E

{(
β̂Tφv

)2
}

(15)

We further have

E
{(
α̂Tφv

)2
}
= E{

α̂Tφv
}2 +V{

α̂Tφv
}= (

αTφv
)2 +φT

vΣαφv (16)

where Σα and Σβ are the covariance matrices of α̂ and β̂ respectively. Calculations
for β are analogous. From (15) and (16) we deduce

E
{

Â2}= (
αTφv

)2 + (
βTφv

)2 +φT
vΣαφv +φT

vΣβφv

= A2 +φT
vΣαφv +φT

vΣβφv (17)
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Now, due to Jensen’s inequality, we have

E
{

Â
}= E{√

Â2
}
<

√
E
{

Â2
}

(18)

which provides the upper bound on the expectation of Â. The lower bound is
obtained by writing Â on the form

Â(k) =
√(

α̂Tφv
)2 + (

β̂Tφv
)2 = ∥∥k̂

∥∥ (19)

with k̂ = [α̂Tφv β̂Tφv ]. From Jensen’s inequality we have

E
{

Â
}= E{∥∥k̂

∥∥}> ∥∥E{
k̂
}∥∥= ∥∥k

∥∥= A (20)

which concludes the proof. 2

COROLLARY 1

Â =
√(

α̂Tφv
)2 + (

β̂Tφv
)2 (21)

is an asymptotically unbiased and consistent estimate of A.

Proof Since the least-squares estimate upon which the estimated quantity is
based, is unbiased and consistent, the variances in the upper bound in Eq. (14)
will shrink as the number of datapoints increases and both the upper and lower
bounds will become tight, hence

E
{

Â
}→ A as N →∞ 2

Analogous bounds for the phase function are harder to obtain, but the simple
estimator ϕ̂= arg k̂ based on k̂ obtained from the least-squares procedure is still
asymptotically consistent [Kay, 1993].

Estimates using the least-squares method (3) are, under the assumption
of uncorrelated Gaussian residuals of variance σ2, associated with a posterior
parameter covariance σ2(ATA)−1. This will in a straightforward manner produce
confidence intervals for a future prediction of y as a linear combination of the
estimated parameters. Obtaining unbiased estimates of the confidence intervals
for the functions A(v,ω) and ϕ(v,ω) is made difficult by their nonlinear nature.
We therefore procede to establish an approximation strategy.

The estimated parameters k are distributed according to a complex-normal
distribution CN (x + i y,Γ,C ), where Γ and C are obtained through

Γ=Σxx +Σy y + i (Σy x −Σx y )

C =Σxx −Σy y + i (Σy x +Σx y )

Σ=
[
Σxx Σx y
Σy x Σy y

]
=σ2(ÃTÃ)−1 (22)
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For details on the CN -distribution, see, e.g., [Picinbono, 1996]. A linear combina-
tion of squared variables distributed according to a complex normal (CN ) distri-
bution, is distributed according to a generalized χ2 distribution, a special case of
the gamma distribution. Expressions for sums of dependent gamma-distributed
variables exist, see, e.g., [Paris, 2011], but no expressions for the distribution of
linear combinations of norms of Gaussian vectors, e.g., Eq. (10), are known to
the authors. In order to establish estimates of confidence bounds on the spectral
functions, one is therefore left with high-dimensional integration or Monte-Carlo
techniques. Monte-Carlo estimates will be used in the results presented in this
paper. The sampling from a CN -distribution is outlined in Proposition 3:

PROPOSITION 3
The vector

z = x̃ + i ỹ ∈CD

where [
x̃
ỹ

]
= L

[
x
y

]
, x, y ∼N (0, I ) ∈RD

and
Σ= LLT

is a Cholesky decomposition of the matrix

Σ= 1

2

[ℜ(Γ+C ) ℑ(−Γ+C )
ℑ(Γ+C ) ℜ(Γ−C )

]
∈R2D×2D

is a sample from the complex normal distribution CN (0,Γ,C ).

Proof Proof is given in the appendix. 2

By sampling from the posterior distribution p(kω|y) and propagating the sam-
ples through the non-linear functions A(ω, v) and ϕ(ω, v), estimates of relevant
confidence intervals are easily obtained.

The quality of the estimate thus hinges on the ability of the basis function
expansion to appriximate the given functions a and b in Eq. (12). Park [Park
and Sandberg, 1991] provides us with the required result that establishes RBF
expansions as a universal function approximator.5

2.6 Comparison to related methods
The act of performing a basis function expansion in V could be compared to
performing windowing alongV with a Gaussian window, with the added constraint∑

j κ j (v) = 1 imposed by the formulation

κ j (v)∑
j κ j (v)

(23)

which implies an adaptation of the window to the windows surrounding it.

5 For well behaved functions.
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3. Experimental Results

3.1 Simulated signals
To asses the qualities of the proposed spectral decomposition method, a test signal
yt is generated as follows

yt =
∑
ω∈Ω

A(ω, v)cos
(
ωx −ϕ(ω, v)

)+e

vt = linspace(0,1, N )

x = sort(U (0,10))

e ∈N (0,0.12) (24)

where Ω = {4π,20π,40π}, the scheduling variable vt is generated as N = 500
equidistantly sampled points between 0 and 1 and x is a sorted vector of uni-
form random numbers. The sorting is carried out for visualization purposes and
for the Fourier based methods to work, this property is not a requirement for the
proposed method to work. The functions A and ϕ are defined as follows

A(4π, v) = 2v2

A(20π, v) = 2/(5v +1)

A(40π, v) = 3e−10(v−0.5)2

ϕ(ω, v) = 0.5A(ω, v) (25)

where the constants are chosen to allow for convenient visualization. The signals
yt and vt are visualized as functions of the sampling points x in Fig. 2 and the
functions A and ϕ together with the resulting estimates and confidence intervals
using J = 50 basis functions are shown in Fig. 2. The traditional power spectral
density can be calculated from the estimated coefficients as

P (ω) =
∣∣∣∣∣ J∑

j=1
kω, j

∣∣∣∣∣
2

(26)

and is compared to the periodogram and Welch spectral estimates in Fig. 3. This
figure illustrates how the periodogram and Welch methods fail to clearly identify
the frequencies present in the signal due to the dependence on the scheduling vari-
able v . The LPV spectral method, however, correctly identifies all three frequencies
present.
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Figure 2. Left: True and estimated functional dependencies with 95% confidence
intervals. Right: Test signal with N = 500 datapoints. The signal contains three
frequencies, where the amplitude and phase are modulated by the functions (25)
depicted in the left panel.
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Figure 3. Estimated spectra, test signal. The periodogram and Welch methods
fail to identify the frequencies present in the signal due to the dependence on
the scheduling variable v . The LPV spectral method correctly identifies all three
frequencies present.
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3.2 Measured signals
The proposed method was used to analyze measurements obtained from an
ABB YuMi robot. Due to torque ripple and other disturbances, there is a velocity
dependent periodic signal present in the velocity control error, which will serve as
the subject of analysis. The analyzed signal is shown in Fig. 4.

