
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Inverted GUI Development for IoT with Applications in E-Health

Johnsson, Björn A

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Johnsson, B. A. (2017). Inverted GUI Development for IoT with Applications in E-Health. [Doctoral Thesis
(monograph), Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/64a0b93e-c59b-4fac-971c-c435aa8710c9

Inverted GUI Development for IoT
with Applications in E-Health

Björn A. Johnsson

Doctoral Dissertation, 2017

Department of Computer Science
Lund University

Dissertation 55, 2017
LU-CS-DISS:2017-1

ISBN 978-91-7753-238-5 (printed)
ISBN 978-91-7753-239-2 (electronic)
ISSN 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Bjorn_A.Johnsson@cs.lth.se
http://cs.lth.se/bjorn_a_johnsson

Typeset using LATEX
Illustrated using Google Drawings
Printed in Sweden by Tryckeriet i E-huset, Lund, 2017

c© 2017 Björn A. Johnsson

Abstract

In the context of Internet of Things (IoT), the research of this dissertation is
concerned with the development of applications for end-user devices, i.e. devices
through which the end-user directly interacts with systems. The complexity of such
applications is partly due to network intricacies, and partly because GUI (Graphical
User Interface) development is generally complicated and time consuming. We
employ a middleware framework called PalCom to manage the former, and focus
our research on the problems of the latter, by expanding the scope of PalCom to
also enable GUI development. In particular, the research goal is a more efficient
GUI development approach that does not require program code to be written.

To enable end-users with little or no programming experience to participate in
the GUI development process, we eliminate the need for programming by intro-
ducing a new development approach. We view this approach as “inverted” in that
the development focus is on presenting functionality from an application model
as graphical components in a GUI, rather than on retroactively attaching function-
ality to manually added graphical components. The inverted GUI development
approach is supported in two steps. First, we design a language for describing
GUIs, and implement interpreters that communicate with remotely hosted appli-
cation models and render GUI descriptions as fully functional GUIs. Second, we
implement a graphical editor for developing GUIs in order to make the language
more accessible.

The presented solution is evaluated by its application in a number of research
projects in the domain of e-health. From the GUIs developed in those projects,
we conclude that the GUI language is practically viable for building full-blown,
professional grade GUIs. Furthermore, the presented graphical editor is evaluated
by direct comparison to a market leading product in a controlled experiment. From
this, we conclude that the editor is accessible to new users, and that it can be more
efficient to use than the commercial alternative.

Sammanfattning

Belysning, skrivare och vitvaror. Personvågar, TV-apparater och hemlarm. Våra
hem fylls med saker som kan koppla upp sig mot Internet. I det som kallas Sakernas
Internet kan uppkopplade enheter av olika slag knytas till varandra för att bilda
användbara sammansättningar, eller system. Men vem ska bygga dessa system?
I framtiden ser det ut att kunna bli användarna som själva skapar system för att
förenkla sin vardag. Vi presenterar en lösning som gör det möjligt att skapa “appar”
för dessa system genom ett grafiskt program, helt utan att behöva programmera.

För det mesta vill man att system i Sakernas Internet ska smälta in i omgivning;
ett system som ska anpassa musiken baserat på vem som är hemma ska fungera
automatiskt utan att användaren ska behöva lägga sig i. Ibland behöver dock
systemen kontrolleras direkt av användaren, t.ex. för att tända eller släcka lampor. I
sådana fall kan användarens telefon användas som en “fjärrkontroll” för systemet. I
detta arbete har vi jobbat med att förenkla skapandet av grafiska användargränssnitt
för appar som gör detta samspel mellan människa och system möjligt. Lösningen
bygger vidare på mellanprogramvaran PalCom, som sedan tidigare gör det möjligt
för användare att skapa egna system för Sakernas Internet.

