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A review of the literature on the calculation of electrostatic potentials, fields, and field gradients
in systems consisting of charges and dipoles using the Ewald summation technique is presented.
Discrepancies between the previous formulas are highlighted, and an error in the derivation of the
reciprocal contributions to the electrostatic field and field gradient is corrected. The new formulas for
the field and field gradient are shown to exhibit a termwise identity with the ones for the electrostatic
energy. © 2011 American Institute of Physics. [doi:10.1063/1.3599045]

I. INTRODUCTION

The simulation of bulk systems exhibiting electrostatic
(Coulomb and dipole-dipole) interactions is a long-standing
issue in physics and chemistry. The reason for this is that
intermolecular potentials v(r ) that do not decay faster than
r−3 formally possess an infinite range, in the sense that the
integral ∫ ∞

rcut

v(r )4πr2dr, (1)

diverges for all finite values of the cutoff radius rcut. Sev-
eral solutions to this problem have been proposed, with the
most popular one being the lattice-summation technique due
to Ewald.1, 2 Within the Ewald formalism, the electrostatic in-
teractions within the simulation box are rendered short-ranged
through the addition of a neutralizing Gaussian charge density
around each charge, whose width is controlled through the
screening parameter α. The contribution from the screening
charge distributions are then again subtracted by summing up
a collection of Gaussians of opposite sign in reciprocal space.
In order to achieve this, one makes an assumption of long-
range periodicity, meaning that the primary simulation box is
duplicated to generate an infinite primitive cubic lattice.

Apart from calculating electrostatic energies, there is of-
ten also a need to calculate electrostatic potentials, fields, and
field gradients during the course of a computer simulation.
Formulas for these quantities, together with equations de-
scribing pressure tensors and forces, in a system composed of
charges, dipoles and polarizabilities were derived by Nymand
and Linse.3 These equations were generalized to systems also
containing quadrupoles by Aguado and Madden,4 and sub-
sequently in a slightly different way by Laino and Hutter.5

The expressions for electrostatic fields were also recently red-
erived in a contribution by Sala et al.6 We finally note that
the (correct) formulas for the electrostatic potential, field,
and field gradient in a system consisting of charges, dipoles,

a)Electronic mail: joakim.stenhammar@fkem1.lu.se.

and quadrupoles were given already in 1977 by Weenk and
Harwig,7 although this fact seems to have gone unnoticed to
the later authors.

The purpose of this study is to highlight the discrepancies
between the equations derived in the above-mentioned papers
and correct errors in the expressions describing the spatial po-
tential derivatives.

II. GENERAL THEORY

We consider an infinite periodic system, where the
central unit cell is composed of N particles, located at
{r1, r2, . . . , rN } ≡ {r}N , each one possessing an arbitrary set
of electrostatic moments. The potential energy Uel of this sys-
tem can be expressed as

Uel = 1

2

∑′
n

⎡
⎣ N∑

i=1

N∑
j=1

v(ri j + n,ωi ,ω j )

⎤
⎦ , (2)

where n = (nx Lx , ny L y, nz Lz) runs over all lattice points in
the primitive cubic lattice, with nx , ny , and nz being integers
and Lx , L y , and Lz are the side lengths of the unit cell. Fur-
thermore, the primed sum indicates that the term with i = j
should be excluded for n = 0, and v(ri j ,ωi ,ω j ) denotes the
(purely electrostatic) intermolecular potential between parti-
cles i and j , depending in general on their separation ri j and
orientations ωi and ω j .

As a starting point for deriving expressions describing
electrostatic fields and field gradients from the expression for
Uel, we introduce an infinitesimal test charge δq located at r
and define the electrostatic potential φ(r) as

φ(r) ≡ lim
δq→0

∂Uel

∂(δq)
. (3)

The Cartesian components Eα(r) of the electrostatic field and
Eαβ(r) of the electrostatic field gradient are similarly defined
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by the relations

Eα(r) ≡ −∂φ(r)

∂rα

(r /∈ {r}N ), (4a)

Eα(ri ) ≡ lim
r→ri

Eα(r) (ri ∈ {r}N ), (4b)

and

Eαβ(r) ≡ ∂ Eα(r)

∂rβ

(r /∈ {r}N ), (5a)

Eαβ(ri ) ≡ lim
r→ri

Eαβ(r) (ri ∈ {r}N ). (5b)