The influence of Coulomb friction on the measured signal is mitigated by
limiting the support of half of the basis functions to positive velocities and vice
versa. A total number of 10 basis functions was used and the model was identified
with ridge regression. The regularization parameter was chosen using the L-curve
method [Hansen, 1994]. The identified spectrum is depicted in Fig. 5, where the
dominant frequencies are identified. These frequencies correspond well with a
visual inspection of the data. Figure 5 further illustrates the result of applying
the periodogram and Welch spectral estimators to data that has been sorted and
interpolated to an equidistant grid. These methods correctly identify the main fre-
quency, 4 rev−1, but fail to identify the lower amplitude frequencies at 7 rev−1 and
9 rev−1 visible in the signal. The amplitude functions for three strongest frequen-
cies are illustrated in Fig. 6, where it is clear that the strongest frequency, 4 rev−1,
has most of its power distributed over the lower velocity datapoints, whereas the
results indicate a slight contribution of frequencies at 7 rev−1 and 9 rev−1 at higher
velocities, corresponding well with a visual inspection of the signal. Figure 6 also
displays a histogram of the velocity values of the analyzed data. The confidence
intervals are narrow for velocities present in the data, while they become wider
outside the represented velocities.
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Figure 4. Measured signal as a function of sampling location, i.e., motor position.
The color information indicates the value of the velocity/scheduling variable in
each datapoint. Please note this is not a plot of the measured data sequentially
in time. This figure indicates that there is a high amplitude periodicity of 4 rev−1

for low velocities, and slightly higher frequencies but lower amplitude signals at
7 rev−1 and 9 rev−1 for higher velocities.
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Figure 5. Estimated spectra, measured signal. The dominant frequencies are iden-
tified by the proposed method, while the Fourier based methods correctly identify
the main frequency, 4 rev−1, but fail to identify the lower amplitude frequencies at
7 rev−1 and 9 rev−1 visible in the signal in Fig. 4.
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Figure 6. Estimated functional dependences with 99% confidence intervals. The
left axis and histogram illustrates the number of datapoints available at each veloc-
ity v . The right axis illustrate the estimated amplitude functions together with their
confidence intervals.
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4. Conclusions

We have developed a spectral estimation method that can decompose the spec-
trum of a signal along an external dimension, which allows estimation of the
amplitude and phase of the sinusoids as functions of the external variable. The
method is linear in the parameters which allows for straight-forward calculation
of the spectrum through solving a set of linear equations. The method does not
impose limitations such as equidistant sampling, does not suffer from leakage
and allows for estimation of arbitrary chosen frequencies. The closed-form calcu-
lation of the spectrum requires O(J 3O3) operations due to the matrix inversion
associated with solving the LS-problem, which serve as the main drawback of the
method if the number of frequencies to estimate is large (the product JO greater
than a few thousands).

A. Proofs

Proof Proposition 3
Let vT= [

xT yT
]
. The mean and variance of ṽ = Lv is given by

E {ṽ} = LE {v} = 0

E
{

ṽ ṽT
}= E{

Lv vTLT
}= LI LT=Σ

The complex vector z = x + i y ∈ CD composed of the elements of v is then
CN (0,Γ,C )-distributed according to [Picinbono, 1996, Proposition 1]. 2

B. Additional proofs not part of the original article

Proof Proposition 1
The amplitude A is given by two trigonometric identities

A cos(x −ϕ) = A cos(ϕ)cos(x)+ A sin(ϕ)sin(x) (27)

= k1 cos(x)+k2 sin(x) (28)

k2
1 +k2

2 = A2(cos(ϕ)2 + sin(ϕ)2) = A2 (29)

and the phase ϕ by

arctan

(
k2

k1

)
= arctan

(
A sinϕ

A cosϕ

)
=ϕ

where k1 = A cos(ϕ), k2 = A sin(ϕ) is identified from (27). 2
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Paper III

Six DOF Eye-to-Hand Calibration from 2D
Measurements Using Planar Constraints

Fredrik Bagge Carlson Rolf Johansson Anders Robertsson

Abstract

This article presents a linear, iterative method to solve the eye-to-hand
calibration problem between a wrist-mounted laser scanner and the tool
flange of a robot. Measurement data are acquired from a set of non parallel
planes whereafter the plane equations and desired rigid transformation ma-
trix are found in a two-step, iterative fashion. The method is shown to handle
large error in the initial estimate of the transform and results are verified
in both simulations and experiments using a seam tracking laser sensor for
welding applications.

Originally published in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Reprinted with permission. An open-source imple-
mentation of the algorithm presented is provided in [Bagge Carlson, 2015].
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Figure 1. ABB IRB140 used for experimental verification.

1. Introduction

Laser scanners have been widely used for many years in the field of robotics.
A large group of laser scanners, such as 2D laser range finders and laser stripe
profilers, provide accurate distance measurements confined to a plane. By moving
either the scanner or the scanned object, a 2D laser scanner can be used to build a
3D representation of an object or the environment. To this purpose, laser scanners
are commonly mounted on mobile platforms or robots.

This work considers the calibration of a wrist mounted laser scanner for robotic
3D scanning and weld seam tracking applications. To relate the measurements of
the scanner to the robot coordinate system, the rigid transformation between the
scanner coordinate system and the tool flange of the robot is needed.

A naive approach to the stated calibration problem is to make use of the 4/5/6-
point tool calibration routines commonly found in industrial robot systems. These
methods suffer from the fact that the origin and the axes of the sensor coordinate
system are invisible to the operator, which must rely on visual feedback from both
the workspace and a computer monitor simultaneously. Further, the accuracy
of these methods is very much dependent on the skill of the operator and data
collection for even a small amount of points is very tedious.

Other well known algorithms for eye-to-hand calibration include [Daniilidis,
1999; Tsai and Lenz, 1989; Horaud and Dornaika, 1995], which are all adopted
for calibration of a wrist-mounted camera using a calibration pattern. A laser
scanner is fundamentally different in the information it captures, which must be
considered by the calibration algorithm employed.

Kinematic calibration of robotic manipulator using planar constraints in vari-
ous formats has been considered before. In [Zhuang et al., 1999], the proposed
method begins with an initial estimate of the desired parameters, which is im-
proved with a non-linear optimization algorithm. The authors also discuss ob-
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servability issues related to identification using planar constraints. The method
focuses on improving parameter estimates in the kinematic model of the robot,
and convergence results are therefore only presented for initial guesses very close
to their true values (0.01mm/0.01°).

In [Zhang and Pless, 2004], the transformation between a camera and a laser
range finder is found using a checker board pattern and computer vision to esti-
mate the location of the calibration planes. With the equations of the calibration
planes known, the desired transformation matrix is obtained from a set of linear
equations.

Planar constraints have also been considered in [Ikits and Hollerbach, 1997]
where the authors employ a non-linear optimization technique to estimate the
kinematic parameters. The method requires careful definition of the planes and
can not handle arbitrary frame assignments.

A wrist mounted sensor can be seen as an extension of the kinematic chain
of the robot. Initial guesses can be poor, especially if based on visual estimates.
This paper presents a method based solely on solving linear sets of equations. The
method accepts a very crude initial estimate of the desired kinematic parameters,
which is refined in an iterative procedure. The placement of the calibration planes
is assumed unknown, and their locations are found together with the desired
transformation matrix.

The article is structured as follows, preliminary equations and notation are
covered in Sec. 2 followed by the introduction of the proposed approach in
Sec. 3. Section 4 presents a simulation study of convergence properties as well as
experimental verification of the approach. Conclusions are finally given in Sec. 5.