Problemet med grafiska användargränssnitt är att de är komplicerade och tids-
krävande att skapa, och ofta har inslag av programmering. Detta förhindrar “vanliga
människor” från att skapa användargränssnitt till sina system. Vår lösning hanterar
båda problemen genom att ta bort behovet att skriva programkod. Vi introducerar
istället ett “omvänt” tillvägagångssätt för att skapa användargränssnitt, där fokus
ligger på att representera tillgänglig funktionalitet som grafiska komponenter,
snarare än tvärtom. Till exempel kan funktionaliteten [Tänd Lampa, Kök] visas
som en knapp i användargränssnittet.

Det nya tillvägagångssättet stöds i grunden av ett nytt programspråk som
beskriver användargränssnitt på ett generellt sätt. På så vis kan samma teknik
användas för att skapa gränssnitt för olika plattformar, t.ex. telefoner från olika
tillverkare. Vi har skapat ett antal program som kan läsa beskrivningar och visa
dem som användargränssnitt. För att öka teknikens tillgänglighet skapade vi också
en s.k. grafisk editor där användaren grafiskt skapar sina användargränssnitt, helt
utan att skriva programkod. Exempelvis kan man dra [Tänd Lampa, Kök] från en
ruta till en annan för att skapa knappen som tänder lampan.

Lösningen vi presenterar har utvärderats i ett antal forskningsprojekt inom
e-hälsa, där digitala hjälpmedel används för att förbättra sjukvården. Den har
t.ex. använts för att skapa användargränssnittet för den app som används inom den

iv SAMMANFATTNING

avancerade hemsjukvården (ASIH) i Lund. Genom detta vet vi att lösningen är
skalbar, d.v.s. praktiskt användbart även för större gränssnitt. Ett experiment med
studenter från Lunds Tekniska Högskola (LTH) har också utförts för att utvärdera
den grafiska editorn. Resultaten visar att programmet är enkelt att komma igång
med, och kan vara effektivt i jämförelse med en kommersiell produkt.

Acknowledgements

As a PhD student, there have been times when I have doubted myself: “Can I
finish this in time? Do I have what it takes? Am I even doing the right things?!”.
When such gloomy thoughts arose I turned to my supervisor, and he never failed
to bring my confidence back up. For this, and everything else he has done for me
since the start of my PhD studies in July 2011, I sincerely thank Professor Boris
Magnusson. I value the effortlessness of how we collaborate, and look forward
to continuing working with him. I also thank my co-supervisor Professor Görel
Hedin for her support during my studies and her invaluable scrutiny of the content
of this dissertation.

To Gunnar Weibull, I would like to express my gratitude for the effort he
put into developing the graphical editor that we present as part of this work.
It is thanks to him that I was able to focus on other important aspects of the
research. I also thank Mia Månsson as the first true user of the solution presented
in this dissertation, and for providing valuable insights on how to improve it. She
and Weibull enthusiastically applied the solution in a number of related research
projects, for which I am grateful. Furthermore, I thank my colleagues at the
Department of Computer Science, in particular Professor Martin Höst and Mattias
Nordahl for their contributions to the research and papers we have worked on
together.

From the itACiH project, I would like to thank my colleagues, in particular
Rickard Törnblad and Thomas Persson. Their input to, and support for, my research
has been part of the success of its application in the project. I also thank the staff at
ASIH in Lund for using the application that was built with the solution we present
in this dissertation. Testing in a real-world environment and working closely with
the end-users has been crucial to the success of the project and this research, and I
appreciate the patience of the staff with us as researchers while we were working
on improving our technologies.

I thank my older brother Dan Johnsson for taking the time to proofread this
dissertation. Furthermore, many years ago in my early teens, he was the one who
got me interested in, and taught me about, computers. What he taught me back
then resulted in the career I have today, and for this I am forever grateful to him.
I also thank my loving parents, for raising me as a responsible and independent
individual capable of finishing his PhD studies.