In a periodic system, the definitions given in Eqs. (4a)
and (5a) hold only as long as the derivative is evaluated in a
point where no particle is located. This is due to the fact that
in a periodic system, the potential at the location ri of parti-
cle i depends on the positions of all the periodic images of i .
A direct evaluation of the spatial derivatives in ri would thus
correspond to an unphysical shift of the positions of all the pe-
riodic images of i , rather than just shifting the point where the
potential is evaluated. Thus, to evaluate potential derivatives
at the location of a particle, we use the complementary defi-
nitions given in Eqs. (4b) and (5b), whereby we avoid chang-
ing the particle positions when performing the derivative. We
also add that for n = 0 and r ∈ {r}N , the infinite contribu-
tions coming from the particle in the evaluation point need
to be subtracted from Eqs. (3), (4b) and (5b) in order to ob-
tain finite values of the respective quantities. Henceforth, we
will use the simplified notations φi = φ(ri ), Ei,α = Eα(ri ),
and Ei,αβ = Eαβ(ri ).

An alternative route to obtaining expressions for the elec-
trostatic potential and its derivatives is to identify them from
an expression for the electrostatic energy of the system. In
general, the total electrostatic energy Uel can be written as a
multipole expansion of the charge distributions of the parti-
cles, in the form8

Uel = 1

2

N∑
i=1

[
qiφi − μi,α Ei,α − 1

3
�i,αβ Ei,αβ + . . .

]
, (6)

where the Einstein summation convention has been used, and
qi , μi,α and �i,αβ denote the charge and the Cartesian dipole
and quadrupole components, respectively, of particle i . The
use of this strategy may in some cases be easier than di-
rectly using the definitions stated in Eqs. (3)–(5), and one also
avoids the problems discussed above with performing spatial
derivatives. On the other hand, Eq. (6) cannot be used to de-
rive expressions for the electrostatic functions in any points
outside of {r}N , so this strategy is less general.

In the following, we will consider systems consisting of
only charges and dipoles, although quadrupoles sometimes
need to be introduced in order to identify electrostatic field
gradients using Eq. (6). We will furthermore assume that the
system is charge neutral, i.e.,

∑
i qi = 0.

III. EWALD SUMMATION

The electrostatic energy of an infinite periodic system
calculated using the Ewald summation technique involves a
partitioning of the energy into four different contributions:

1. A real space energy Ureal coming from the short-range
Gaussian screened interaction between particles in the
central box.

2. A reciprocal space energy Urec coming from the sum-
mation of the interactions between the complementary
Gaussian charge distributions.

3. A self-energy Uself, correcting for the inclusion of the
interaction between each particle and its own Gaussian
charge cloud.

4. A surface energy Usurf, coming from the solvation of
the infinite lattice, which depends on the dielectric
constant εsur of the surrounding medium. This con-
tribution can be identified as coming from the k = 0
term in the reciprocal space sum.9

In Subsections III A–III D, we will treat the four contri-
butions to the potential, field, and field gradient one at a time
highlighting some discrepancies and errors in the equations
previously given in the literature.

A. Real space contributions

As was originally pointed out by Smith,10 the real-space
part of the electrostatic energy is conveniently obtained by re-
placing r−(2n+1), where r is the interparticle separation, in the
standard (unscreened) formulas for the electrostatic energy,
potential, field, and field gradient by its screened counterpart
2r−(2n+1). Although there does not seem to be any real con-
troversy about these formulas, there are some typographic er-
rors present in the literature. This was pointed out by Laino
and Hutter,5 who corrected for a missing double factorial in
the formulas due to Nymand and Linse3 and Aguado and
Madden.4 However, they instead introduced a new typo in the
enumerator of the recursion formula. Thus, for completeness,

the correct formulas for 2r−(2n+1) should read

b1

r
= erfc(αr )

r
, (7a)

21

r (2n+1)
= r−2

[
21

r (2n−1)
+ (2α2)n

√
πα(2n − 1)!!

e−α2r2

]
, (7b)

in accordance with the expressions given by Sala et al.6 In
the above equations, erfc is the complementary error function,
α is the Ewald screening parameter and !! denotes a double
factorial.