2. Preliminaries

Throughout the paper the following notation will be used. A subscript denotes the
frame of reference, such that the coordinates of a point p A are given in the frame
A. T B

A ∈ SE (4) denotes a transformation matrix from frame A to frame B such that
[Hartenberg and Denavit, 1964]

T B
A pB = pA (1)

The matrix T B
A can be decomposed into RB

A and pB
A such that

T B
A =

[
RB

A pB
A

0 1

]
(2)

The normal of a plane from which measurement point i is taken, given in frame
A, will be denoted ni

A .
A plane is completely specified by

nTp = d ,
∥∥n

∥∥
2 = 1 (3)

where d is the orthogonal distance from the origin to the plane, n the plane normal
and p is any point on the plane.

59



Paper III. Six DOF Eye-to-Hand Calibration ... Using Planar Constraints

Find plane equations
nTp = d

Find transformation
matrix T S

T F

Initial estimate of T S
T F End

Figure 2. Illustration of the two-step, iterative method.

2.1 Laser scanner characteristics
The laser scanner consists of a camera and a laser source emitting light in a plane
which intersects a physical plane in a line. The three dimensional location of a
point along the projected laser line may be calculated by triangulation, based on a
known geometry between the camera and the laser emitter. A single measurement
from the laser scanner typically yields the coordinates of a large number of points
in the laser plane, alternatively, a measurement consists of a single point and the
angle of the surface, which is easily converted to two points.

3. Method

The objective of the calibration is to find the transformation matrix T S
T F ∈ SE(4)

that relates the measurements of the laser scanner to the coordinate frame of the
tool flange of the robot.

The kinematic chain of a robot manipulator will here consist of the transfor-
mation from the robot base frame to the tool flange T

T Fi
RB , given by the manipulator

forward kinematics in pose i , and the transformation from the tool flange to the
sensor T S

T F . The sensor, in turn, projects laser light onto a plane with unknown
equation. A point observed by the sensor can be translated to the robot base frame
by

pRBi
= T

T Fi
RB T S

T F pSi
(4)

where i denotes the index of the pose.
To find T S

T F , an iterative two-step method is proposed, which starts with an
initial guess of the matrix. In each iteration, the equations for the planes are found
using eigendecomposition, whereafter a set of linear equations is solved for an
improved estimate of the desired transformation matrix. The scheme, illustrated
in Fig. 2, is iterated until convergence.

3.1 Finding the calibration planes
Consider initially a set of measurements,PS = [p1, ..., pNp ]S , gathered from a single
plane. The normal can be found by Principal Component Analysis (PCA), which
amounts to performing an eigendecomposition of the covariance matrix C of the
points [Pearson, 1901]. The eigenvector corresponding to the smallest eigenvalue
of C will be the desired estimate of the plane normal.1 To this purpose, all points

1 This eigenvalue will correspond to the mean squared distance from the points to the plane.
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are transformed to a common frame, the robot base frame, using (4) and the
current estimate of T S

T F .
To fully specify the plane equation, the center of mass µ of PRB is calculated.

The distance d to the plane is then calculated as the length of the projection of
the vector µ onto the plane normal

d = ∥∥n̄(n̄Tµ)
∥∥ (5)

where n̄ is a normal with unit length given by PCA. This distance can be encoded
into the normal by letting

∥∥n
∥∥= d . The normal is then simply found by

n = n̄(n̄Tµ) (6)

This procedure is repeated for all measured calibration planes and results in a
set of normals N that will be used to find the optimal T S

T F .

3.2 Solving for T S
T F

All measured points should fulfill the equation for the plane they were obtained
from. This means that for a single point p

n̄Tp = d ⇐⇒ nTp = ∥∥n
∥∥2

(7)

A measurement point obtained from the sensor in the considered setup should
thus fulfill the following set of linear equations

pRBi
= T

T Fi
RB T S

T F pSi
(8)

nTpRBi
= ∥∥n

∥∥2
(9)

pSi
= [

pT
Si

1
]T= [

xSi
ySi

zSi
1
]T

(10)

where bold-face notation denotes a point expressed in homogeneous coordinates
according to (10). Without loss of generality, the points pS can be assumed to lie on
the plane zS = 0. As a result, the third column in T S

T F can not be solved for directly.
The constraints on RS

T F to belong to SO(3), will however allow for reconstruction
of the third column in RS

T F from the first two columns.
Let T̃ denote the remainder of T S

T F after removing the third column and the last
row. Solving the linear equations (8)-(9) for the parameters in T̃ can be expressed
as

Ai k +qi =
∥∥ni

∥∥ ⇐⇒ Ai k = ∥∥ni
∥∥−qi (11)

where k = vec(T̃ ) ∈R9×1 consists of the stacked columns of T̃ and

Ai =
[
nT

i R
T Fi
RB xSi

nT
i R

T Fi
RB ySi

nT
i R

T Fi
RB

] ∈R1×9 (12)

qi = nT
i p

T Fi
RB ∈R (13)
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Since (8) and (9) are linear in the parameters, all elements of T S
T F can be extracted

into k and Ai can be obtained by performing the matrix multiplications in (8)
and (9) and identifying terms containing any of the elements of k. Terms with
which do not include any parameter to be identified are associated with qi . The
final expressions for Ai and qi given above can then be obtained by identifying
matrix multiplication structures among the elements of Ai and qi .

Equation (11) does not have a unique solution. A set of at least nine points
gathered from at least three planes is required in order to obtain a unique solution
to the vector k. This can be obtained by stacking the entries in Eq. (11) according
to

Ak = Y, A =


A1
A2
...

ANp

 , Y =


∥∥n1

∥∥−q1∥∥n2
∥∥−q2
...∥∥nNp

∥∥−qNp

 (14)

The vector k∗ of parameters that minimizes

k∗ = argmin
k

∥∥Ak −Y
∥∥

2 (15)

can then be obtained from the equation2 [Rugh, 1996; Golub and Van Loan, 2012]

k∗ = (
ATA

)−1ATY (16)

Eq. (16) is known as the least-squares solution and the full-rank matrix
(
ATA

)−1AT

is commonly referred to as the pseudo inverse of A. If A is a square matrix, the
pseudo inverse reduces to the standard matrix inverse. If A however is a tall matrix,
the equation Ak = Y is over determined and Eq. (16) produces the solution k∗ that
minimizes Eq. (15).

Since k only contains the first two columns of RS
T F , the third column is formed

as

R3 = R1 ×R2 (17)

where × denotes the cross product between R1 and R2, which produces a vector
orthogonal to both R1 and R2. The resulting RS

T F will in general not belong to SO(3).
The closest valid rotation matrix can be found by Singular Value Decomposition
according to [Eggert et al., 1997]

R =U SV T (18)

R⊥ =U

1
1

det(UV T)

V T (19)

2 Commonly solved by the command k= A\Y in Julia and Matlab
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or using the matrix square root3 as [Eggert et al., 1997]

R⊥ = R
(
RTR

)− 1
2 (20)

The procedure of orthoganalizing R will change the corresponding entries in
k∗ and the resulting coefficients will no longer solve the problem (15). A second
optimization problem can thus be formed to re-estimate the translational part of
k, given the orthogonalized rotational part. Let k be decomposed according to

k = [
R̃∗ p

]
R̃∗ ∈R1×6, p ∈R1×3 (21)

and denote by An:k columns n to k of A. The optimal translational vector, given
the orthonormal rotation matrix, is found by solving the following optimization
problem

Ỹ = Y−A1:6R̃∗ (22)

p∗ = argmin
p

∥∥A7:9p − Ỹ
∥∥

2 (23)

with the solution

p∗ = (AT
7:9A7:9)−1AT

7:9Ỹ (24)

3.3 Final Refinement
As noted in [Zhang and Pless, 2004], solving an optimization problem like (15)
is equivalent to minimizing the algebraic distance between the matrix, parame-
terized by k, and the data. There is no direct minimization of the distances from
measurements to planes involved. Given the result from the above procedure as
initial guess, any suitable, iterative minimization strategy can be employed to
further minimize a cost function on the form

J (T S
T F ) =

Np∑
i=1

(nT
i pRBi

(T S
T F )−∥∥ni

∥∥)2 (25)

which is the squared distance from the measurement point to the plane. Here,
pRBi

is seen as a function of T S
T F according to (8).