Last but certainly not least I thank my dear wife, Emma Johnsson, for her
inexhaustible patience during the past six years. In my studies, I have experienced

vi ACKNOWLEDGEMENTS

excruciating workload peaks that required my undivided attention day and night;
without the encouragement and understanding of my spouse in such times, this
work would not have been possible. As a final remark, I would like to express
my admiration for the endurance she has shown in taking care of our two young
children during the last few month when I was busy writing this dissertation.

Björn A. Johnsson
Lund, April 2017

This work was funded by Vinnova (grants 2011-02796 and 2013-04876) in the
project IT Support for Advanced Care in the Home (itACiH). The results from
the research have benefited from being applied by our research group in projects
financed by Forte (grant 2013-2101) as Lund University Child Centered Care
(LUC3), and by Vinnova (grant 2015-00382) as Innovative Technology for the
Future’s Emergency Medical Care.

INVERTED GUI DEVELOPMENT FOR IOT WITH APPLICATIONS IN E-HEALTH

Contents

1 Introduction 1
1.1 Research Context . 1
1.2 Problem Statement . 2
1.3 Research Methodology . 3
1.4 Contributions . 5
1.5 Publications . 6
1.6 Dissertation Outline . 8

2 Background 11
2.1 Ubiquitous Computing and Beyond 11
2.2 Middleware . 14
2.3 The PalCom Framework . 16

2.3.1 Introduction . 16
2.3.2 Terminology . 17
2.3.3 Component Structure . 18
2.3.4 Discovery . 19
2.3.5 Configuration and Coordination 20
2.3.6 Security . 21
2.3.7 Utilities . 21

2.4 The itACiH Project . 22
2.4.1 Introduction . 22
2.4.2 Challenges . 23
2.4.3 System Architecture . 24
2.4.4 Development . 26
2.4.5 Project Post-Mortem . 27

2.5 Discussion . 27

3 Related Work 29
3.1 User Interface Description Languages 29
3.2 Conventional Graphical Editors 30
3.3 Visual Programming . 31
3.4 Automatic GUI Generation . 32
3.5 Discussion . 33

x CONTENTS

4 An Inverted Solution 35
4.1 Requirements . 35
4.2 The Inverted GUI Development Approach 36

4.2.1 Conventional Approach 37
4.2.2 Inverted Approach . 38

4.3 Aspirations . 39

5 Language Support 41
5.1 Overview . 41
5.2 The Echo Example . 43
5.3 Structure . 44
5.4 Details . 46

5.4.1 Universe Block . 46
5.4.2 Discovery Block . 47
5.4.3 Structure Block . 48
5.4.4 Style Block . 50
5.4.5 Logic Block . 51
5.4.6 Behavior Block . 52

5.5 Interpretation . 53
5.6 Discussion . 54

6 Tool Support 57
6.1 Deployment Architectures . 57

6.1.1 Autonomous Model . 57
6.1.2 Local Model . 58
6.1.3 Distributed Models . 58
6.1.4 Locally Augmented Distributed Models 59
6.1.5 Discussion . 59

6.2 The Graphical PML Editor . 60
6.2.1 Editor Overview . 60
6.2.2 Architecture . 62
6.2.3 Example Development Walkthrough 63
6.2.4 Discussion . 70

7 Applications in E-Health 71
7.1 Language Scalability Evaluation 71

7.1.1 Introduction . 71
7.1.2 System Architecture . 72
7.1.3 Application Overview 73
7.1.4 Sample Feature . 78
7.1.5 Discussion . 80
7.1.6 Conclusions . 84

7.2 Related Projects . 84

xi

7.2.1 Home-Based Peritoneal Dialysis 85
7.2.2 Pre-Hospital Care . 87
7.2.3 Home-Based Neonatal Care 89
7.2.4 Discussion . 91

8 A Controlled Experiment 95
8.1 Introduction . 95
8.2 Planning . 95

8.2.1 Goals . 96
8.2.2 Participants . 96
8.2.3 Experimental Material 97
8.2.4 Tasks . 99
8.2.5 Parameters and Hypotheses 104
8.2.6 Design . 105