B. Reciprocal space contributions

The expression for the reciprocal space energy Urec of a
system consisting of charges and permanent dipoles has been
given several times in the literature and reads

Urec = 2π

V

∑
k �=0

Ak |ρN (k)|2 , (8)

where V = Lx L y Lz is the volume of the unit cell,

Ak = e−k2/4α2

k2
, (9)
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and the generalized k-space charge density ρN (k) is given by

ρN (k) =
N∑

i=1

[
qi + ı(μi · k)

]
eık·ri , (10)

where the sum runs over all particles in the primary box. In
the above equations, the vector k is defined as

k = 2π (nx/Lx , ny/L y, nz/Lz), (11)

and ı denotes the imaginary unit.
Insertion of the expression for ρN (k) into Eq. (8) fol-

lowed by a direct application of Eq. (3) now gives the fol-
lowing expression for the reciprocal space contribution to the
electric potential at r:

φrec(r) = 4π

V

∑
k �=0

Ak Re
[
eık·rρ∗

N (k)
]

(12)

where ∗ denotes complex conjugation. For r = ri , this triv-
ially reduces to the expression for the electric potential φrec

i
at the position of particle i already given in the literature,3–5, 7

namely,

φrec
i = 4π

V

∑
k �=0

Ak Re
[
eık·ri ρ∗

N (k)
]
. (13)

The component E rec
α (r) of the electrostatic field is

straightforwardly retrieved from a direct application of
Eq. (4a) to Eq. (12), and the result is

E rec
α (r) = −4π

V

∑
k �=0

Akkα Re
[
ıeık·rρ∗

N (k)
]
. (14)

To obtain E rec
i,α , we merely take the limit r → ri , as given in

Eq. (4b), leading to

E rec
i,α = −4π

V

∑
k �=0

Akkα Re
[
ıeık·ri ρ∗

N (k)
]
. (15)

This expression differs from the those previously given by
Nymand and Linse,3 Laino and Hutter,5 and Sala et al.6 by
a term

4π

V

∑
k �=0

Akkα(μi · k), (16)

although it is equivalent to the expression given by Weenk
and Harwig.7 The term in Eq. (16) can be identified as the
derivative

4π

V

∑
k �=0

Ak Re

[
eık·ri

∂

∂ri,α
ρ∗

N (k)

]
, (17)

which indicates that the source of this spurious term is the
use of Eq. (4a) rather than Eq. (4b) when evaluating the spa-
tial derivative at ri , corresponding to an unwanted shift of the
positions of the image particles as discussed in Sec. II.

Following the same procedure as above, we apply
Eq. (5b) to Eq. (14) to obtain the following expression for
E rec

i,αβ :

E rec
i,αβ = 4π

V

∑
k �=0

Akkαkβ Re
[
eık·ri ρ∗

N (k)
]
. (18)

This expression again differs from that given by Nymand and
Linse3 and Laino and Hutter5 by a spurious term

−4π

V

∑
k �=0

Akkαkβqi , (19)

the rationale behind which is totally analogous to the reason-
ing behind the extra term in the expression for the electrostatic
field.

We finally note that Aguado and Madden4 do not provide
any explicit expressions for E rec

i,α or E rec
i,αβ . However, they state

that these quantities were derived through an identification us-
ing Eq. (6), whereby the differentiation problems discussed
above are avoided. Sala et al.6 do not provide any expressions
for the field gradients.

C. Self contributions

The correction Uself for the inclusion of the interaction
between each particle and its own screening charge distri-
bution in a system with charges, dipoles, and quadrupoles is
given by1, 3–5

Uself = −
N∑

i=1

[
α√
π

q2
i + 2α3

3
√

π
μ2

i − 4α3

9
√

π
qi Tr(�i )

]
. (20)

The contributions to the potential, field, and field gradient can
readily be obtained using the identity in Eq. (6). A straightfor-
ward comparison yields the following expressions for φself

i ,
E self

i,α , and E self
i,αβ , in accordance with Aguado and Madden,4

Weenk and Harwig,7 and Sala et al.:6

φself
i = − 2α√

π
qi , (21)

E self
i,α = 4α3

3
√

π
μi,α, (22)

E self
i,αβ = − 4α3

3
√

π
qiδαβ, (23)

where δαβ is the Kronecker delta.
We note that Eqs. (22) and (23) differ from those given

by Nymand and Linse,3 who instead provide the expressions

E self
i,α = 4π

3V
μi,α (Nymand and Linse), (24)

E self
i,αβ = − 4π

3V
qiδαβ (Nymand and Linse), (25)

although these were formally included into Urec rather than
into Uself. These terms were introduced somewhat ad hoc, but
as will be shown in Sec. IV the difference between the expres-
sions for the self contributions present in the literature is inti-
mately connected with the error in the k-space contributions
highlighted in Subsection III B. In fact, the use of Eqs. (24)
and (25) instead of Eqs. (22) and (23) almost exactly corrects
for the error introduced by using Eqs. (4a) and (5a) rather than
Eqs. (4b) and (5b) when deriving the k-space contributions to
the potential derivatives.
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D. Surface contributions (k = 0)

The so-called surface contribution, corresponding to the
k = 0 term, to the electrostatic energy is given by1, 9

