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Abstract

The macroscopic properties of metallic materials depend on the state of the grain mi-

crostructure. Recrystallization acts as one of the most important mechanisms in the evolu-

tion of the microstructure and hence also of the macroscopic properties. The present paper

presents a mesoscale model of microstructure evolution due to recrystallization, based on

a level set formulation employed in a finite element setting. The use of level sets to rep-

resent grains and grain boundaries in polycrystal microstructures is a relatively recent

development in computational materials science and the present contribution suggests new

methodologies such as interface reconstruction, allowing for example boundary conditions

to be prescribed along grain boundary interfaces and distinct localization and represen-

tation of grain boundary junctions. Polycrystal plasticity is modeled by considering the

evolution of dislocation density in the individual crystals. The influence of grain boundaries

on dislocation accumulation is captured in the model, causing the formation of dislocation

density gradients within the grains. The model is used in simulations of dynamic recrys-

tallization, taking pure copper as example material. It is shown that the proposed model

captures the salient features of dynamic recrystallization during thermomechanical mate-

rials processing.

Keywords: Level set, Recrystallization, Dislocation density, Grain size, Gradients

1 Introduction

The macroscopic behavior of metallic materials is to a large extent controlled by the state

of the grain microstructure. The microlevel grain structure will influence macroscopic
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material properties such as strength, hardness, ductility and resistance against fatigue

and corrosion. Being able to predict and control the evolution of this microstructure, for

example in terms of grain size, during thermomechanical processing of the material allows

the development of tailored material properties, optimized products and more efficient

production processes. Understanding and manipulating the material microstructure are

key components in the production of functionally graded materials, having engineered

properties in different regions and in the production of modern high-strength steels.

Recrystallization is the main mechanism to control the evolution of grain microstruc-

tures and is generally accepted to be defined as the formation of a new grain structure

in a cold-worked material, occurring through the formation and migration of high-angle

boundaries. The grain boundary migrations are mainly driven by stored energy reduction

and minimization of grain boundary surface energy.

During thermomechanical processing of metallic materials, i.e., when the material is

exposed to plastic deformation at elevated temperatures, stored energy increase through

dislocation accumulation and stored energy reduction through nucleation of new grains

work in parallel. This process is commonly labelled dynamic recrystallization (DRX)

[1, 2]. The process of DRX is sometimes further subdivided into a relatively slow con-

tinuous dynamic recrystallization (CDRX) or a more rapidly progressing discontinuous

dynamic recrystallization (DDRX) [3, 4, 5]. In materials of low stacking-fault energy, such

as copper, dynamic recovery processes such as cross slip and climb are less influential and

the recrystallization is dominated by DDRX during which new grains are nucleated as

regions of low dislocation density that may grow to consume the more dislocation-dense

surrounding matrix material. DDRX will be most significant in the microstructure regions

having the highest dislocation density, primarily at grain boundary triple junctions and

along grain boundaries but also at inclusions and along slip bands in the grain interiors.

An array of numerical algorithms have been used in modeling of microstructure evolu-

tion during recrystallization. A review of some of the most significant methods is given in

[6]. Historically, Monte Carlo Potts (MCP) algorithms have been used to simulate recrys-

tallization – mainly static recrystallization – in both 2D and 3D on fixed computational

grids. The system energy is minimized through probabilistic changes to the state variables,

defined at the grid points [7, 8].

An alternative method is given by cellular automata (CA) which have been employed

frequently in studies on both static and dynamic recrystallization [9, 10, 11, 12]. As with

MCP models, CA models are also usually defined on fixed grids, but use physical cell

state switching conditions, based on recrystallization kinetics. The cell state switching

can, however, be performed as either deterministic or probabilistic. While CA algorithms

perform time integration using physical time, this is not possible in MCP models where

“Monte Carlo steps” are used as a measure of time. This makes comparison between MCP

results and experimental results cumbersome.
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The curvature of interfaces is an important aspect of grain boundary migration kinetics

but being based on discrete grids with no direct representation of interface curvature,

both MCP and CA algorithms have shortcomings in this respect. The choice of grid type

(square, hexagonal etc.) also influence the grain growth kinetics and may be detrimental

to the simulation results. A remedy for such grid dependence is to use random grids,

as discussed in [11]. In addition, both MCP and CA are computationally efficient and

3D implementations are straight-forward. Both methods also scale well when subject to

computer parallelization.

Interface migration can also be described by front tracking or vertex models where the

migration kinetics of grain boundary triple junctions are considered [13, 14, 15, 16, 17].

Grain topology is represented by nodes placed at the triple junctions. The representation of

curvature, however, comes with additional computational cost as intermediate nodes have

to be introduced between the triple junctions. In addition, the extension of the method

to 3D is not easily realized, requiring surface tesselations. Also, topological changes to the

grain structure requires dealing with different transformation conditions.

Phase-field methods (PF) have received significant interest in recent years in simulations

of a broad spectrum of physical processes, including recrystallization [18, 19, 8, 20, 21].

In PF models of recrystallization, the grain microstructure is described by phase field

variables. These are functions that are continuous in space and a distinction is made

between conserved and non-conserved variables. A conserved variable is typically a measure

of the local composition whereas a non-conserved variable contains information on the local

structure and could represent for example the crystallographic orientation. Within a single

grain, a phase field variable maintains a nearly constant value that correspond to the

properties of that grain. Grain boundaries are represented as interfaces where the value

of the phase field variable gradually varies between the values in the neighboring grains

on opposing sides of the grain boundary. Grain boundaries are hence described as diffuse

transition regions of the phase field variables. The computational effort in treating the

rapidly changing fields across diffuse interfaces can be considerable and the formulation of

the energy densities to capture physical microstructure features is not trivial. In addition,

topological changes such as nucleation of new grains are not easily handled.

The level set formulation was introduced in [22] as a numerical tool to trace the spatial

and temporal evolution of interfaces. The method was later extended to consider interfaces

with multiple junctions in [23, 24]. The advantages of the level set methodology in rep-

resentation of grain microstructures, with application to recrystallization simulation, are

discussed in [25, 26, 27]. Coupling of a crystal plasticity finite element model with a level set

formulation of recrystallization is presented in [28]. A level set approach to microstructure

evolution is also taken in [29, 30] where finite difference schemes are used on fixed grids,

in both two and three dimensions. In these publications, some simplifications are made,

for example in terms of the treatment of plasticity. Some of the models consider grain
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boundary migration as only curvature-driven or, alternatively, as driven solely by stored

energy differences. As noted in [24, 31], standard level set formulations do not correctly

capture the interaction between multiple grains, occurring for example at grain boundary

triple junctions, and corrections have to be implemented to remedy this shortcoming.