8.3 Execution . 105
8.3.1 Registration . 105
8.3.2 Experiment Session . 106
8.3.3 Follow-up . 108

8.4 Analysis . 108
8.4.1 Procedure . 108
8.4.2 Data Set Preparation . 109
8.4.3 Results . 109

8.5 Discussion . 112
8.5.1 Result Implications . 112
8.5.2 Threats to Validity . 114

8.6 Conclusions . 116

9 Future Work 117

10 Conclusions 119

A Specifics of PML 121
A.1 Abstract Syntax . 121
A.2 Component Specification . 123

Bibliography 129

Chapter 1

Introduction

In the context of Internet of Things, the work presented in this dissertation aims to
make GUI development more efficient, and accessible to more types of users. The
research has been published at peer-reviewed international conferences, and the
contributions have been applied in a number of research projects on e-health.

1.1 Research Context

Cancer is one of the leading causes of death worldwide, accounting for 8.2 million
deaths in 2012 [76]. The number of patients being diagnosed with cancer is
accelerating in Sweden [16]. To manage this situation of increasing volumes,
advanced home care has been identified as a possible solution. The work of
this dissertation has been conducted within the project itACiH: IT Support for
Advanced Care in the Home. The original vision of the project was to increase the
quality-of-life for cancer patients by allowing them to be treated in their homes; it
branched out to provide similar care for patients with other medical condition, e.g.
renal failure. To realize the vision, a distributed system for supporting advanced
home-based care was developed as part of the project.

A central aspect in the itACiH system is the home of the patient. Depending
on the diagnosis of the patient, medical equipment of different types needs to be
installed in their homes. For example, equipment for monitoring weight and blood
pressure was needed in the case of renal failure patients. These medical devices
are connected to the system, thus making them remotely available in real-time.
As such, we view the itACiH system as an Internet of Things (IoT) system that
consists of a network of geographically distributed sub-systems, each one hosting
a web of devices. The system is built on a service-oriented middleware framework
called PalCom. PalCom makes the development of IoT systems easier by providing
high-level programming abstractions to low-level network constructs. In doing so,
systems such as itACiH can be developed in terms of application level services
that communicate across devices, possibly between different networks and even
different networks types, e.g. WiFi to Bluetooth.

2 INTRODUCTION

In working on the itACiH project, we identified a number of end-user devices,
i.e. devices from which the end-user needs to actively interact with the system in
some way, typically through a GUI (Graphical User Interface). One example of this
is the tablet computers used by the mobile teams of nurses that visit the patients in
their homes; they use an application to make notes about patients, take photos, etc.
Another example is the home-based hub that interfaces with the medical equipment.
On this device, the patient can manually enter measurements and communicate
with the doctor. Developing the GUIs for these types of interactions is generally
complicated and time consuming. In the context of service-oriented IoT systems,
the research presented in this dissertation aims to simplify the GUI development
process, thus making it more efficient and accessible to more users. In practice, the
contributions of our research have been applied in itACiH to build the application
used by the mobile teams of nurses. Furthermore, other members of our research
group have applied the contributions in related projects on e-health.

1.2 Problem Statement
The research of this dissertation is concerned with the development of applica-
tions for end-user devices in IoT systems. Devices can be any type of hardware,
from simple devices such as temperature sensors, to complex ones such as tablet
computers. Furthermore, devices can be distributed across multiple networks, and
communicate by sending data packages (messages). An end-user device is any
device through which the end-user can directly interact with the system in some
way. We see the applications of such devices as being composed of three primary
segments:

Graphical user interface Includes the functionality needed to enable the end-
user to graphically interact with the application.

Application logic Includes the core functionality of the application. Depending
on the application domain, this can include any type of functionality, from
patient data management to handling sensor readings.

Network interface Includes the functionality needed to enable the device to com-
municate with other devices in the system.