4. Results

The performance of the method was initially studied in simulations, Sec. 4.1,
which allows for a comparison between the obtained estimate and the ground
truth. The simulation study is followed by experimental verification, Sec. 4.2,
using a real laser scanner mounted on the wrist of an industrial manipulator.
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Figure 3. Convergence results for simulated data during 100 realizations. 30 poses
in total on 3 planes. Measurement noise level σ= 0.5mm is marked with a dashed
line. On the left, the Frobenius norm between the true matrix and the estimated,
on the right, the RMS distance between measurement points and the estimated
plane.

4.1 Simulations
To study the convergence properties of the proposed approach, a simulation study
was conducted. A randomly generated T S

T F was used together with measurements

3 This method may produce a result with det(R)=-1 if the initial guess is very poor.
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Figure 4. Errors in T S
T F before and after calibration for 100 realizations with 30

calibration iterations. 30 poses in total on 3 planes. The measurement noise level
σ= 0.5mm is marked with a dashed line. On the left, the translational error between
the true matrix and the estimated, on the right, the rotational error.
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Figure 5. A visualization of the reconstructed planes used for data collection. The
planes were placed so as to be close to orthogonal to each other, surrounding the
robot.

from a set of random poses. The initial guess of T S
T F was chosen as the true matrix

with an error distributed uniformly according to Table 1. The measurements were
obtained from three orthogonal planes and corrupted with Gaussian white noise
with standard deviation σ= 0.5mm.

Table 1. Distribution of errors in initial estimate of T S
T F .

Coordinates x, y, z roll, pitch, yaw

Noise Distribution U (−200mm,200mm) U (−30°,30°)

Figure 3 illustrates the convergence for 100 realizations of the described proce-
dure. Most realizations converged to the true matrix within 15 iterations. Analysis
shows that careful selection of poses results in faster convergence. The random
pose selection strategy employed in the simulation study suffers the risk of co-
linearity between measurement poses, which slows down convergence.

Figure 4 illustrates the final results in terms of the accuracy in both the transla-
tional and rotational part of the estimate of T S

T F .

4.2 Experiments
Experimental verification of the proposed method was conducted with an ABB
IRB140 robot equipped with a Meta SLS 25 [Meta Vision Systems, 2014] weld
seam tracking sensor, see Fig. 1. A whiteboard was placed on different locations
surrounding the robot, see Fig. 5, and several measurements of each plane were
recorded.
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Figure 6. Convergence results for experimental data gathered from 5 planes. The
RMS distance between measurement points and the estimated planes are shown
together with the mean over all planes.

The algorithm was started with the initial guess

T S
T F =


1 0 0 0
0 1 0 0.15
0 0 1 0.15
0 0 0 1

 (26)

and returned the final estimate

T S
T F =


0.9620 0.2710 0.0010 0.0850
−0.2710 0.9620 −0.0240 0.1170
−0.0070 0.0230 1.0000 0.1610

0 0 0 1

 (27)

The translational part of the initial guess was obtained by estimating the distance
from the tool flange to the origin of the laser scanner, whereas the rotation matrix
was obtained by estimating the projection of the coordinate axes of the scanner
onto the axes of the tool flange.4

The convergence behavior, illustrated in Fig. 6, is similar to that in the simula-
tion, and the final error was on the same level as the noise in the sensor data. A
histogram of the final errors is shown in Fig. 7.

4 The fact that the initial estimate of the rotation matrix was the identity matrix is a coincidence.
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Figure 7. Histogram of errors Y−Aw∗ for the experimental data.

5. Conclusions

This paper has presented a robust, linear method for the kinematic calibration of a
wrist mounted laser sensor. Large uncertainties in the initial estimates are handled
and the estimation error converges to below the level of the measurement noise.
The calibration routine can be used for any type of laser sensor that measures
distances in a plane, as long as the forward kinematics is known, such as when the
sensor is mounted on the flange of an industrial robot or on a mobile platform or
drone, tracked by an external tracking system.
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A Calibration of point lasers

A. Calibration of point lasers

In the case that the laser sensor measures the distance to a single point only,
the above algorithm must be modified slightly. We can now only determine the
equation for the laser line, as opposed to before when we could find the laser light
plane and thus the entire calibration matrix in SE(3).

Once more, we collect data from three planar surfaces. The required modifica-
tions to the proposed algorithm are listed below

Eq. (10) We now assume, without loss of generality, that the laser point lies along
the line yS = zS = 0. As a result, the second and third columns of T S

T F can not
be solved for. These two vectors can be set to zero.

Eq. (11) The truncated vector k ∈R6 will now consist of the first column of RS
T F

and the translation vector pS
T F .

Eq. (12) The tree middle elements of Ai , corresponding to nT
i R

T Fi
RB ySi

will be re-
moved.

Ortogonalization The ortogonalization procedure reduces to the normalization
of the first three elements of k to sum to one.

The rest of the algorithm proceeds according to the original formulation.
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Paper IV

Particle Filter Framework for 6D Seam
Tracking Under Large External Forces Using

2D Laser Sensors

Fredrik Bagge Carlson Martin Karlsson
Anders Robertsson Rolf Johansson

Abstract

We provide a framework for 6 DOF pose estimation in seam-tracking
applications using particle filtering. The particle filter algorithm developed
incorporates measurements from both a 2 DOF laser seam tracker and the
robot forward kinematics under an assumed external force. Special attention
is paid to modeling of disturbances in the respective measurements, and
methods are developed to assist the selection of sensor configurations for
optimal estimation performance. The developed estimation algorithm and
simulation environment are provided as an open-source, extendable package,
written with an intended balance between readability and performance.

Originally published in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Reprinted with permission. An open-source imple-
mentation of the framework presented is provided in [Bagge Carlson and Karlsson,
2016].

71



Paper IV. Particle Filter Framework for 6D Seam Tracking ...

1. Introduction

Friction stir welding (FSW) is becoming an increasingly popular joining technique
that is capable of producing stronger joints than fusion welding, allowing for a
reduction of material thickness and weight of the welded components. Conven-
tional, custom-made FSW machines of gantry type are built to support the large
forces inherent in the FSW process. The high stiffness required has resulted in
expensive and inflexible machinery which has limited the number of feasible ap-
plications of FSW as well as the adaptation of FSW as a joining technique. Recently,
the use of robotic manipulators in FSW applications has gained significant interest
due to the lower cost compared to conventional FSW machinery as well as the
much increased flexibility of an articulated manipulator [De Backer, 2014; Guillo
and Dubourg, 2016]. The downsides of the use of robots include the comparatively
low stiffness which causes significant deflections during welding, with a lower
quality weld as result.

