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 

Abstract—Although surface integral equations (SIEs) have 

been extensively used in solving electromagnetic problems of 

penetrable objects, there are still open issues relating to their 

application to the Theory of Characteristic Modes. This work 

demonstrates that when an SIE is used to solve for the 

characteristic modes (CMs) of a dielectric or magnetic object, the 

resulting eigenvalues are unrelated to the reactive power of the 

object, unlike the eigenvalues of perfect electric conductors. 

However, it is proposed that the classical eigenvalues, which 

provide useful physical insights, can be extracted from the SIE 

CM solution using Poynting’s theorem. Large discrepancies 

between the SIE CM eigenvalues and the proposed eigenvalues, 

as well as eigenvalue-derived characteristic quantities, are 

highlighted using a numerical example. The modal resonances as 

predicted by the proposed eigenvalues closely match those 

obtained for natural resonance modes. 

 
Index Terms—Antenna analysis, characteristic modes, method 

of moments, Poynting’s theorem, Sturm-Liouville theory. 

 

I. INTRODUCTION 

LTHOUGH the Theory of Characteristic Modes (TCM) [1] 

for conducting bodies is increasingly embraced and 

utilized by the electromagnetic community, the underlying 

aspects of analyzing penetrable objects using TCM is not fully 

understood. Moreover, problems associated with characteristic 

mode (CM) analysis of such objects, based on either volume 

integral equation (VIE) or surface integral equation (SIE), 

have received relatively little attention outside of their original 

works in [2] and [3]. Two important problems are: 1) the loss 

of the physical interpretation for the CM eigenvalues in terms 

of reactive power [2], [4], relative to the classical eigenvalue 

definition for perfect electric conductors (PECs) [1]; 2) the 

presence of internal resonances in SIE CM solutions [5].  

Recently, there has been a renewed interest in solving for 

the CMs of penetrable objects, with new formulations being 

introduced to restore the physical meaning of the eigenvalues 

by representing the fields with only electric or magnetic 

surface currents [4], [6], [7]. Furthermore, two of the SIE 

formulations proposed in [6] are claimed to be free of internal 

resonances. However, these new formulations are only 
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applicable for single or multiple separate homogeneous [4], 

[6] or inhomogeneous [7] objects, because only one set of 

equivalent source (electric or magnetic currents) exists in the 

PMCHWT equation for a single material body. Furthermore, 

as the currents are derived in a different manner than other 

more traditional SIE CM formulations [3], the non-physical 

surface currents will not be equivalent across formulation 

types [6]. 

On the other hand, SIE formulations used for CM analysis, 

e.g., Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT)  in 

[3], can handle multiple and multi-layer homogeneous objects, 

such as dielectric-coated objects and composite objects of 

multiple materials. Furthermore, the internal resonances 

inherent to some SIE formulations (e.g., the symmetric form 

of the PMCHWT formulation [3]) can be removed via suitable 

post-processing techniques [5], [8]. However, the remaining 

eigenvalues are still unrelated to the reactive power, which 

means that these eigenvalues cannot be used to obtain the 

modal quality factor using (21) in [9]. In [2] it was proved that 

the eigenvalues derived from a VIE impedance matrix do not 

solve for the reactive power of the object. However, this 

derivation cannot be directly applied to SIE formulations. This 

is because in VIE formulations, the incident field is 

represented by both a scattered field as well as a constitutive 

relationship between the currents and the material, whereas 

SIE formulations only relate the currents to an incident field. 

Furthermore, the original SIE-based CM formulation [3] 

provides no discussion on the relationship between the SIE 

eigenvalues and the reactive power. In addition, even though 

the problem of eigenvalue interpretation has been alluded 

(e.g., [4], [6]), no explicit proof has been provided.    

In this context, this letter provides, for the first time, a 

detailed proof that the eigenvalues solved by any symmetric or 

asymmetric SIE CM formulation are unrelated to the reactive 

power. The proof provides critical insights which are not 

included in the original SIE CM derivation [3]. Additionally, 

the imaginary part of Poynting’s theorem is used to solve for 

the proposed reactive power based eigenvalues using both 

symmetric and asymmetric SIEs. Throughout the paper, no 

simplification or additional boundary condition are required to 

solve the SIE’s combined field method of moments (MoM) 

impedance matrix, which is used to calculate the eigenvalues. 

However, the symmetric version of PMCHWT SIE is used in 

the provided example. Once the proposed eigenvalues are 

obtained, they can be used to correctly calculate eigenvalue-

based characteristic quantities including modal resonances, 
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characteristic angle, modal bandwidth and modal quality 

factor. The modal resonances found using the eigenvalues 

closely match the natural resonances found by means of both a 

MoM decomposition and the finite element method (FEM).   