The complexity of these segments are of two different types: essential and
accidental [19]. The complexity of the application logic is essential, i.e. it is
directly related to the complexity of the problem to be solved. As such, any
development technology will have little impact on the development effort needed
to develop the application logic segment. Development effort, in this case, may
refer to e.g. the amount of time needed for development or the number of lines of
program code. Complexity that is caused by the applied development technologies
is referred to as accidental. As such, accidental complexity can be reduced by

1.3 Research Methodology 3

improving or replacing those technologies. We identify the complexities of the
GUI and the network interface as accidental, and therefore seek to minimize the
effort needed to develop each respective segment. For the network interface,
the effort can be reduced by employing a middleware. A middleware simplifies
development by providing high-level abstractions to low-level network tasks, e.g.
establishing and managing connections. For example, we have found that by going
from an ad hoc network interface solution to using the middleware framework
PalCom, development time could be reduced by a factor of 10 [40]. In the context
of service-oriented IoT systems, the research presented in this dissertation aims to
deliver a similar impact on the development effort needed for the GUI segment.

GUI development is generally complicated and time consuming. Two reasons
for this are complex development tools and the difficulty of modularization [53].
While many development tools, e.g. Android Studio, provide intuitive graphical
GUI editors, program code typically has to be written in order to bridge the gap
between the GUI and the application logic. This adds to the complexity of the
development task. Furthermore, requiring programming knowledge limits the
number of possible GUI developers. Regarding modularization, it is best practice
to package application logic as modules (model) that are independent from the
GUI (view). If the separation of concerns between GUI and application logic is
not strictly enforced, the two segments can get intertwined. This increases the long
term development effort of both.

Based on this discussion, we define the following research questions:

RQ 1.1 Is it possible to produce a more efficient approach – in terms of developer
productivity – for developing GUIs in the context of service-oriented Internet
of Things systems?

RQ 1.2 In the given context, can we increase the number of possible GUI develop-
ers by removing the barrier caused by the need to write program code when
building GUIs?

1.3 Research Methodology
Johannesson and Perjons [38] define the goal of empirical research as describing,
explaining and predicting the world. This must be done faithfully and with great
attention to detail, and always without regard to personal interests and biases. In
contrast to empirical research, Johannesson and Perjons define design research
as going beyond describing, explaining and predicting: it aims to change and
improve the world. To achieve this goal, novel artifacts are conceived and created.
Furthermore, the authors state that in contrast to plain design, design research also
seeks knowledge about the artifacts, their use, and their environment. The overall
research methodology applied for the research in this dissertation is design science,
a special strand of design research. Design science aims to “create innovation in

4 INTRODUCTION

the form of ideas, models, methods and systems that support people in developing,
using and maintaining IT solutions” [38]. In our work the focus lies on simplifying
the process of creating GUIs, ultimately to the point where even non-programmers
can engage in the activity. As such we have implemented and evaluated a number
of artifacts to learn of their impact on the user. Johannesson and Perjons describe
the six main activities of design science, which we outline and related to our
research below.

Explicate Problem This activity is about investigating and analyzing a practical
problem, where the problem should be of some general interest. The ac-
tivity precisely formulates and motivates the problem by highlighting its
significance in some practical setting. We have in this chapter presented our
problem and why it is relevant, and formulated specific research questions.
From studying the literature, we present related work in Chapter 3.

Define Requirements The explicated problem is further processed in this activ-
ity by proposing artifacts that could solve the problem. The artifacts are
defined in terms of requirements that can be traced back to the demands
from the problem statement. For our research, we started from an initial
set of requirements based on our research questions and the context-of-use
for our proposed artifacts (Chapter 4). Additional requirements were subse-
quently collected iteratively based on experience and feedback from using
the artifacts in their intended practice.

Design and Develop Artifact In this activity, the explicated problem is addressed
by creating one or several artifacts that satisfy the defined requirements.
In developing our artifacts, related solutions in previous work have been
an important resource of inspiration. Furthermore, possible solutions were
discussed with other members of the research group in order to get early
feedback. Conventional computer science and engineering principles were
used for the implementation work. The main artifacts that resulted from this
activity are discussed in Chapters 5 and 6.