The present model is set within a level set framework where modifications are intro-

duced in the discretization of the grain boundaries. The employed interface reconstruction

allows boundary conditions to be applied along grain boundaries and also permits distinct

localization of grain boundary triple junctions using isogonic points. This methodology

enforces local equilibrium configurations of the boundaries that meet at the junctions.

Considering the evolution of polycrystal plasticity, the dislocation density is introduced

as a parameter, defining the dislocation density within each individual grain. A simple

method is devised in the present model to make the evolution of the dislocation density

within a grain sensitive to the presence of – and distance to – the grain boundary. This

allows dislocation accumulation at grain boundaries to be captured, resulting in stored

energy gradients within the grains. Since the dislocation density will be concentrated pri-

marily along grain boundaries, appropriate nucleation sites for dynamic recrystallization

emerge naturally from the model.

Taking pure copper as example material, a 2D model is formulated as a representative

area element. This model is used to perform simulations of thermomechanical materials

processing, showing the capabilities of the proposed formulation. It is shown that both the

simulated microstructure and the resulting macroscopic, homogenized, material response

correspond well to experimental data on pure copper, taken from the literature.

This paper is divided into sections with Section 2 establishing the level set framework

and Section 3 describing the necessary aspects of recrystallization kinetics. In Section 4,

details of level set modeling of recrystallization are given and in Section 5 the methodology

for interface reconstruction is detailed. The description of polycrystal plasticity and mod-

eling of dislocation density gradients is discussed in Section 6. Using the proposed interface

reconstruction, the refinement of the finite element mesh along grain boundaries can be

controlled. This is employed in Section 7 where the mesh refinement required to capture

interface kinetics is determined. In Section 8, the proposed model is applied to simulations

of thermomechanical processing of copper to describe the microstructure evolution and the

macroscopic material response. Some concluding remarks closes the paper in Section 9.

2 Level set framework

Since the level set method was introduced by Osher and Sethian in [22], it has been em-

ployed in numerical simulations of a vast number of physical and chemical processes where

there is a need for tracing the evolution of interfaces.

The starting point is the definition of a level set function φ(x, t) on a domain Ω, where
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x are the spatial coordinates and t the time. The spatial discontinuity Γ, i.e., the interface,

is identified as the zero-level contour where φ = 0. In addition, the level set is taken as a

distance function, for any point x representing the distance d(x, t,Γ) to the interface Γ at

a certain time. A sign convention is adopted, defining φ > 0 inside Γ, φ < 0 outside of the

interface and φ = 0 at the interface. We thus have{
φ(x, t) = d (x, t,Γ) , x ∈ Ω

Γ = {x ∈ Ω, φ(x) = 0} (1)

Since φ(x, t) is taken as a signed distance function, it holds that

‖∇φ(x, t)‖ = 1, x ∈ Ω (2)

It is also noted that the local interface normal n and the interface curvature κ are conve-

niently obtained from the level set function by evaluating⎧⎪⎪⎨⎪⎪⎩
n =

∇φ

‖∇φ‖ ≡ ∇φ,

κ = ∇Tn ≡ ∇T

( ∇φ

‖∇φ‖
)

≡ ∇2φ ≡ Δφ,

if ‖∇φ‖ = 1 (3)

Stationarity of the level set field requires that

Dφ

Dt
= 0 ⇒ ∂φ

∂t
+
(∇Tφ

) ∂x
∂t

= 0 (4)

Taking advantage of the interface normal in eq. (3a), the interface velocity vn, normal to

the interface, can be expressed as

v = vnn (5)

So far a single interface was considered. To handle situations with multiple interfaces, a

generalization of the level set formulation was presented in [23]. By this approach, and

considering a total of Nφ individual level sets, the evolution of the level set functions can

be stated as a Hamilton-Jacobi formulation according to⎧⎨⎩
∂φi

∂t
+ vT∇φi = 0,

φi(t = 0,x) = φ0
i (x),

∀ i ∈ {1...Nφ} (6)

where φ0
i (x) are the initial positions of the interfaces at time t = 0.

Further considering a total of Nφ level sets, a global unsigned level set φglob(x) can be

constructed from

φglob(x) = max {φi(x), 1 ≤ i ≤ Nφ} (7)
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d

0

Figure 1: Illustration of the global level set φglob in eq. (7), representing the distance d
from the grain boundary in each grain.

The global level set in eq. (7) is illustrated in Fig. 1 for a domain representing a polycrystal

with the individual grains being defined by level sets. Fig. 1 shows how the level sets

represent the distance d from the grain boundary to any point within the individual grains.

2.1 Level set interaction correction

To avoid kinematic incompatibilities when multiple level sets are considered – i.e., the de-

velopment of voids and overlaps between adjacent level sets – an interaction correction step

is usually repeatedly performed at some interval during the solution of eq. (6). Following

[23], this correction can be achieved by, at all points x, modifying all level sets according

to

φi =
1

2

(
φi −max

j �=i
(φj)

)
, ∀ i, j ∈ {1...Nφ} (8)

It is noted that vacuum regions, that is regions where all φj < 0, tend to still be present

at junctions where multiple interfaces meet, even after interaction correction according to

eq. (8), cf. [24, 31]. The size of these vacuum regions depends on the resolution of the

underlying grid or mesh. This is a shortcoming of standard level set formulations which is

addressed in the present work as part of the interface reconstruction technique, discussed

in Section 5.

2.2 Level set reinitialization

In solving eq. (6), there is a tendency for the level sets to drift from keeping the property

of a signed distance function. This is especially the case for irregular interfaces and hetero-
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geneous interface velocities. To address this, different remedies have been proposed, often

involving solving an Eikonal equation based on eq. (6), cf. [32, 33, 34, 35].

If only the evolution of the interfaces is of interest, the reinitialization need not be per-

formed over the entire domain Ω, only in the vicinity of the interfaces. In the present case,

however, the introduction of dislocation density gradients, discussed in Section 6, takes

advantage of the level sets keeping the property of a signed distance function throughout

the domain. To this end, and for convenient implementation, the level sets are in the

present formulation reinitialized, or redistanced, by a direct approach. This is achieved by

dividing the zero contour of each level set into segments and then calculating the distance

from each nodal point in the finite element mesh to each segment. This choice of reini-

tialization formulation is further motivated since the division of interfaces into segments is

also employed in the interface reconstruction discussed in Section 5.