A typical approach adopted to reduce the uncertainty introduced by deflec-
tions is stiffness/compliance modeling [De Backer, 2014; Guillo and Dubourg,
2016; Lehmann et al., 2013; De Backer and Bolmsjö, 2014]. This amounts to find-
ing models of the joint deflections ∆q or of the Cartesian deflections ∆x on one of
the forms

∆q =C j (τ) (1)

∆x =CC ( f ) (2)

where τ and f are the joint torques and external forces respectively, x is some no-
tion of Cartesian pose, C denotes some, possibly non-linear, compliance function.
The corresponding inverse relations are typically referred to as stiffness models.
Robotic compliance modeling has been investigated by many authors, where
the most straightforward approach is based on linear models obtained by mea-
suring the deflections under application of known external loads. To avoid the
dependence on expensive equipment capable of accurately measuring the deflec-
tions, techniques such as the clamping method have been proposed [Lehmann
et al., 2013; Sörnmo, 2015; Olofsson, 2015] for the identification of models on the
form (1). This approach makes the assumption that deflections only occur in
the joints, in the direction of movement. Hence, deflections are not captured if
they occur in the links, or in the joints orthogonally to the movement, limiting the
resulting accuracy of the model obtained [Sörnmo, 2015]. In [Guillo and Dubourg,
2016], the use of arm-side encoders was investigated to allow for direct measure-
ment of the joint deflections. As of today, arm-side encoders are not available in
the vast majority of robots, and the modification required to install them is yet
another obstacle to the adaptation of robotic FSW. The method further suffers
from the lack of modeling of link- and orthogonal joint deflections.

Cartesian models like (2) have been investigated in the FSW context by [De
Backer, 2014; Guillo and Dubourg, 2016; Abele et al., 2008]. The proposed Cartesian
deflection models are local in nature and not valid globally. This requires separate
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models to be estimated throughout the workspace, which is time consuming and
limits the flexibility of the setup.

Although the use of compliance models leads to a reduction of the uncertainty
introduced by external forces, it is difficult to obtain compliance models accurate
enough throughout the entire workspace. This fact serves as the motivation for
complementing the compliance modeling with sensor-based feedback. Sensor-
based feedback is standard in conventional robotic arc and spot welding, where
the crucial task of the feedback action is to align the weld torch with the seam
along the transversal direction, the major uncertainty being the placement of
the work pieces. During FSW, however, the uncertainties in the robot pose are
significant, while the tilt angle of the tool in addition to its position is of great
importance [De Backer et al., 2012]. This requires a state estimator capable of
estimating accurately at least four DOF, with slightly lower performance required
in the tool rotation axis and the translation along the weld seam. Conventional
seam-tracking sensors are capable of measuring 1-3 DOF only [Nayak and Ray,
2013; Gao et al., 2012], limiting the information available to a state estimator and
thus maintaining the need for, e.g., compliance modeling.

Motivated by the concerns raised above, we develop a framework for simula-
tion of robotic seam tracking under the influence of large external process forces.
We initially develop a particle-filter based state estimation algorithm in Sec. 2,
capable of incorporating compliance models and sensor-based feedback in order
to estimate the full 6 DOF pose of the robot relative to the seam. We then proceed
to develop a framework for seam-tracking simulation in Sec. 3, where the relation
between error sources and estimation performance is analyzed. The framework is
further intended to assist the user in selection of an optimal sensor configuration
for a given seam, where sensor configurations vary in, e.g., the number of sensors
applied and their distance from the tool center point (TCP).

2. Method

Initially, a description of how the particle filter’s ability to handle non-linear, non-
Gaussian systems will be leveraged to estimate the current tool pose relative to the
weld seam. The probability densities used in the state transition and measurement
update steps are introduced and practical implementation details are described.

A natural state to consider in robotics is the set of joint angles, q , and their
velocities, q̇ . Due to potential deflections in the kinematic structure, the joint
angles are not an accurate description of the robot pose in this application. The
developed state estimator will therefore work in the space SE(3), represented
as 4×4 transformation matrices, which further allows for a natural inclusion of
sensor measurements. The sensor information available from the robot is naturally
transformed to SE (3) by means of the forward kinematics function Fk (q). Due to
the typically low velocities and accelerations present during FSW, we chose to not
include velocities in the state to be estimated. This will reduce the state dimension
and computational burden significantly, while maintaining a high estimation
performance.
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2.1 Preliminaries
This section briefly introduces a number of coordinate frames and variables used
in the later description of the method. For a general treatment of coordinate
frames and transformations, see [Murray et al., 1994].

Table 1 lists all coordinate frames that will be used to describe poses, see
Fig. 1 for reference, and all variables referred to in the following description. All
Cartesian-space variables are given in the frame RB unless otherwise noted.

T
S

Figure 1. Coordinate frames (x, y, z) = (red, green, blue). The origin of frame S is
located in the laser plane at the desired seam intersection point.

2.2 Particle filter
A brief description of the well known particle filter (PF) is given. For a thorough
introduction, please refer to one of many texts on the subject [Gustafsson, 2010;
Thrun et al., 2005; Rawlings and Mayne, 2009].

For a linear, Gaussian system, the filtering densities at each sample instant
are available in closed form through the Kalman filter (KF) [Kalman, 1960]. In the
non-linear, non-Gaussian case, computing the exact filtering density is no longer
tractable. The PF resolves this problem by approximating the filtering densities
by a collection of samples (particles), also referred to as state hypotheses. Each
iteration of the filter algorithm amounts to propagating the particles forward
in time using a state transition density p(x+|x). This density incorporates the
uncertainty present in the state transition similar to the state transition noise in
the KF. However, for the PF, the state noise is not restricted to be Gaussian. The
mean of p(x+|x) can be any arbitrary non-linear function of the current state,
control signals etc..
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Table 1. Definition and description of frames and variables.

RB Robot base frame.
T Tool frame, attached to the (TCP).
S Sensor frame, specified according to Fig. 1.

Variable Description

q ∈Rn Joint Coordinate
q̇ ∈Rn Joint velocity
x ∈ SE(3) Tool pose (State)
τ ∈Rn Joint torque
f ∈R6 External force/torque
m ∈R2 Laser measurement in S
ma ∈R1 Laser angle measurement in S
e ∈R2 Measurement error
T B

A ∈ SE(3) Transformation matrix from B to A
Fk (q) ∈ SE(3) Robot forward kinematics at pos. q
J (q) ∈R6×n Manipulator Jacobian at pos. q
â Estimate of variable a
a+ a at the next sample instant
ā Reference for variable a
ai : j Elements i , i +1, ..., j of a
〈T 〉 ∈R6 The twist coordinate representation of T

When a measurement is available, each particle is assigned a weight based on
the likelihood of the measurement, given the state of the particle, using the sensor
measurement density p(m|x) and the robot measurement density p(q, f |x).

To avoid using the finite collection of particles to explore parts of the state
space with a small posterior probability, particles may be re-sampled with a
probability of surviving to the next iteration proportional to their weight. A simple
PF algorithm is given in Algorithm 3.

Algorithm 3 A simple particle filter algorithm.

Initialize particles using a prior distribution;
repeat

Assign weights to particles using p(m|x) and p(q, f |x);
Calculate a state estimate based on the weighted collection of particles;
Re-sample particles based on weights;
Propagate particles forward using p(x+|x, ḟ );

until Done
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2.3 Densities
This section introduces and motivates the various densities used in the particle
filter.