Demonstrate Artifact This activity serves as a soft evaluation (proof-of-concept)
to determine whether the created artifacts are practically viable. For this
purpose, the artifacts are used in illustrative or real-life cases. In the latter,
the activity also serves to communicate the solution to the intended users.
In our research, the artifacts have been continuously used in a number of
research projects (Chapter 7). Besides the practical benefits for the projects,
this also served to demonstrate and assert the state of our research.

Evaluate Artifact In this activity, the artifacts are evaluated to determine to which
degree they solve the explicated problem, based on the defined requirements.
For our research, this activity overlaps with the previous activity, in that
the research results have been evaluated by using the artifacts and products

1.4 Contributions 5

produced with the artifacts in real-world scenarios. We also performed a
controlled experiment (Chapter 8) to formally evaluate the efficiency of one
of the artifacts.

Communicate Artifact Knowledge The final activity involves communicating
knowledge about the artifacts, as gathered during the other activities. The
purpose is to allow an audience, e.g. researchers, to assess, replicate and
possibly extend the findings of the research. Much of the work presented in
this dissertation has been published and presented at various international
conferences and workshops.

As Johannesson and Perjons remark, these activities may appear to form a
linear method with strict ordering, where each activity is completely finished before
moving on to the next. This is not the case, however, as design science projects are
always iterative; this is also true for our research. Except for the problem statement,
which has not been changed dramatically over time, the other activities have been
performed several times in varying order. Furthermore, the research projects in
which our contributions have been applied were developed using participatory
design [32]. The goal was to increase product quality by working iteratively and
having the end-users participate in the design process.

1.4 Contributions

The contributions in this dissertation include a new approach for GUI development,
the specification of a GUI description language, and the implementation of several
tools to enable development and deployment of GUIs for IoT systems. In particular,
the contributions are as follows.

The inverted GUI development approach A new approach to GUI development
that focuses on presenting functionality as graphical components in a GUI
rather than on attaching functionality to manually added components. We
see this as an inverted way of working with GUI development. The approach
is introduced in Chapter 4.

Language support The design and specification of an XML-based language for
describing the GUIs of IoT systems in a platform-independent manner. The
language allows for GUIs to be created without the need for writing program
code by supporting the inverted approach to GUI development. The language
is presented in Chapter 5 and Appendix A.

Tool support The design and implementation of a number of tools needed to
support the inverted GUI development approach. The tools are described in
full as part of Chapter 6, and in short below.

6 INTRODUCTION

Graphical GUI editor A graphical editor where the user can interactively
develop GUIs represented in the presented language. The tool reads
target system metadata, which in practice allows the user to start by
selecting the desired functionality, and thereafter get suggestions for
graphical components that can represent that functionality. The tool
outputs GUI descriptions that can be interpreted on any platform.

Language interpreters Interpreters for two different platforms were devel-
oped; the most mature one is for Android. These tools take GUIs
described in the presented language as input, interprets these descrip-
tions and renders the resulting GUI for the user to interact with. Both
interpreters build on a common core that handles communication as
defined in the GUI description.

Mobile manager/launcher A kind of virtual machine that allows functional-
ity modules (services) to be dynamically loaded during runtime, and
that can serve as a connectivity hub in mobile scenarios. The tool was
critical in making the Android interpreter tool practically viable, and
was needed for many of the applications that have been developed as
part of this work.