Considering the situation shown in Fig. 2, the present reinitialization algorithm consists

of the following steps:

1. Define an interface segment by its end points A and B, based on the computational

discretization of the domain.

2. Calculate the normal direction from any point C, orthogonal to the segment, consid-

ering two possible cases:

• If the normal line intersects within the segment, then the calculated distance

between points C and D is taken as the distance from point C to the interface.

• If the line does not intersect within the segment, the shortest distance between

point C and any of the end points A and B is taken as the distance from point

C to the interface.

3. Minimize all possible distances from point C to all interface segments to obtain the

reinitialized value.

4. Repeat steps (1)-(3) for all segments comprising the interface of a single grain.

By this approach, the geometry of grain boundaries is directly represented by a set of

vertices, pair-wise connected by line segments.

3 Recrystallization kinetics

During cold working of metallic materials the stored energy will increase, mainly due to

the accumulation of dislocations. The microstructure of the material will be in a state

of thermodynamic instability and recrystallization may occur to revert the material to a

more stable state. Recrystallization is generally viewed as a process whereby new grains
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Figure 2: Principle for direct calculation of the distance from a point C to an interface Γ.

nucleate as region in the microstructure that are relatively free of dislocations and hence

also of low energy. The nuclei can grow by migration of high-angle boundaries to consume

the surrounding cold worked grain structures.

The velocity of migrating boundaries is usually described by the kinetics relation

v = mpn (9)

where m is the grain boundary mobility, p the driving pressure acting on the boundary

and n the local grain boundary normal. Following [2], the driving pressure appears as

p = [[Es]]− γκ (10)

where γ is the grain boundary energy and κ the local grain boundary curvature. The jump

in stored energy across the interface, [[Es]], can be obtained from the corresponding jump

in dislocation density across the interface by evaluating

[[Es]] = τ [[ρ]] (11)

In eq. (11), the dislocation line tension was introduced as τ = μb2/2, b and μ being the

magnitude of the Burgers vector and the shear modulus, respectively. From eq. (10) it is

evident that grain growth will occur under a competing process of stored energy reduction

and grain boundary energy minimization.

The grain boundary mobility m, appearing in eq. (9), can be written as

m (T ) = m0 (T ) exp

(−Qm

RT

)
(12)

where Qm is the activation energy for grain boundary migration, R the gas constant and T

the absolute temperature. From the Turnbull estimate [36, 37], the pre-exponential factor

appears as

m0 (T ) = β
δDgbVm

b2RT
(13)
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where δ, Dgb and Vm are the mean grain boundary width, grain boundary diffusivity and

molar volume, respectively. The Turnbull estimate can be considered as an upper limit

to the grain boundary mobility and following [38], the model parameter 0 < β ≤ 1 is

introduced in eq. (13) to allow scaling of the mobility to comply with the behavior of a

particular material. It is noted that different boundaries may have different mobilities due

to the local content of solute atoms and due to the misorientation across the interface and

the inclination of the boundary plane. For simplicity, such dependencies are not considered

in the boundary mobilities in the present model. Hence, all boundaries are considered to

possess the same mobility at a given temperature.

The grain boundary energy γ was introduced in eq. (10). This energy varies with

the grain boundary configuration in terms of crystallographic misorientation θ across the

interface and the orientation of the boundary plane. The grain boundary energy is usually

taken to obey the Read-Shockley relation for low-angle boundaries (LAGB) and held at

a constant value for high-angle boundaries (HAGB) [39, 2]. By this approach, the grain

boundary energy is given by

γ =

⎧⎨⎩ γm
θ

θm

[
1− ln

(
θ

θm

)]
for θ ≤ θm

γm for θ > θm

(14)

Here, γm is the grain boundary energy for HAGB and θm the scalar misorientation differen-

tiating between LAGB and HAGB, often approximated as θm = 15◦. In the present model

all recrystallization nuclei are assumed to emerge with high-angle boundaries, θ ≥ θm, with

respect to their neighbors and a constant value of the grain boundary energy γ is used.

4 Level set modeling of recrystallization

Considering level sets applied to modeling of recrystallization, the interface velocity v

appearing in eq. (6) is with eqs. (9) and (10) given by

v = vρ + vκ (15)

with the following interface velocity quantities being introduced

vρ = vρn, vρ = m[[Es]]ij

vκ = vκκn, vκ = −mγ
(16)

where [[Es]]ij is the jump in stored energy across the boundary between grains i and j.

Taking advantage of eq. (3), and assuming that ‖∇φi‖ = 1 holds due to level set reinitial-

ization, this allows eq. (6) to be reformulated as⎧⎨⎩
∂φi

∂t
+ vT

ρ∇φi + vκ∇2φi = 0,

φi(x, t = 0) = φ0
i (x),

∀ i ∈ {1...Nφ} (17)
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The resulting formulation in eq. (17) constitutes a transient advection/convection-diffusion

equation that in the present implementation is solved in a finite element setting.

4.1 Estimation of the convective velocity field due to stored energy differences

Whereas the diffusion-part of the velocity in eq. (16b) follows from the curvature κ of the

level set, the convective velocity vρ due to stored energy jumps, cf. eq. (16a), requires

some additional attention. This velocity field has to be constructed in such way that

discontinuities in the velocity field are avoided at junctions where the boundary normals

are not continuously defined.

Due to the interface reconstruction proposed in Section 5, a subset of the nodes in the

finite element mesh will coincide with the grain boundaries. At each of these interface

nodes, all level sets having a zero value there are considered. This will involve two level

sets at nodes along regular boundaries and three level sets at triple junction nodes. These

level sets are collected in the set Ñφ. The velocity vρ at the interface nodes is then obtained

by adding the contributions from the level sets present at a certain node by the following

steps:

1. At each interface node, find the level set with the highest stored energy: max (Es,k) ⇒
φi, k ∈ Ñφ

2. Define vρ =
∑

j m[[Es]]ij nj (x, t), j 	= i, i, j ∈ Ñφ

where the summation is performed over all level sets contained in Ñφ. This approach to

evaluating vρ is similar to that proposed in [40] where, however, the contribution at all

nodes from all level sets is used in the summation since interface nodes are not defined.