Usurf = 2π

(2εsur + 1)V

⎡
⎣(

N∑
i=1

qi ri

)2

+ 2

(
N∑

i=1

qi ri

)
·
(

N∑
i=1

μi

)
+

(
N∑

i=1

μi

)2
⎤
⎦ ,(26)

where εsur is the dielectric constant of the surroundings. A
straightforward application of Eqs. (3), (4b), and (5b) leads to

φsurf
i = 4π

(2εsur + 1)V
ri ·

N∑
j=1

(q j r j + μ j ), (27)

E surf
i,α = − 4π

(2εsur + 1)V

N∑
j=1

(q jr j,α + μ j,α), (28)

E surf
i,αβ = 0, (29)

where we should again highlight the importance of follow-
ing the procedure of Eqs. (4b) and (5b) rather than that
of Eqs. (4a) and (5a) when deriving the electrostatic fields
and field gradients in the positions of the particles. Equa-
tions (27)–(29) agree with those provided by Nymand and
Linse3 and Sala et al.6 Weenk and Harwig,7 Aguado and
Madden,4 and Laino and Hutter5 do not treat the surface
term, corresponding to an implicit assumption of conducting
boundaries, i.e., εsur = ∞.

We finally note that Laino and Hutter5 and Sala et al.6

provide, without any clear motivation, additional k = 0 terms
for both energy, fields and field gradients (only Laino and
Hutter5), in addition to the self and surface terms treated
above. However, since the energy expressions given in
Eqs. (7), (8), and (20) (with �i = 0), and (26) (with εsur = 1)
were shown by Nymand and Linse3 to yield identical (to at
least 8 significant digits) results compared to a direct summa-
tion using Eq. (2), we argue that these extra k = 0 terms are
spurious.

IV. NUMERICAL RESULTS

In order to verify the equations derived in the present
work and to compare with results obtained using the expres-
sions derived by Nymand and Linse,3 we will calculate the
electrostatic energy for a dipolar system using the three dif-
ferent approaches outlined below.

Method 1: Calculation of Urec, Uself, and Usurf directly
using the energy expressions given by Eqs. (8), (20),
and (26).
Method 2: Calculation of E rec

i,α , E self
i,α , and E surf

i,α using the
field equations (14), (22), and (28), together with Eq. (6)
(with qi = �i = 0) to calculate electrostatic energies.
This method is mathematically equivalent to Method 1.

TABLE I. Urec, Uself, and Usurf calculated using the three methods de-
scribed in the text. Energies are given in reduced units with 4πε0 = 1,
charges in units of e and lengths in units of Å. A cutoff of ncut = 20 was
used in reciprocal space.

Method 1 Method 2 Method 3

Urec 0.196805948 0.196805947 − 1.251893333
Uself − 1.458226117 − 1.458226117 − 0.009526838
Usurf 0.001386998 0.001386998 0.001386998
Sum − 1.260033172 − 1.260033172 − 1.260033172

Method 3: As Method 2, but adding the extra term of
Eq. (16) to E rec

i,α and using Eq. (24) rather than Eq. (22)
for E self

i,α . This corresponds to the expressions prescribed
by Nymand and Linse.3

All energies were calculated for a single configuration of
1000 Stockmayer particles (μ = 0.344e Å) in a typical
equilibrium liquid-state configuration with Lx = L y = Lz

= 29.629 Å and α = 0.32 Å−1. The surface terms were cal-
culated using vacuum boundary conditions, corresponding to
εsur = 1. Since the formulas for the real-space electrostatic
energies and fields are well-established, these were not in-
cluded into the analysis.

Values of Urec, Uself, and Usurf calculated using the three
different methods are given in Table I. From these we make
the observations that (i) the formulas for Ei,α used in Method
2 gives a termwise identity with a direct application of the
energy formulas used in Method 1, (ii) the formulas for
Ei,α used in Method 3 do not agree on a termwise level
with the energy formulas, and (iii) the three methods yield
identical, to at least 10 significant digits, energies when the
three energy contributions are summed. We thus note that
using Method 3 corresponds to a repartitioning of the field
(as compared to the energy) between the reciprocal and
self contributions, which leads to that the electrostatic field
converges in a different way than the energy. This prop-
erty is highlighted in Fig. 1, where the same energies as in
Table I are given as a function of the cutoff nncut in recip-
rocal space. It is clear that (i) the convergence properties of

0 5 10 15
ncut

-1.5

-1

-0.5

0

U
re

c +
 U

se
lf +

 U
su

rf Method 1
Method 2
Method 3

U (ncut = 20)

FIG. 1. Electrostatic energy Urec + Uself + Usurf obtained using three differ-
ent methods as a function of the cutoff ncut in reciprocal space. Units as in
Table I.
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the formulas provided by Nymand and Linse3 are distinctly
different from those provided in this contribution and (ii) the
formulas for Ei,α provided in this contribution exhibit identi-
cal convergence properties compared to a direct application of
the energy formulas, just as expected. We finally mention that,
although Urec + Uself + Usur calculated using Methods 1 and
2 seem to exhibit a faster convergence than the one calculated
using Method 3, our tests indicate that the relative conver-
gence speed of the two methods is configuration dependent.