II. EIGENVALUES FROM POYNTING’S THEOREM 

TCM is a unique amalgamation of two separate theories: 

Poynting’s theorem and the Sturm-Liouville theory. Without 

understanding both theories it is difficult to identify why TCM 

-derived eigenvalues are not valid in SIE formulations for 

penetrable objects.  

In electromagnetic theory, Poynting’s theorem is a 

statement of the conservation of energy for electromagnetic 

fields (in space and time), i.e., the sum of the power leaving a 

closed surface S (e.g., an object) (Prad), the power dissipated 

within the corresponding volume V (Pd) and the time rate of 

increase of energy stored (reactive power) in V (Pstored) must 

be zero, as given by 

 
2 2 2

1
2

0.

)(1
rad d stored

t

S V V

d dv dv  




     
   E H E H Es

P P P

 

In (1), E × H is the Poynting vector, E is the electric field 

intensity, H is the magnetic field intensity, μ is the 

permeability, ε is the permittivity, σ is the conductivity, and 

 is the Frobenius norm operator. Moreover, the left hand 

side of (1) is equal to the total complex source power Ps [11], 

which is a sum of the inner products of the source fields and 

currents. In time-harmonic fields, Ps can be expressed as 

  1* * * *
2

, ,s
V

P dv    J E M H H M E J  (2) 

   2 2 2*1 1 1
2 2 2

rad d stored

S V V

P P P

d dv j dv   



      E H s E H E

where the real part of (2) equals the radiated Prad and 

dissipated Pd powers, whereas the imaginary part gives the 

reactive power Pstored, which equals 2 (Wm  We), with Wm 

and We being the magnetic and electric energies, respectively 

[10], [11]. Moreover, J and M represent the electric and 

magnetic current sources, respectively, and (•)* is the complex 

conjugate operator. 

A. Sturm-Liouville Theory  

To show how the CM eigenvalues are related to the stored 

and radiated/dissipated powers as described by the imaginary 

and real parts of (2), the Sturm-Liouville theory, as applied to 

define TCM, is presented in the following.  

First, the classical Sturm-Liouville problem [13] is defined 

by a second-order linear homogeneous operator L on a vector 

space of   2 ,C a b . This allows the classical problem to be 

expressed as a specialized weighted eigenvalue problem 

             n
n n n n

dyd
L y p x q x y r x y

dx dx


 
    

 
, (3) 

where p (x) and q (x) are given and r (x) is a chosen weighting 

function. This equation is meant to determine the eigenvalues 

(
n ) and their corresponding eigenfunctions (

ny ) of the L  

operator, where yn is required to be real, as defined by 

Theorem 1.2 of [13]. The Sturm-Liouville theory provides a 

proof that the eigenfunctions of different eigenvalues are 

orthogonal with respect to r (x), stated mathematically by [13]  

   * *,
b

m n m n mn
a

y r x y y r x y dx   , (4) 

where 
mn  is the Dirac delta function. In (4), the Hermitian 

transpose has been added as this equation is related to power 

in TCM. However, since 
ny  must be real and symmetric in 

Sturm-Liouville problems, the Hermitian transpose has no 

impact. 

B. Classical TCM as a Specific of Sturm-Liouville Problem 

In the following, electromagnetic theory and Poynting’s 

theorem are used to determine the proper weighting function 

that allows for CMs to be solved. We begin by considering the 

classical case of a lossless PEC object in vacuum with M = 0, 

 = 0,  = 0,  = 0 [1]. Therefore, (2) simplifies to   

 

 

   
 

1* *
2

2 2*1 1
0 02 2

2

,

rad stored m e

V

S V

P P W W

dv

d j dv



  

  

 

   



 

J E E J

E H s H E  (5) 

On the other hand, Maxwell’s equations can be used to 

show that when a surface current density (J) is induced on a 

PEC object of surface S, the object will produce a scattered 

electric field (Es) through the operator L1. Specifically, the 

tangential component of Es can be expressed in terms of J 

[12], as given by 

                     1 tan tantan
( ) sL j   J E A  (6) 

where the right hand side is a second-order linear differential 

equation. A and  are vector magnetic potential and scalar 

electric potential, respectively. Since the tangential part of the 

L1 operator must transform a surface current density (J in 

[A/m]) to an electric-field (E in [V/m]), it has the dimension 

of impedance (Ω). Thus, (6) becomes an impedance operator 

 
tan

( )Z j J A  (7) 

The impedance operator Z must be a symmetric operator 

due to reciprocity in the L1 operator, and it is comprised of 

both a real component (R) and an imaginary component (X), 

i.e. Z R jX  . Since (7) is a linear second-order operator, as 

operator L in (3), Z can be set as the Sturm-Liouville problem, 

i.e.,  ( )n nZ L yJ . To find the weighting function r (x), it is 

important to recognize that since the eigenfunctions yn are 

required to be real, eigenfunction theory dictates that r (x) 

should be Hermitian symmetric. Furthermore, the source (or 

incident) field in (5) can be represented by ( )i

nZ E E J . 