4.2 Modeling of grain nucleation

One of the appealing features of the level set method is its ability to directly handle

topological changes such as the appearance and disappearance of individual level sets. In

the present model, a grain represented by the level set φj is considered as disappeared once

φj ≤ 0 everywhere. As this occurs, the disappeared level set is removed from subsequent

time steps to promote computational efficiency.

Nucleation of recrystallized grains generally occur at sites of high stored energy in the

microstructure. These sites are primarily found at grain boundary triple junctions, along

grain boundaries, at particle inclusions and at slip bands in the grain interiors. In the

present model, a nucleation criterion based on the local dislocation density is used. By this

approach, nucleation is initiated once a critical dislocation density ρc is reached at some

site in the microstructure.

Addition of level sets due to nucleation is performed by identifying locations where the

nucleation criterion is met, i.e. the corresponding nodal points are located. A new signed
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distance function is created as a concentric circular contour, with a set radius, around the

nucleation center.

The nucleation event itself, in terms of nuclei present at a given microstructure state,

is in the present model assumed to be governed by a rate of nucleation law on the form

ṅ (T, ε̇eff) = cn (T ) ε̇
p
eff

(−Qn

RT

)
(18)

where n is the number of nuclei per unit volume, cn (T ) is temperature dependent param-

eter, controlling the extent of nucleation, and Qn is the activation energy for nucleation.

Driven by the rate of macroscopic plastic deformation, eq. (18) represents a constant rate

of nucleation law, corresponding to the proportional nucleation model in [41, 42], also em-

ployed in [43, 44]. It should be noted, however, that the rate of nucleation in the present

model is constant at a given temperature but will change with changing temperature.

Alternative rate-of-nucleation laws could be employed directly within the present model

framework by replacing eq. (18).

5 Interface reconstruction

The FE-based level set modeling of interfaces involves a diffuse representation of the bound-

aries in the sense that FE nodal points do not necessarily coincide with the interfaces. This

leads to some issues, for example when boundary conditions need to be applied along the

interfaces. In the present work, an interface reconstruction methodology is suggested and

employed to allow additional flexibility in treating phenomena such as discontinuities of

field variables across the boundaries.

As discussed in Section 2.2, standard level set implementations do not provide the

exact localization of junction points between multiple level sets, typically found at grain

boundary triple junctions. This is also addressed by the proposed interface reconstruction.

It can be noted that when representing for example displacement discontinuities at the

interfaces in terms of level sets, extended finite element methods (XFEM) is sometimes

employed [45]. However, also XFEM requires interpolation of the location of the interfaces

during numerical integration of the field variable under consideration. XFEM also further

adds to the computational effort by adding additional degrees of freedom to the model.

In the present work, displacement discontinuities at the grain boundaries are not re-

quired since no relative movement between adjacent grains – such as grain boundary sliding

– is considered. In contrast, jumps in the scalar stored energy field are considered as well

as the position and configuration of interface triple junctions. Hence, a methodology based

on interface interpolation and remeshing is adopted here.

The interface reconstruction is performed through the following procedure: After up-

dating the positions of the interfaces by solving eq. (17), the interfaces are located by
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γ1

γ2

γ3

ϕ1

ϕ3

ϕ2

Figure 3: Schematic illustration of three grain boundaries, with different interface energies
γ1, γ2 and γ3, meeting at a triple junction.

interpolation in the FE mesh. Elements cut by one or more interfaces are conveniently

identified by finding those elements where the nodal level set values fulfill the criterion

min (φj) ·max (φj) ≤ 0 for any φj , j = 1...Nφ (19)

If more than two level sets fulfill this criterion in a single element, the element contains a

junction.

Once the elements that contain interfaces are identified, the interface crossing points

at the element edges are found by interpolation. This allows definition of interface line

segments between the crossing points in each element. This is a direct geometric represen-

tation of the modeled grain boundary, also used in the level set reinitialization discussed

in Section 2.2.

Elements that contain triple junctions require some special attention. The precision

with which the junction is localized depends on the mesh or grid resolution in the region

surrounding the junction point. But no matter how fine the resolution is, the junction point

will end up somewhere in the interior of a single element, without being exactly positioned.

The exception being the unlikely event that a junction by chance precisely coincides with

a grid point.

Considering the triple junction illustrated in Fig. 3, the Herring equation [46] dictates

the triple junction equilibrium configuration to fulfill

γ1
sin (ϕ1)

=
γ2

sin (ϕ2)
=

γ3
sin (ϕ3)

(20)

If all involved interface energies are equal, the grain boundaries will meet at angles ϕ1 =

ϕ2 = ϕ3 = 120◦.
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In the present implementation, the triple junctions are reconstructed in the correspond-

ing elements by identifying the junction as the isogonic point1 in the triangle defined by

the three interface crossing points along the element edges. The isogonic point is found as

the point that minimizes the total distance from the three triangle vertices to the point.

The present method for triple junction reconstruction is illustrated in Fig. 4 and involves

the following steps:

1. Identify an element containing a triple junction, Fig. 4a.

2. Interpolate the three interface crossing points A, B and C along the element edges,

Figs. 4a and 4b.

3. Calculate the isogonic point D, defined by the triangle ABC, Fig. 4b.

4. Define interface segments between the isogonic point D and each of the three crossing

points A, B and C, Fig. 4c.

Reconstructing triple junctions by means of isogonic points ensures that the 120◦ equilib-

rium angles are present between the joining interfaces at the junction. It should also be

noted that by using an appropriately refined mesh near triple junctions, the junction re-

construction is performed within a very small region of the microstructure. The end result

is clearly defined junction points, in contrast to standard level set implementations where

artificial voids surround the junctions [24, 31].

Having achieved a definition of the grain boundaries at the current microstructure state

in terms of interface segments, the length of these segments can be used to control the mesh

resolution during subsequent remeshing. In the present model implementation, a target

segment length lseg is defined. All segments longer than this value are divided and all

segments shorter than the target value are merged. The vertices of the interface segments

are used as prescribed nodal positions to control adaptive meshing through constrained

Delaunay triangulation using the Triangle software [47]. This is further discussed in relation

to the simulation examples in Section 7.

To summarize, the present level set implementation with interface reconstruction has

advantages in terms of:

1. Allowing boundary conditions to be applied at interfaces. This is used in the consid-

eration of dislocation density gradients in Section 6.

2. Distinct localization of triple junction points.

3. Ensuring that grain boundaries meet with 120◦ dividing angles at triple junctions,

i.e. respecting the equilibrium configuration given by eq. (20).