State transition
p(x+|x, ḟ ) (3)

The mean of the state transition density (3) is given by the robot reference tra-
jectory. Denote by T + the incremental transformation from Fk (q̄) to Fk (q̄+) such
that

Fk (q̄+) = T +Fk (q̄)

The mean of the state transition density is thus

µ
{

p(x+|x, ḟ )
}= T + = Fk (q̄+)Fk (q̄)−1

The shape of the density should encode the uncertainty in the update of
the robot state from one sample to another. For a robot moving in free space,
this uncertainty is usually small. Under the influence of varying external process
forces, however, significant uncertainty is introduced. Based on this assumption,
the width of the density can be chosen as a function of the process force.

Robot measurement update
p(q, f |x) (4)

The mean of the robot measurement density (4) is given by the robot internal
sensors and forward kinematics according to

µ
{

p(q, f |x)
}= Fk (q +C j (τ)) (5)

where C j (τ), if available, is a model of deflections caused by large process
forces [Lehmann et al., 2013; Sörnmo, 2015; Olofsson, 2015].

The uncertainty in the robot measurement comes from several sources. The
joint resolvers/encoders are affected by noise, which is well modeled as a Gaus-
sian random variable. When Gaussian errors, eq , in the joint measurements are
propagated through the linearized FK, the covariance matrix ΣC of the resulting
Cartesian-space errors eC is obtained by approximating eq = d q as

qm = q +eq = q +d q

eq ∼N (0,Σq )

eC ∼N (0, J Σq JT)

where qm is the measured value. The Cartesian covariance matrix is given by

eC = d 〈Fk (q)〉
d q

d q = J d q = J eq

ΣC = E{
eC eT

C

}= E{
J eq eT

q JT
}
= J E

{
eq eT

q

}
JT
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where the approximation J(q + eq ) ≈ J(q) has been made. The twist coordinate
representation 〈Fk (q)〉 is obtained by taking the logarithm of the transformation
matrix log(Fk (q)), which produces a twist ξ ∈ se(3), and the operation ξ∨ ∈ R6

returns the twist coordinates [Murray et al., 1994]. The discussion on the errors
associated with the robot measurements are treated in more detail in Sec. 4.
Except for the measurement noise, the errors in the robot measurement update
density are not independent between samples. The error in both the forward
kinematics and the compliance model is configuration dependent and thus highly
correlated in time due to bounded velocity of the robot leading to slow changes
in the configuration. The standard derivation of the particle filter relies on the
assumption that the measurement errors constitute a sequence of independent,
identically distributed (i.i.d.) random variables. Independent measurement errors
can be averaged between samples to obtain a more accurate estimate, which is no
longer possible with correlated errors where several consecutive measurements
all suffer from the same error.

Time-correlated errors are in general hard to handle in the particle filtering
framework and no systematic way to cope with this problem has been found. One
approach is to incorporate the correlated error as a state to be estimated [Evensen,
2003; Åström and Wittenmark, 2013]. This is feasible only if there exist a way to
differentiate between the different sources of error. State augmentation further
doubles the state dimension, with a corresponding increase in computational
complexity.

Since only a combination of the tracking error, the kinematic error and the
dynamic error is measurable, we propose to model the time-correlated uncer-
tainties as a uniform random variable with a width d chosen as the maximum
expected error. When performing the measurement update with the densities of
several perfectly correlated uniform random variables, the posterior distribution
equals the prior distribution. The distribution is thus invariant under self fusion.
See Fig. 2 for an illustration.

The complete robot measurement density, Eq. (4), is formed by the convo-
lution of the densities for a Gaussian, pG , and a uniform, pU , random variable,
according to

p(q, f |x) =
∫
Rk

pU (x − y) pG (y)d y (6)

where k is the dimensionality of the state x. This integral has no closed form
solution, but can be evaluated numerically. Instead of evaluating Eq. (6), which is
computationally expensive and must be done for every particle at every time step,
we propose the following approximation

p(q, f |x) ≈


C if |∆x| ≤ d

C exp

(
− (|∆x|−d)2

2σ2

)
if |∆x| > d

(7)

with ∆x taken to be the element-wise difference between the positional coordi-
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nates of x and a mean vector µ ∈R3, ∆x = x −µ, and the normalization constant

C = 1p
2πσ+2d

This approximation reduces to the Gaussian distribution if the width of the uni-
form part d = 0, and to the uniform distribution as σ→ 0. Equation (7) is given for
the one-dimensional case, one possible extension to higher dimensions is given
by

p(q, f |x) =


D if
∥∥∆x

∥∥
2 ≤ d

D exp

(
−1

2
δxTΣ−1δx

)
if

∥∥∆x
∥∥

2 > d
(8)

δx =
(

1− d∥∥∆x
∥∥

2

)
∆x

D = 1

(2π)
k
2
p

det(Σ)+V (d ,k)

where k is the state dimension and V (d ,k) is the volume of a k-dimensional
sphere with radius d .

The univariate distribution, and the distribution of several fused measure-
ments, is shown in Fig. 2. An illustration of the multivariate case with

Σ=
[

4 0
0 1

]
, d = 3

is shown in Fig. 3.
The width of the uniform random variable d = d( f ) is chosen as a function of

the process force

d( f ) = d0 +kd
∥∥ f

∥∥
where d0 is chosen with respect to the maximum absolute positioning error of
the robot in the relevant work-space volume and kd

∥∥ f
∥∥ reflects the increase in

uncertainty with the magnitude of the process force.
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Figure 2. Illustration of measurement densities and the posterior densities after
several performed measurement updates, for d =σ.
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Figure 3. Illustration of the multivariate version of the robot measurement den-
sity, Eq. (8).

Laser sensor measurement update

p(m|x)

Evaluating the laser measurement density is less straightforward. Given a state
hypothesis x̂, a seam location hypothesis m̂ is calculated using T S

T F according to

m̂ = (x̂T S
T F )1:3,4 +

[
m
0

]
(9)

To evaluate the distance e between m̂ and the nominal trajectory, a search for the
closest nominal trajectory points is performed. The error e is then calculated as
the distance between m̂ and the intersection point pi between the laser plane and
the line v between the closest seam point on each side on the laser plane, refer to
Fig. 4 for an illustration. The intersection point pi must satisfy the following two
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Seam

x̂

T S
T F

Laser lineSor i g i nm̂

me

p(m|x̂)

p1

p2

v

pi

p(q|x̂)

Figure 4. Illustration of the relations between a particle x̂ (TCP hypothesis), its
belief of the location of the laser line and the laser measurement m ( Eq. (9)).
Particles for which the distance, e, between the measurement hypothesis m̂ and
the seam intersection point pi is small, in terms of the distribution p(m|x), are
more likely to be correct estimates of the current state x.

equations

pi = p1 +γv

0 = nT(pi −m̂)

}
⇒ γ= nT(m̂ −p1)

nTv

where n is the normal of the laser light plane.
The mean of p(m|x) is thus equal to

µ
{

p(m|x)
}= pi

and the shape should be chosen as the error distribution of the laser sensor, here
modeled as a normal distribution according to

p(m|x) = (2π)−
3
2 |Σ|− 1

2 exp

(
−1

2
eTΣ−1e

)
, e = m̂ −pi

Many seam-tracking sensors are capable of measuring also the angle around
the normal of the laser plane. An angle measurement, ma , is easily compared to
the corresponding angle hypothesis of a particle using standard roll, pitch, yaw
calculations. Using the convention in Fig. 1, the angle around the normal of the
laser plane corresponds to the yaw angle. Roll and pitch angles are not directly
measurable by this type of sensor. Using a sensor with two or more laser planes,
it is possible to estimate the full orientation of the sensor. This will be analyzed
further in Sec. 3.
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2.4 Nominal trajectory
To get a suitable representation of the nominal trajectory used to propagate the
particles forward, a simulation of the robot program is performed using a simu-
lation software, often provided by the robot manufacturer. This procedure elimi-
nates the need to reverse engineer the robot path planner. During the simulation,
a stream of joint angles is saved which, when run through the forward kinemat-
ics, returns the nominal trajectory in Cartesian space. Methods for generating
a nominal trajectory for simulation experiments are provided in the simulation
framework.