Since 
nJ  is real, then the real part of the Poynting’s theorem 

(5), i.e.,  ,n nRJ J , corresponds to the radiated power Prad 

of eigenmode n. Moreover, given that  nR J  is Hermitian 

symmetric, the choice of    nr x R J  and identity (4) 

ensures that the far-fields are mutually orthogonal. Here, it is 

noted that (4) also requires the normalization of 
nJ  such as
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 , 1n nR J J . Therefore, the classical TCM formulation is a 

specific form of the Sturm-Liouville problem that provide 

characteristic currents (eigenfunctions) with orthogonal far-

fields, i.e.,   

   n n nZ J R J  (8) 

To simplify (8), it is noted that the equation is complex due 

to the operator Z. Expanding Z R jX  , the real part of 
n  

is equal to 1 and the imaginary part can be defined as n, i.e. 

1n nj   . Collecting similar terms, the familiar TCM 

eigenvalue problem is derived 

   n n nX J R J . (9) 

In (9), the new eigenvalue n relates only to the imaginary 

part of (5), since  ,n n nX J J  and  , 1n nR J J . In 

general, the Poynting’s theorem based definition for a lossless 

PEC object is given by [1]  

 

 

 , 2

,

R I

n nn nP m eS
n R R

n n radn n
S

dsX W W

R Pds





  





J EJ J

J J J E

. (10) 

Although the derivations leading to (9) consider a lossless 

PEC object, the same concept can be used to obtain physically 

relevant eigenvalues CMs for lossy, penetrable objects. 

C. Generalized Eigenvalue for Penetrable Objects 

For the special case of a lossless PEC object, it has been 

shown that the CM eigenvalue n relates to the imaginary part 

of the Poynting’s theorem in (5). For a homogeneous 

penetrable object, the surface equivalence principle stipulates 

that the fields can be represented by both equivalent electric 

currents J and magnetic currents M on the boundary surface S. 

However, when applied to the CM eigenvalue problem, the 

Sturm-Liouville theory requires that the characteristic currents 

are real. For symmetric SIE formulations, the currents may be 

represented by the real vector  ;n nJ M , i.e. Im( ) 0I

n n J J  

and Im( ) 0I

n n M M , where  
I
 refers to the imaginary 

part of the vector quantity. It should be noted that the 

symmetric SIE case (providing symmetric Z in the original 

formulation) is interesting but purely conceptual, since no 

such formulation has yet been demonstrated. Additionally, in 

the case of an asymmetric SIE formulation (i.e., asymmetric 

PMCHWT [3]) which requires forced symmetry, the source 

vector is defined as  ;n njJ M , which must be real. This 

results Im( ) 0I

n n J J  and Re( ) 0R

n n M M , where  
R

represents the real part. Using this information, the real and 

imaginary parts of Poynting’s theorem can be expanded and 

related directly to the real and imaginary parts of the electric 

and magnetic field quantities, as in (11) for  ;n nJ M , and (12) 

for  ;n njJ M .  

   

     
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* *1

2

Im 0 Im 0

1 1

2 2

2
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S
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n n n n n n n n
S S

P P P W W

P ds
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
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  
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2
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rad d stored m e

s n n
S

R R I I R I I R

n n n n n n n n
S S

P P P W W

P ds

ds j ds





   

  

     



 
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Applying the classical definition of eigenvalue [1] in (10), 

the equivalent Poynting’s theorem based eigenvalues for 

symmetric and asymmetric (forced-symmetric) SIEs are given 

by (13) and (14), respectively.  

 

 
 2

R I R I

n n n n

P m eS
n R R R R

rad dn n n n

S

ds
W W

P Pds







 






J E M H

J E M H

 (13) 

 

 
 2

R I I R

n n n n

P m eS
n R R I I

rad dn n n n

S

ds
W W

P Pds







 






J E M H

J E M H

 (14) 

Having the same physical meaning as the eigenvalues of the 

PEC case, the eigenvalues of (13) and (14) can be used to 

correctly determine modal resonances [11] as well as all 

eigenvalue-derived properties, e.g., characteristic angle, modal 

significance, modal bandwidth and modal quality factor [9]. 