1The isogonic point is also known as the Fermat point or the Torricelli point.
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(a)

A

B

C

(b)

D
A

B

C

(c)

Figure 4: Schematic illustration of the steps whereby a triple junction is located using the
isogonic point of a triangle ABC. a) Interpolation of the location of grain boundaries –
indicated by red lines – and identification of the crossing points A, B and C. The shaded
element is identified to contain a triple junction. b) Definition of a triangle ABC in the
element that contains the triple junction and subsequent definition of the isogonic point
D within the triangle ABC. c) Interface definition at the reconstructed triple junction by
three new interface segments.

4. Allowing evaluation of the interface velocity due to bulk energy differences across the

interface, Section 4.1.

5. The interface segments can be used for level set reinitialization, as discussed in Sec-

tion 2.2.

6. Adaptive mesh control can be performed since the interface segmentation can be used

to control the element size along the boundaries. This is done in the present work

by setting the target segment length lseg, further used in Sections 7 and 8.

7. Quantities pertaining to individual level sets/grains can be treated on a per-element

basis since each element belong uniquely to a single level set.

8. Convenient calculation of domain areas, i.e. grain sizes in the present case, by sum-

mation of the element areas belonging to an individual level set.

9. Facilitated post-processing of calculation results. A direct graphical representation

of the grain boundaries is available, using the interface segments.

6 Modeling of polycrystal plasticity and heterogeneous dislocation density distribu-
tions

In order to describe the evolution of plasticity in a polycrystalline material, the evolution

of the dislocation density inside a single grain due to an applied macroscopic plastic strain
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is herein assumed to follow the Kocks-Mecking relation

dρj
dεpeff,j

= k1
√
ρj − k2ρj , j = 1...Nφ (21)

where ρj and εpeff,j is the dislocation density and the effective plastic strain in grain j,

respectively [48, 49, 50, 51, 52]. Following [50, 51], the parameter k1 is related to the

athermal accumulation of immobilized dislocations due interaction between dislocations,

i.e., due to obstacles with a spacing proportional to the inter-dislocation spacing (ρj)
−1/2.

The parameter k2 is associated with recovery due to dislocation annihilation processes.

Whereas the parameter k1 is constant, the parameter k2 is usually a function of temperature

and strain rate [48, 49, 50, 52].

Athermal dislocation accumulation due to the presence of grain boundaries – which are

obstacles with a spacing greater than the inter-dislocation spacing – can be considered by

adding a third term, here denoted by kj, to eq. (21) which then appears as

dρj
dεpeff,j

= k1
√
ρj − k2ρj + kj, j = 1...Nφ (22)

This parameter is usually taken as being proportional to (bd)−1, where d is the grain size.

In the present model, however, the distance information provided by the level sets – which

by reinitialization maintain the property of a signed distance function – can be utilized to

formulate

kj (φj) =
1

bmax (φj)
f (φj) for all j = 1...Nφ where φj > 0 (23)

The presence of max (φj) in the denominator of eq. (23) provides a measure of the grain

size since the highest value of each level set function gives the maximum distance, within

the grain, from the grain boundary. This maximum distance is an indication of the grain

radius, with a precision partly depending on the mesh resolution.

Also introduced in eq. (24), the function f (φj) controls the increased impact of the

kj term on the dislocation density evolution in the vicinity of grain boundaries. This is

achieved by formulating the function f (φj) as

f (φj) = rmin + (1− rmin) exp

(
−w

φj

max (φj)

)
, φj > 0 (24)

The parameter 0 ≤ rmin ≤ 1 controls the influence of kj in the grain interior, away from the

boundary, and the parameter w controls how fast the influence of kj decays when moving

away from the grain boundary. The gradient in the dislocation density distribution due

to dislocation pile-up at the grain boundaries is controlled by w. The influence of the

parameters rmin and w is illustrated in Fig. 5.
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Figure 5: Illustration of the influence of the parameters rmin and w on the scaling func-
tion f (φj), 1 ≤ j ≤ Nφ, cf. eq. (24). Note that f = 1 at the grain boundary, where
φj/max(φj) = 0, and f → rmin at the grain center where φj/max(φj) = 1.

In the present work the dependence of dislocation accumulation on the distance to the

grain boundary is for simplicity taken to follow the simple exponential format chosen in

eq. (24). More elaborate formulations are conceivable, where kj depends in other ways

on φj. For such modeling, it is noted that the appearance of the dislocation density

distribution in real microstructures can be determined experimentally from electron back-

scatter diffraction (EBSD) data, as reported in [53, 54, 55]. It can also be noted that the

present modeling framework does not restrict alternative forms of eq. (24).

Considering dislocation density gradients by introducing kj in eq. (22) will influence

the microstructure evolution as well as the homogenized macroscopic material response to

deformation. In [56], the present author identified another approach to modeling dislocation

density gradients in relation to microstructure evolution. This is achieved by considering

the dislocation density evolution as a reaction/diffusion system, separating between mobile

and immobile dislocations. However, seeking to enhance computational efficiency and

utilizing the distance information embedded into the level set framework, the approach

related to eqs. (22)-(24) is adopted in the present work. In [56] it was also found that the

introduction of dislocation density gradients in mesoscale polycrystal models – as is also

the setting in the present case – will yield a Hall-Petch dependence of the macroscopic,

homogenized, flow stress on the average grain size. This is maintained by the present

approach to dislocation density gradient modeling.

The dislocation density gradients will also provide additions to the modeling of recrys-

tallization on the scale of the grain microstructure. With a nucleation criterion based on

a critical dislocation density threshold value, as discussed in Section 4.2, the presence of
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dislocation density gradients will provide the appropriate nucleation sites. The modeled

nucleation will naturally take place primarily along grain boundaries where the dislocation

density is the highest, in accordance with experimental observations [2].

Fig. 6 illustrates how the evolving dislocation density distribution is influenced by

eq. (24) when the dislocation density in each grain is initiated from a random normal

distribution with mean 1011 m−2 and standard deviation of 1010 m−2. Additional param-

eters are defined in Section 8 as Fig. 6 is shown here only for illustration purposes. The

illustrations in Fig. 6 are obtained at a strain of 0.1.

The different distributions in Fig. 6 are obtained by setting rmin = 0.5 and varying the

parameter w. As shown in Fig. 6, the dislocation density distribution will be increasingly

concentrated along the grain boundaries as the value of w is increased, consistent with the

behavior shown in Fig. 5.