We do not show explicitly any numerical results describ-
ing the different routes to obtaining Ei,αβ , as the qualitative
correspondence with the results given above for the electro-
static field is obvious.

As a corollary of the apparent equivalence between Meth-
ods 2 and 3 in the limit ncut → ∞, the k-space sums in
Eqs. (16) and (19) are suggested to be equal to the difference
between the two different forms of the self contribution, i.e.,

4π

V

∑
k �=0

Akkα(μi · k) 
 μi,α

[
4α3

3
√

π
− 4π

3V

]
, (30)

−4π

V

∑
k �=0

Akkαkβqi 
 qiδαβ

[
− 4α3

3
√

π
+ 4π

3V

]
. (31)

After considering some symmetry properties of the lattice
sums, both these expressions reduce to

∑
k �=0

e−k2/4α2 
 α3V

π3/2
− 1. (32)

By a comparison with the 3-dimensional version of the Pois-
son summation formula (see, for example, Eq. (4) of Chaba
and Pathria11), Eq. (32) can be shown to hold in the limit
α2 L2

min � 1, where Lmin is the smallest of the box lengths Lx ,
L y , and Lz . With the parameters used in the present study, cor-
responding to α2 L2

min ≈ 90, Eq. (32) becomes tremendously
accurate, with a relative difference between the right- and left-
hand sides of ∼ 10−39. Thus, the formulas provided by Ny-
mand and Linse3 give essentially correct values of the field
and field gradient for all reasonable choices of α and Lmin

used in practical applications.

V. CONCLUSIONS

In summary, we have shown that the correct formu-
las corresponding to the electrostatic energy of Eq. (2) are
given by Eqs. (14), (22), and (28) (electrostatic fields) and
Eqs. (18), (23), and (29) (electrostatic field gradients), com-
bined with Eq. (7) for the real-space contributions. These
equations constitute the main results of this study, although
we again want to stress the fact that the formulas presented
here are, apart from the missing surface term, identical to
the equations due to Weenk and Harwig.7 Furthermore, we
have shown that an incorrect differentiation procedure ex-
plains the erroneous forms of the reciprocal and self contribu-
tions to the spatial potential derivatives present in the litera-

ture. Our corrected formulas were also shown to yield results
that are termwise identical to those calculated from a direct
application of the Ewald formulas for the electrostatic energy.

Although we have shown that some of the formulas
present in the literature are formally incorrect, it is also clear
that using the formulas prescribed by Nymand and Linse3

leads to numerically negligible errors for the field and field
gradient, as long as the proper self terms are added. They,
however, still lead to an inappropriate partitioning between
the reciprocal and self terms, which can be unwanted in cer-
tain situations. For example, when performing Ewald sum-
mation using unit cells that do not pack as a primitive cubic
lattice, Eq. (32) does not hold anymore, possibly leading to
errors in the electrostatic field and field gradient.

Furthermore, the use of the incorrect formulas for the
reciprocal contributions together with the correct forms
[i.e., Eqs. (22) and (23)] of the self contributions, as was
prescribed by Laino and Hutter5 and Sala et al.,6 leads to
incorrect values of the calculated quantities also in the limit
ncut → ∞. Since the self terms are constant for particles
possessing fixed charge distributions, this does not lead to any
change in the structural properties of the simulated system.
It does, however, lead to erroneous results when comparing
the magnitudes of electrostatic and non-electrostatic (e.g.,
Lennard-Jones) energies. Also, for systems containing polar-
izable particles the use of incorrect (with respect to the choice
of k-space expressions) self terms leads to an unphysical
stabilization or destabilization of the induced dipoles, corre-
sponding to an unwanted shift of the particle polarizabilities.

We finally note that expressions for forces and pressure
tensors do not suffer from the problems with the incorrect dif-
ferentiation procedures discussed in this work, as these quan-
tities are defined as derivatives with respect to particle posi-
tions. The formulas already provided in the literature3–5 are
therefore expected to be correct.
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