III. EIGENVALUES FROM TCM SIE SOLUTIONS 

Although the Poynting’s theorem based definition of the 

eigenvalue for lossy, penetrable objects, i.e., (13) and (14), 

retain the desired relationship to the reactive power, they do 

not correspond to the eigenvalues derived directly from 

applying the Sturm-Liouville theory to SIE formulations. 

Additionally, TCM derived eigenvalues cannot be related to 

the reactive power, and thus cannot be used to give physical 

insights. This is because the classical CM derivation in [1] 

considers only PEC objects, which means Mn = 0. Thus, the 

inner product of (2) can be directly equated to the Sturm-

Liouville inner product of (4), leading to (10). However, in 

SIEs involving penetrable objects, the magnetic currents are 

no longer zero and the inner product of (2) is no longer 

equivalent to that of (5). This can be shown mathematically by 

(15) for a symmetric SIE (Mn is real), as well as by (16) for an 

asymmetric SIE where the impedance matrix is forced into 

symmetry (Mn is imaginary).  

    
   

     

* ** 1
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 
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It should be noted that even though the CM eigenvalues 

defined by the ratio of the imaginary part to the real part in 

(15) and (16) are no longer directly related to the reactive 

power, the real part still equals that of Poynting’s theorem and 

it also fulfills the orthogonality requirement (4) with respect to 

the weighting function    nr x R J . This means that the 

solved characteristic currents still provide orthogonal far-

fields. Moreover, the eigenvalues based on Poynting’s 

theorem can be calculated from these currents as defined in 

(13) and (14), which can then be applied for CM analysis and 

design problems that rely on the eigenvalues or eigenvalue-

derived quantities.   

IV. NUMERICAL EXAMPLE 

An example is provided here to demonstrate the importance 

of having the correct eigenvalues for the reactive power based 

on (13) and (14). In this example, the penetrable object is a 

dielectric cube measuring 2.54 cm × 2.54cm × 2.54cm, which 

is made of a lossless dielectric with a relative permittivity 

9.4r   The eigenvalues obtained from an impedance matrix 

of an asymmetric SIE (i.e., symmetric PMCHWT) that was 

forced into symmetry is compared to the corresponding 

eigenvalues defined in (14) using Poynting’s theorem. The 

operator form of the equations was implemented in matrix 

form by using the Rao-Wilton-Glisson (RWG) basis functions 

in the MoM computations and the internal resonances were 

removed in post-processing using [5]. The solved object 

utilized 1152 basis functions. The eigenvalues for the first five 

CMs (λ1-λ5) were calculated using both definitions and shown 

in Fig. 1. The modal significance, characteristic angle, and 

modal quality factor for λ1, λ2, and λ3 were calculated at 2.5 

GHz, 3 GHz, and 4 GHz, respectively. It is noted that 

eigenvalue was chosen to be shown in this figure, instead of 

modal significance (used in [6] and [7]) or the magnitude of 

the eigenvalue (used in [4]), as the latter two do not provide 

insights into the type of stored energy (electric or magnetic).  

As can be seen in Fig. 1, the zero-crossings of the 

eigenvalues from the two different definitions are nearly 

identical for λ1 and λ2, but the type of stored energy (capacitive 

or inductive), modal significance, characteristic angle, and 

quality factors can vary significantly between the two 

definitions. Finally, the same structure’s natural resonant 

modes can be computed from FEM using the HFSS software, 

as well as from a MoM impedance matrix decomposition [14]. 

The natural resonances were found to be within 1.3% of the 

characteristic resonances obtained from (14). 

Furthermore, it is noted that the same object was used for 

computing the TCM SIE and VIE eigenvalues in [5]. 

However, it was mentioned that the plotted eigenvalues should 

not be related to the reactive power [5].   

V. CONCLUSION 

This letter has demonstrated that TCM derived eigenvalues 

of an object as found using an SIE MoM impedance matrix 

cannot be related to an object’s reactive power. Furthermore, 

this article has shown a method for simple computation of the 

correct eigenvalues using the TCM-derived currents and the 

Poynting’s theorem definition of reactive power. The impact 

of the different definitions are illustrated with an example.  

 

 
Fig. 1. Eigenvalues of lossless cube structure in [5] based on both Poynting’s 
theorem definition from (14) (solid lines) and TCM definition (dashed lines).  
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