From Fig. 6 it can also be noted that a higher dislocation density is maintained through-

out the interior of smaller grains. This is a replication of grain boundary influence becoming

more dominant as smaller grains are considered. In contrast, as larger grains are considered,

the difference in dislocation density becomes greater when comparing the grain centers and

the grain boundary regions. These observations are related to the macroscopic flow stress

exhibiting a Hall-Petch-type of dependence on the grain size [56].

The dislocation content, in terms of geometrically necessary dislocations, can be related

to gradients in the lattice orientation within individual grains. Using EBSD techniques,

such orientation distributions and related dislocation content have been quantified experi-

mentally in, for example, [57, 58, 59, 60]. In [60] it is observed that there is a clear trend

for higher dislocation density in smaller grains, as also indicated in Fig. 6. Regarding the

the appearance of dislocation density gradients, it can be noted from the experimental

observations in [57, 59] that an exponential function, such as the one proposed in eq. (24),

captures the dislocation density variation near grain boundaries quite well. From the ex-

perimental studies in [58, 59] it appears that the high level of dislocation density near grain

boundaries extend into the grains over roughly 10 % of the grain radius. This width can

be represented by the parameter w in eq. (24).

Denoting the second-stage hardening rate and the saturation level of the flow stress

at steady state by ΘII and σs, respectively, the parameters k1 and k2 in eq. (22) can be

evaluated from experimental data by considering the relations

ΘII =
1

2
αμbk1 and σs = αμb

k1
k2

(25)

where α is a parameter in the order of unity, related to the strength of dislocation interac-

tions [50, 12]. The parameter k1 will in such results contain the combined influence of k1
and kj in eq. (22). The separate influence of the kj parameter is, due to lacking experimen-

tal data, heuristically added in the present model to reflect grain boundary influence. The
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a) w = 1 b) w = 5

c) w = 10 d) w = 20

ρmax

ρmin

Figure 6: Illustration of the influence of eq. (24) on the distribution of dislocation density in
a simulated polycrystal at a strain of 0.1. The parameter rmin is held constant at rmin = 0.5
while the parameter w is varied. a) w = 1, b) w = 5, c) w = 10 and d) w = 20. Note the
concentration of dislocation density along the grain boundaries.
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distinction between dislocation accumulation due to obstacles of different sizes requires ad-

ditional experimental input, for example from EBSD measurements, as mentioned earlier

in this section. The function kj and the related parameters rmin and w in eq. (24) are

introduced in the present model to illustrate one convenient way of introducing dislocation

density gradients, with advantage being taken of the information contained in the level set

formulation. Another approach is the reaction-diffusion modeling of dislocation density

evolution, proposed in [56].

The saturation level of the macroscopic flow stress at steady state is in [61, 52] observed

to satisfy a proportionality according to

log

(
σs

μ

)
∝ g (T, ε̇peff) (26)

where g is a function, varying with temperature and the rate of macroscopic effective plastic

strain, according to

g (T, ε̇peff) =
kBT

μb3
ln

(
107

ε̇peff

)
(27)

where kB is the Boltzmann constant. By fitting against experimental data, the steady-state

saturation stress σs may now be determined by eq. (26).

In addition, following [50], the macroscopic flow stress, related to an average dislocation

density ρ̄ can be determined from

σ̂ =
1

2
μb

√
ρ̄ (28)

To obtain the average dislocation density of a polycrystalline aggregate, a Taylor-type

assumption is made whereby increments in effective plastic deformation is taken to be

equally distributed among the grains. This allows a volume averaging of the dislocation

density to be performed by homogenizing of the plastic power ẇp according to

ẇp = σ̂ε̇peff =
1

V

∑
j

∫
j

ẇp
j dV =

1

V

∑
j

∫
j

σ̂j ε̇
p
eff,jdV (29)

where Vj i the volume of grain j and V is the total volume of the domain under consid-

eration. Using σ̂j = 1/2μb
√
ρj and ε̇peff = ε̇peff,j , the average dislocation density is obtained

as

√
ρ̄ =

1

V

∑
j

∫
j

√
ρjdV (30)

A dependence of the macroscopic flow stress on the strain rate is introduced, following [48],

by adding a strain rate sensitivity to eq. (28) according to

σ = σ̂

(
ε̇peff
ε̇ref

)η

≡ 1

2
μb

√
ρ̄

(
ε̇peff
ε̇ref

)η

(31)

DOI: 10.1088/0965-0393/21/8/085012 19



Modelling and Simulation in Materials Science and Engineering 2013, 21(085012)

The strain rate sensitivity of the plasticity model is now controlled by the reference strain

rate ε̇ref and the strain rate sensitivity parameter η, whereas the temperature dependency

lies in the shear modulus μ and in the k2 parameter, as determined from the saturation

stress σs according to eqs. (25) and (26).

7 Grain growth kinetics resulting from the simulations

In order to illustrate how grain growth kinetics according to eqs. (9) and (10) is captured by

the present model, a single spherical grain embedded into a matrix material is considered,

cf. Fig. 7. Such a simplified model is useful to investigate the model representation of

interface curvature.

Considering eqs. (9)-(10), the radial velocity of the single spherical grain of radius R

can be written as

Ṙ =
dR

dt
= m[[Es]]−m

2γ

R
(32)

where, compared to eqs. (9)-(10), the vectorial notation is dropped for convenience since

the velocity is confined to the radial direction of the sphere and the curvature is obtained

from κ = 2/R. Under purely curvature-driven grain boundary migration the grain will

shrink whereas the presence of a stored energy difference [[Es]] across the grain boundary

may contribute enough driving force to allow grain growth to take place.

Considering purely curvature-driven motion, the first term on the right-hand side of

eq. (32) vanishes, and the remaining expression can be integrated to obtain

R (t) =
(
R2

0 − 4mγt
)1/2

(33)

where R and R0 are the current and initial radii of the grain, respectively, also cf. [62]. To

make a comparison between this analytical behavior and the model response, material pa-

rameter values are chosen as m = 1.86×10−11 m3·N−1·s−1 and γ = 0.625 J·m−2, pertaining

to pure copper at T = 875 K. These parameters are discussed further in Section 8.