2.5 Reduction of computational time
Since the intersection point between the nominal seam line and the laser light
plane is calculated, a reduction of the number of points to traverse in the trajectory
search can be achieved by approximating the trajectory with a piece-wise affine
function. To this end, we solve the following convex optimization problem,

minimize
z,w

∥∥y − z
∥∥2

F +λ
N−2∑
i=1

3∑
j=1

|wi , j |

subject to
∥∥y − z

∥∥∞ ≤ ε
wi , j = zi , j −2zi+1, j + zi+2, j

(10)

where y ∈RN×3 are the positions of the nominal trajectory points, z is the approxi-
mation of y , and ε is the maximum allowed approximation error. The non-zero
elements of w will determine the location of the knots in the piece-wise affine
approximation and λ will influence the number of knots.1

The proposed optimization problem does not incorporate constraints on the
orientation. The orientation approximation error will however be small if we
assume differentiability and bounded curvature of the trajectory and constrain
the translational approximation to be small, as in Eq. (10). For an introduction to
convex optimization, see [Boyd and Vandenberghe, 2004] and for an overview of
trend filtering problems like (10) see [Tibshirani, 2014].

3. Simulation framework

The PF algorithm described in previous sections have been implemented in an
open-source framework, publicly available.2 The framework provides, apart from
the state estimator, convenience methods for plotting and trajectory generation,
optimization, simulation of laser-, joint-, and force sensor readings and pertur-
bations due to process forces and kinematic model errors as well as particle
distribution plotting tools.

1 wi = zi −2zi+1 + zi+2 is a discrete second order differentiation of z.
2 https://github.com/baggepinnen/PFSeamTracking.jl/
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Figure 5. Visualization of the particle distributions during a simulation. The black
line indicates one coordinate of the true state as a function of the time step and
the heatmap illustrates the density of the particles. This figure illustrates how the
uncertainty of the estimate is reduced as one sensor approaches a feature in the
trajectory. The feature is in this case a sharp bend in the otherwise straight seam.

3.1 Visualization
An often time-consuming part during the implementation of a particle filtering
framework is the tuning of the filter parameters. Due to the highly nonlinear
nature of the present filtering problem, this is not as straightforward as in the
Kalman-filtering scenario.

To assist in the tuning of the filter, we provide a visualization tool that displays
the true trajectory as traversed by the robot together with the distribution of
the particles, as well as each particle’s hypothesis measurement location. An
illustrative example is shown in Fig. 5, where a screen shot of one dimension in
the filter state is shown as a function of time.

To further aid the tuning of the filter, we perform several simulations in parallel
with randomly perturbed filter parameters and perform statistical significance
tests to determine the parameters of most importance to the result for a certain
sensor/trajectory configuration. Figure 6 displays the statistical significance of
various filter parameters for a certain trajectory and sensor configuration. The
color coding indicate the log(P)-values for the corresponding parameters in a
linear model predicting the errors in Cartesian directions and orientation. As
an example, the figure indicates that the parameter σW 2, corresponding to the
orientation noise in the state update, has a significant impact on the errors in all
Cartesian directions. The sign and value of the underlying linear model can then
serve as a guide to fine tuning of this parameter.
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Figure 6. An illustration of how the various parameters in the software framework
can be tuned. By fitting linear models, with tuning parameters as factors, that
predict various errors as linear combinations of parameter values, parameters
with significant effect on the performance can be identified using the log(P)-values
(color coded). The x-axis indicates the factors and the y-axis indicates the predicted
errors in orientation and translation. The parameters are described in detail in the
software framework.

seam
x1

x2

Figure 7. Illustration of how a sensor with a single laser stripe can not distinguish
between wrong translation and wrong orientation. The figure depicts two hypothe-
ses (x1, x2), both share the closest measurement point on the seam. The second
laser stripe invalidates the erroneous hypothesis x2 which would have the second
measurement point far from the seam.

3.2 Sensor configurations
The optimal sensor configuration depends on the amount of features in the tra-
jectories, where a feature is understood as a localizable detail in the trajectory.
The estimation performance is further critically dependent on the number of
laser light planes that intersect the seam. A single laser sensor can measure three
degrees of freedom, two translations and one orientation. The remaining tree
DOFs are in general not observable. This is illustrated in the planar case in Fig. 7.
All particles lying on a capsule manifold, generated by the spherical movement
around the measurement location, together with a sliding motion along the seam,
are equally likely given the measurement. A second measurement eliminates the
spherical component of the capsule, leaving only the line corresponding to the
sliding motion along the seam unobservable. The unobservable subspace left
when two or more laser planes are used can only be reduced by features in the
seam, breaking the line symmetry (illustrated in Fig. 5), or the forward kinematics
measurement from the robot.
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Figure 8. Error distributions for various sensor configurations (0-2 sensors) and
two different trajectory types (xy,yz). In both trajectory cases, y is the major move-
ment direction along which the laser sensors obtain little or no information. The
same filter parameters, tuned for the x y-trajectory, were used in all experiments.

Consider Fig. 8, where the resulting errors for two trajectory types and several
sensor configurations (0,1,2 sensors) are displayed. The trajectories referred to
in the figure are generated as follows. The x y-trajectory lies entirely in the x y-
plane of the tool frame T , with a linear movement of 200 mm in the y-direction
and a smooth, 20 mm amplitude, triangle-wave motion in the x-direction. The
y z-trajectory lies in the y z-plane, with a linear movement of 200 mm in the y-
direction and a 100 mm amplitude, sinusoidal, motion in the z-direction. The
trajectories are depicted in Fig. 9. It is clear that the type of trajectory is important
for the resulting estimation error, in this case, the filter was tuned for trajectory
type x y .

Figure 8 illustrates the difficulties in determining the translation along the di-
rection of movement when no features are present, as well as the benefit of sensor
feedback in the measurable dimensions. The provided visualization tools assist in
re-tuning the filter for a new trajectory, and can suggest optimal configurations of
the available seam-tracking sensors.
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Figure 9. Trajectories x y (solid) and y z (dashed). Distance [mm] along each axis
(x, y, z) is depicted as a function of time step.

4. Discussion

The kinematic model of the robot used in the forward kinematics calculations is
often inaccurate, and errors in the absolute positioning accuracy of an industrial
robot can often be in the order of 1 mm or more [Mooring et al., 1991; Nubiola and
Bonev, 2013]. To characterize this uncertainty without performing a full kinematic
calibration is usually hard, since it is a non-linear function of the errors in link-
lengths, offsets etc. in the kinematic model. Possibilities include modeling this
uncertainty as a Gaussian distribution with a variance corresponding to the aver-
age error in the considered work space volume, or as a uniform distribution with a
width corresponding to the maximum error. These figures are usually provided by
the robot manufacturer, or can be obtained using, e.g., an external optical tracking
system.