The idea for the inverted GUI development approach was developed as a joint
effort between Björn A. Johnsson and Boris Magnusson. Johnsson developed the
language that supports the approach, partially based on requirements extracted
from the end-user collaboration of the itACiH project. The graphical GUI editor
was implemented by Gunnar Weibull as part of his master’s thesis work [83].
The work was supervised by Johnsson, who contributed the novel workflow of the
editor, as based on the inverted GUI development approach. Johnsson implemented
the common core used by all language interpreters, and the interpreter renders
for the two supported platforms. As part of his work on the editor, Weibull
made aesthetical contributions to the Android renderer, e.g. to make graphical
components more colorful. A variant of the mobile manager/launcher for desktop
computers was implemented prior to this dissertation as part of previous research;
the contribution of Johnsson was in adapting it for non-stationary use, i.e. on
mobile devices such as smartphones and tablets.

1.5 Publications
The results from this dissertation have been published as papers for peer-reviewed
international conferences and workshops. An overview of the design and imple-
mentation of the system in which our contributions have been evaluated (Chapter 7)
was published as

Björn A. Johnsson and Boris Magnusson. “Supporting Collaborative
Healthcare using PalCom – The itACiH System”. In: 2016 IEEE

1.5 Publications 7

International Conference on Pervasive Computing and Communica-
tion Workshops (PerCom Workshops). Sydney, Australia: IEEE, Mar.
2016, pp. 1–6. DOI: 10.1109/PERCOMW.2016.7457141

The paper was co-authored by Björn A. Johnsson, and the presented system was
partially developed by Johnsson. A high-level overview of the main themes and
results of this dissertation was published as

Björn A. Johnsson and Gunnar Weibull. “End-User Composition
of Graphical User Interfaces for PalCom Systems”. In: Procedia
Computer Science 94, 2016. The 11th International Conference on Fu-
ture Networks and Communications (FNC 2016), Montreal, Quebec,
Canada, pp. 224–231. ISSN: 1877-0509. DOI: 10.1016/j.procs.
2016.08.035

Johnsson was lead author, with technical contributions as outlined in Section 1.4.
The paper won “Best Paper Award” at The 11th International Conference on Future
Networks and Communications (FNC 2016). By invitation, an extended version of
the paper has been submitted for a special issue journal as

Björn A. Johnsson. “Towards End-User Composition of Graphical
User Interfaces for Internet of Things”. In: "Future Generation Com-
puter Systems", 2016. Submitted

For this paper, Johnsson was the sole author. Notification of acceptance is still
pending. The controlled experiment presented in Chapter 8 was published in part
as

Björn A. Johnsson, Martin Höst, and Boris Magnusson. “Evaluating
a GUI Development Tool for Internet of Things and Android”. In:
Product-Focused Software Process Improvement: 17th International
Conference, PROFES 2016, Trondheim, Norway, November 22-24,
2016, Proceedings. Ed. by Pekka Abrahamsson et al. Cham: Springer
International Publishing, 2016, pp. 181–197. ISBN: 978-3-319-49094-
6. DOI: 10.1007/978-3-319-49094-6_12

Johnsson was lead author for the paper. Furthermore, the experiment was planned,
executed and analyzed primarily by Johnsson, with input and support by co-authors
Martin Höst and Boris Magnusson.

The following papers have contributions that are related to this dissertation.
The abstract for a conference demonstration of PalCom was published as

Boris Magnusson and Björn A. Johnsson. “Some Like It Hot: Au-
tomating an Electric Kettle Using PalCom”. In: Proceedings of the
2013 ACM Conference on Pervasive and Ubiquitous Computing Ad-
junct Publication. UbiComp ’13 Adjunct. Zurich, Switzerland: ACM,
2013, pp. 63–66. ISBN: 978-1-4503-2215-7. DOI: 10.1145/
2494091.2494110

8 INTRODUCTION

It was co-authored by Johnsson. The demo system was implemented by Johnsson,
and made use of contributions from this dissertation. A technical solution needed
for the system in which our contributions have been evaluated was published as

Thomas Sandholm, Boris Magnusson, and Björn A. Johnsson. “An
On-Demand WebRTC and IoT Device Tunneling Service for Hos-
pitals”. In: 2014 International Conference on Future Internet of
Things and Cloud. Barcelona, Spain, Aug. 2014, pp. 53–60. DOI:
10.1109/FiCloud.2014.19