The one-grain simulations are performed on a 500× 500 μm 2D domain with periodic

boundary conditions along the outer edges. Domain discretization is performed, using

three-node elements with linear interpolation. Advantage is taken of the interface segment

length lseg – obtained from the interface reconstruction discussed previously in Section 5 –

as a controlling parameter for adaptive mesh refinement, performed in each time step by

constrained Delaunay triangulation.

With R0 = 100 μm, the analytical result from eq. (33) is in Fig. 7 compared to sim-

ulation results, obtained using three different mesh resolutions. The different meshes are

obtained by varying the value of lseg with values stated in Fig. 7. The results indicate

that the level of mesh refinement, required in order to properly capture curvature-driven

interface motion, is obtained for lseg = 3.5 μm.
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Figure 7: The three top figures show different mesh refinements in a 300× 300 μm domain
around a circular level set corresponding to a single grain, embedded in a matrix material.
The graph below shows the normalized grain radius as the grains shrink due to purely
curvature-driven motion. The solid line shows the analytical solution, as obtained from
eq. (33), and the different dashed lines show the simulation result for the three different
mesh resolutions. The graph shows the significance of proper mesh resolution to capture
interface curvature.
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Table 1: Material parameters pertaining to pure copper.

Parameter Description Value Reference
Tm Melting temperature 1356 K [65]
α Dislocation junction strength 0.35 [64]
ΘII Stage II strain hardening rate 1.1× 109 Pa [64]
η Strain rate sensitivity parameter 0.0222 [64]
s1, s2 Saturation stress fitting parameters -2.271, -1.654 [64]
b Magnitude of the Burgers vector 0.256 nm [66]
γ Grain boundary energy 0.625 J·m−2 [65]
ε̇ref Reference strain rate 4.5× 10−7 s−1 [64]
Qm Activation energy for grain boundary migration 104 kJ·mol−1 [67]
Qn Activation energy for nucleation 261 kJ·mol−1 [68]
δDgb Grain boundary width and diffusivity 5× 10−5 m3·s−1 [67]
β Scaling parameter in the grain boundary mobility 0.5 [64]
Vm Molar volume 7.11× 10−6 m3 [69]

8 Application to dynamic discontinuous recrystallization in pure Cu

Taking pure copper as example material, parameter values have to be established accord-

ingly. In [63], the shear modulus is given a temperature dependence on the form

μ (T ) = 35.4× 109
[
1− 0.5

(
T − 300

Tm

)]
MPa (34)

where Tm is the melting temperature.

In [64], the temperature and strain rate dependent saturation stress in eqs. (26)-(27) is

fitted against experimental data, resulting in

log

(
σs

μ

)
= s1g + s2 (35)

where values of the fitting parameters s1 and s2 are given in Table 1. Further considering

the experimental data on hot compression of pure Cu provided in [68], an initial artificial

microstructure RVE with 52 grains is generated through Voronöı tessellation to provide

a simulation model with an average grain size of 78 μm, cf. Fig. 8. The initial Voronöı

structure is run for a few time steps under purely curvature-driven grain boundary motion

to equilibrate the triple junction angles and obtain a more realistic grain boundary config-

uration. The RVE has outer dimensions of 500×500 μm and periodic boundary conditions

are applied along the outer edges.

The dislocation density distribution is initiated by randomly prescribing to each grain a

dislocation density from a normal distribution with mean 1011 m−2 and standard deviation

1010 m−2. The dislocation density is initially homogeneously distributed within each grain

and gradients in the distribution will develop due to the formulation adopted in eqs. (22)-

(23).
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a) b)

Figure 8: Artificial 2D microstructure used in the simulations. The RVE has outer dimen-
sion of 500×500 μm and periodic boundary conditions are applied on the outer boundary.
The initial microstructure consists of 52 grains, with an average grain size of 78 μm. a)
Grain boundaries, represented by interface segments. b) Mesh discretization from a De-
launay triangulation with approximately 20,000 elements.

Table 2: Values of the only two temperature dependent calibration parameters in the
model. T is the absolute temperature and ρc and cn is the critical dislocation density for
nucleation and a parameter influencing the rate of nucleation, cf. eq. (18), respectively.

T [K] ρc [m−3] cn
775 3.8× 1014 20.5× 1020

875 1.5× 1014 11.4× 1018

975 5.8× 1013 38.4× 1016

As in the previous one-grain example simulations, Three-node elements with linear

interpolation are used, cf. Fig. 8. Adaptive remeshing, using the interface segment length

lseg = 3.5 μm for controlling the element size at the grain boundaries, is performed in each

time step. This value of lseg is chosen based on the results obtained in Section 7.

Considering the experimental data on hot compression of pure Cu presented in [68],

the homogenized macroscopic response of the present model can be evaluated. To achieve

this, the only two remaining parameters to be defined are the critical threshold value

of dislocation density at the onset of recrystallization, ρc, and the coefficient cn in the

rate of nucleation law, cf. eq. (18). The parameter values used at the temperatures

under consideration are given in Table 2. As stated in [68], a macroscopic strain rate of

ε̇peff = 2× 10−3 s−1 was used in the simulations to comply with the experimental data.

The results from the simulations are shown in Fig. 9 together with experimental from

[68]. The macroscopic flow stress behavior that is obtained from the simulations, shown

in Fig. 9, can be seen to capture the transition from single-peak flow at T = 775 K into
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Figure 9: Macroscopic flow stress as a function of macroscopic effective plastic strain at
different temperatures. The solid lines show simulation results, obtained in the present
work, and the circles show experimental data on hot compression of pure Cu, from [68].

Table 3: Steady-state grain sizes obtained in the simulations at three different tempera-
tures, cf. Fig. 9a, compared to those obtained experimentally in [68], cf. Fig. 9b. Grain
size values are given in microns.

T [K] Simulation, present work Experiment, from [68]
775 19 14
875 39 34
975 56 57

multiple-peak flow as the temperature is increased. This transition is in agreement with

the trends shown in the experimental results, indicated by the small circles in Fig. 9.

The increasing oscillations found as the temperature is increased are characteristic for

materials undergoing dynamic discontinuous recrystallization. At lower temperatures, or

higher strain rates, a single cycle of recrystallization does not have time to finish before

the next cycle sets in. These parallel waves of recrystallization damp out the flow stress

oscillations. In contrast, at higher temperatures or at lower strain rates, each cycle of

recrystallization is more or less allowed to finish prior to the next. This results in the

serrations of the macroscopic flow stress curve.