A third source of uncertainty is compliance in the structure of the robot. De-
flections in the robot joints and links caused by large process forces result in an
uncertainty in the measured tool position. This problem can be mitigated by a
compliance model, C j (τ) in Eq. (5), reducing the uncertainty to the level of the
model uncertainty [Lehmann et al., 2013].
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5. Conclusions

We have suggested a particle-filter based state estimator capable of estimating
the full 6 DOF pose of the tool relative to the seam in a seam-tracking scenario.
Sensor fusion is carried out between the robot internal measurements, propagated
through a forward kinematics model with large uncertainties due to the applied
process forces, and measurements from a class of seam-tracking laser sensors.
We have highlighted some of the difficulties related to state estimation where
accurate measurements come in a reduced dimensional space, together with
highly uncertain measurements of the full state space, where the uncertainties are
highly correlated in time.

The presented framework is available as open-source and the algorithm has
been successfully implemented at The Welding Institute (TWI) in Sheffield, UK,
and is capable of executing in approximately 1000 Hz using 500 particles on a
standard desktop PC.
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4
Discussion and future work

4.1 Paper I

This paper makes use of standard and well known models for friction, combined
with a basis function expansion to model position dependence. This choice was
motivated by the large increase in model accuracy achieved for a relatively small
increase in model complexity. Linear models are easy to estimate and the solution
to the least-squares optimization problem is well understood. Depending on the
intended use of the friction model, the most fruitful avenue to investigate in order
to increase the model accuracy further varies. For the purpose of force estimation,
accurate models of the stiction force is likely important. Stationary joints impose
a fundamental limitation in the accuracy of the force estimate, and the maximum
stiction force determines the associated uncertainty of the estimate.

The temperature dependent part of the proposed model originates from the
most simple possible model for energy storage, a generic first order differential
equation. Since the generated energy is initially unknown, incorporating it in the
model is not straight forward. We rely on the assumption that a simple initial
friction model can be estimated without this effect and subsequently be used
to estimate the generated energy loss. The energy loss estimated by this model
can then be incorporated in a more complex model. Iterating this scheme was
shown to converge in simulations, but depending on the conditions, the scheme
might diverge. This might happen if, e.g., the friction varies significantly with
temperature, where significantly is taken as compared to the nominal friction
value at room temperature. In such situations, the initially estimated model will
be far from the optimum, reducing the chance of convergence. In practice, this
issue is easily mitigated by estimating the initial model only on data that comes
from the joint at room temperature.
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4.2 Paper II

Here, we make further use of basis function expansions, this time in the context of
spectral estimation. The common denominator is the desire to model a functional
relationship where the function can have an arbitrary complicated form. The goal
is to estimate how the amplitude and phase of sinusoidal basis functions that
form a signal vary with an auxiliary function. Due to the phase variable enter-
ing nonlinearly, the estimation problem is rephrased as the estimation of linear
parameter-varying coefficients of sines and cosines of varying frequency. The
amplitude and phase functions are then calculated using nonlinear transforms of
the estimated coefficients. While it was shown in the paper that simple estimators
of the amplitude and phase functions are biased, this bias vanishes as the number
of data increases. From the expression for the expected value of the amplitude
function

A < E{
Â

}<√
A2 +φT

vΣαφv +φT
vΣβφv (4.1)

we see that the bias vanishes as Σα and Σβ are reduced. Further insight into this
inequality can be gained by considering the scalar, nonlinear transform

f (x) = |x|, x ∼N (µ,σ2) (4.2)

If µ is several standard deviations away from zero, the absolute value function
will have negligible effect. When µ/σ becomes smaller, say less than 2, the effect
starts becoming significant. Hence, if the estimated coefficients are significantly
different from zero, the bias is small. This is apparent also from the figures indicat-
ing the estimated functional relationship with estimated confidence bounds. For
areas where data is sparse, the confidence bounds become wider and the estimate
of the mean seems to be inflated in these areas.

Due to the matrix inverse involved in finding the Fourier coefficients, the
method might suffer from ill-conditioning if the number of frequencies and the
number of basis functions along the auxiliary dimension are large. To mitigate
this problem, ridge regression was employed. The effect of ridge regression is
a shrinkage of the parameter vector towards zero, the effect of which deserves
further attention.

The leakage present in the standard Fourier based methods is usually unde-
sired. The absence of leakage might, however, be problematic when the number of
estimated frequencies is low, and the analyzed signal contains a very well defined
frequency. If this frequency is not chosen as the set of basis frequencies, the ab-
sence of leakage might lead to this component being left unnoticed. Introduction
of leakage is technically straightforward, but best practices for doing so remains
to be investigated.
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4.3 Paper III

4.3 Paper III

The calibration method described is highly practically motivated. Calibration is
often tedious and an annoyance to the operator of any technical equipment. The
method described tries to mitigate this problem by making use of data that is easy
to acquire. In its simplest form, the algorithm requires some bookkeeping in order
to associate points with the plane they were collected from. An extension to the
algorithm that would make it even more accessible is automatic identification of
planes using a RANSAC or clustering procedure.

While the method was shown to be robust against large initial errors in the
estimated transform, the effect of a warping of the planes from which the data is
gathered remains to be investigated. In practice, physical limitations may limit
the poses from which data can be gathered. The failure of the collected poses
to adequately span the relevant space makes the algorithm sensitive to errors in
certain directions in the space of estimated parameters. While this is a problem if
the actual parameters are of interest, it is less relevant when the parameters are
used for transformation between coordinate systems, as poses that were hard to
reach during calibration most likely will not be used during operation either. The
parameter error in this case is such that the transform works well for poses that
were present in the calibration data.

4.4 Paper IV

While the proposed framework is intended for simulation in order to aid the
design of a specialized state estimator, some measures were taken to reduce the
computational time and at the same time reducing the number of parameters
the operator has to tune. The most notable such measure was the choice to not
include velocities in the state. The velocities typically present in the FSW context
are fairly low, while forces are high. The acceleration in the transverse direction
can thus be high enough to render the estimation of velocities impossible on
the short time-scale associated with vibrations in the process. The bandwidth of
the controller is further far from enough for compensation to be feasible. In the
directions along the seam, the velocity is typically well controlled by the robot
controller apart from during the transient occurring when contact is established.
Once again, the bandwidth is not sufficient to compensate for errors occurring at
the frequencies present during the transient.

The particle filter maintains the state represented as a collection of transfor-
mation matrices. This makes for fast calculation during the forward propagation
of the state using the dynamics equation. The joint angles would in this setting
not be a good representation of the state without additional estimation of the joint
deflections, increasing the state dimension significantly.

Lastly, the method does not include estimation of errors in the location of the
work piece. Without assumptions on either the error in the work-piece location
or the error in the forward kinematics of the robot, these two sources of error
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can not be distinguished, hence, augmenting the state with a representation of
the work-piece error will not be fruitful. We instead propose to, under no load,
measure using the laser sensor the location of sufficiently many points along
the seam to be able to estimate the location of the work piece in the coordinate
system of the robot, compensating for both sources of error simultaneously. As an
alternative solution if the work-piece error is sufficiently small, the uncertainty of
the location of the work piece can be included in the maximum uncertainty of the
robot kinematic error, which in practice is the simplest solution.
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