Following the experimental conditions in [68], an initial average grain size of 78 μm was

used in the simulations. The steady-state grain sizes, obtained at the end of the deformation

process at each temperature, are given in Table 3 together with the experimental values.

A reasonable agreement is found between the simulated steady-state grain sizes obtained

from the simulations in the present work and the experimental values from [68].
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a) t = 0 b) t = 145 s

c) t = 170 s d) t = 500 s

Figure 10: Appearance of the microstructure at different stages during dynamic recrystal-
lization at T = 875 K, cf. Fig. 9a.
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Figure 11: Recrystallization kinetics represented by the recrystallized fraction as a function
of time at three different temperatures. Solid lines show simulation results and dashed lines
show fits of the Avrami relation in eq. (36).

8.1 Correspondence with JMAK theory

The progress of recrystallization is classically described by the Kolmogorov-Mehl-Avrami-

Johnson KJMA relation through the Avrami equation

X = 1− exp (−Btn) (36)

where X is the recrystallized fraction and where the two parameters B and n describe

the recrystallization kinetics [70, 71, 72]. Although established under several simplifying

assumptions, eq. (36) is widely used to quantify recrystallization kinetics.

Fig. 11 shows the recrystallized fraction as a function of time for the three different

processing temperature presently under consideration, cf. Fig. 9. The solid lines show

simulation results and the dashed lines show fits of the Avrami relation in eq. (36), obtained

by least-squares fitting. The values of the Avrami exponent n, resulting from the fitting

procedure, lie in the range between 1.9 at T = 775 K and 2 at T = 975 K. The first cycle

of recrystallization, as shown in Fig. 11, thus appear with an Avrami exponent close to the

value expected for 2D site saturated nucleation [2]. In the present simulations, nucleation

occurs continuously at grain boundary sites whereas the KJMA relation is formulated under

the simplifying assumption of randomly distributed nucleation sites.

9 Concluding remarks

In the present work, microstructure evolution in the presence of dynamic recrystallization is

simulated on the mesoscale using a finite element-based level set formulation. Recognizing

the level set approach to be a promising and relatively recent tool in mesoscale modeling
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of polycrystals, new additions to standard level set formulations are proposed. These

modifications include a interface reconstruction methodology, allowing boundary conditions

to be prescribed along grain boundaries as well as distinct localization of triple junctions.

The proposed interface reconstruction also provides the geometric configuration of the

boundaries, meeting at the junctions. These features are absent in standard level set

formulations where, for example, triple junctions are not distinctly localized.

Another addition to the level set modeling of polycrystal plasticity, proposed in the

present work, is the treatment of gradients within the grains. Polycrystal plasticity is

herein considered through the evolution of the dislocation density in the individual grains

and the distance information contained in the level set formulation is used to capture

the influence of grain boundaries on the distribution of the dislocation density. By this

approach, dislocation pile-ups along grain boundaries are captured. With the dislocation

density being concentrated along grain boundaries, the expected sites for nucleation of

recrystallized grains emerge directly from the model, without having to be prescribed by

additional model conditions.

The level set formulation is further equipped with a physically detailed model of dy-

namic recrystallization. The model is employed in simulations of thermomechanical pro-

cessing of pure copper and the results are compared to experimental data, taken from

the literature, with good agreement. It is shown that the proposed model captures all the

salient features of dynamic recrystallization, including prediction of the recrystallized grain

size and the transition from single-peak macroscopic flow to oscillatory flow stress behavior

as the processing temperature is increased.

Some parameters are defined in the establishment of the present numerical model. There

are basically two sets of parameters that come into play. These are those parameters re-

lated to the description of polycrystal plasticity and recrystallization kinetics (material

parameters) and those related to the implementation of the level set formulation (algo-

rithm parameters). The material parameters for pure copper are taken from the literature

and stem from experiments. A such they are not free parameters but are defined by the

material of choice. However, there is nothing in the model that restricts the type of metal-

lic material that can be considered. The only material parameters available for fitting of

the model is the critical dislocation density ρc and the nucleation parameter cn, specified

in Table 2. Both can be determined from experimental data on macroscopic flow stress

behavior, possibly at different temperatures. The parameters rmin and w in eq. (24) can

be included if dislocation density gradients are to be considered. These latter parameters

can be adjusted to comply with experimental observations of, for example, misorientation

gradients inside grains.

Regarding algorithm parameters, the significant parameter is the interface segment

length lseg which influences the mesh refinement at grain boundaries and thereby also

the grain boundary kinetics. This parameter is calibrated by the procedure discussed in
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Section 7, and illustrated in Fig. 7.

The present simulation model is initiated as a polycrystal RVE containing 52 grains.

This may be considered as a relatively low number of grains and to ensure a statisti-

cally representative model, higher numbers could possibly be preferable. However, due to

nucleation, the number of grains increases to a couple of hundred at the end of the defor-

mation processes. As the primary objective of the present paper is to illustrate a modeling

methodology, the chosen RVE size is considered sufficient for this purpose.

The proposed level set model, with interface reconstruction, naturally involves some

computational effort. However, the present simulations run conveniently on a single CPU,

using a standard desktop computer. Extending the model to 3D is certainly feasible, but

will benefit from parallelization.

The characteristic features of DDRX, for example the serrated flow stress behavior

shown in Fig. 9, have been achieved also in other mesoscale models of DDRX. For example

by the present author in [12], using a 2D cellular automaton, by use of a 2D Monte Carlo

Potts approach in [73] and by a mean field model in [74]. As mentioned in the introductory

section of the paper, the finite element-based level set methodology has advantages, for

example, in terms of properly capturing interface curvature and in the possibility to trace

arbitrary geometries. In addition, finite deformations of the computational domain can be

addressed. This is advantageous when using the mesoscale model in a multilevel setting,

where deformation boundary conditions need to be communicated between modeling levels.

Previous work on level set modeling of recrystallization, such as in [27], has brought

attention to some of the possibilities provided by this modeling approach. The present

level set model of dynamic recrystallization adds further to the methodology by adding a

more detailed description of polycrystal plasticity and recrystallization kinetics together

with a study of the macroscopic, homogenized, material response. Further, novelties in the

level set formulation itself are added. As examples: by the present approach, including

interface reconstruction, intragrain gradients of field variables can be handled and grain

boundary velocities can be evaluated directly at the interface nodes instead of in a diffuse

region surrounding the grain boundaries. Boundary conditions can be prescribed at the

grain boundaries and nucleation sites for DDRX emerge naturally from the model.
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