Johnsson co-authored the paper, made minor contributions to the solution, and
assisted in the evaluation of the work. Another technical solution that makes use
of our contributions has been accepted to be published as

Björn A. Johnsson, Mattias Nordahl, and Boris Magnusson. “Evaluat-
ing a Dynamic Keep-Alive Messaging Strategy for Mobile Pervasive
Systems”. In: Procedia Computer Science, 2017. The 8th Interna-
tional Conference on Ambient Systems, Networks and Technologies
(ANT 2017), Madeira, Portugal. In press

The paper was co-authored by Johnsson, who also developed and evaluated the
technical contributions presented in the paper.

1.6 Dissertation Outline
The rest of the dissertation is outlined as follows.

Chapter 2: Background further describes to the context in which this research
has been conducted.

Chapter 3: Related Work presents previous solutions to problems similar to the
stated problem of this dissertation. We relate our contributions to this work.

Chapter 4: An Inverted Solution introduces the inverted approach to GUI devel-
opment. It also gives an overview of the produced solution from a perspective
of requirements and aspirations.

Chapter 5: Language Support presents and exemplifies the language that has
been created as part of our research, both on a conceptual level and in greater
detail. The abstract syntax of the language is presented in Appendix A.

Chapter 6: Tool Support presents the tools that were created to support the in-
verted GUI development approach.

Chapter 7: Applications in E-Health discusses the major research projects in
which our contributions have been applied, for the purpose of evaluation. A
thorough walkthrough of the most mature system is given.

1.6 Dissertation Outline 9

Chapter 8: A Controlled Experiment presents the planning, execution, and a-
nalysis of a controlled experiment for evaluating the efficiency of one of our
contributions – the graphical editor.

Chapter 9: Future Work discusses possible future directions for our research.

Chapter 10: Conclusions briefly summarizes the dissertation, and draws conclu-
sions from the presented work.

Chapter 2

Background

Ubiquitous computing, pervasive computing and Internet of Things are three
terms that, while different from a historical perspective, are nevertheless used
interchangeably to refer to a world where interconnected devices fill our surround-
ings. To technically support this, a middleware can be considered – we present
PalCom. PalCom has been used in a number of research projects, recently in
itACiH. The itACiH project both motivates and provides the means to evaluate the
work presented in this dissertation.

2.1 Ubiquitous Computing and Beyond
Mark Weiser is often referred to as the father of ubiquitous computing. In a vision-
ary paper that Weiser wrote while working at Xerox’s Palo Alto Research Center,
ubiquitous computing is described as “a new way of thinking about computers, one
that takes into account the human world and allows the computers themselves to
vanish into the background” [87]. The concept shifts focus from ordinary desktop
and laptop computers, and instead envisions a world were all devices in the envi-
ronment – big and small – are connected to each other. With such large amounts of
computing devices, it is not feasible for devices to demand attention from the user,
or even for the user be aware of them: they have to vanish into the background.
Weiser made a comparison to the amount of motors in a modern car. There are
motors for starting the engine, turning the windshield wipers, etc. The user of a
car does not have to be aware of, or pay special attention, when using these motors.
In the same way, ubiquitous computing envisions a world where the user should
not even notice when she is using a computer; they will be integrated in all aspects
of life, virtually invisible to the user [86]. The technologies that support this are
referred to as calm, in that they are proactive and avoid disturbing the user [88].

Weiser outlined three key challenges for realizing ubiquitous computing [85]:

– The need for wireless bandwidth will be substantial. Even assuming mod-
est bandwidth requirements per devices, the sheer volume of devices will
amount to a collective demand that is challenging to meet.

12 BACKGROUND

– Support for mobile infrastructure must be provided once it becomes norm,
rather than exception, that computers migrate from network to network.
Weiser mentioned that protocols such as TCP/IP need to be reworked for
mobile scenarios.

– With system interactions happening on many different types of devices, user
interfaces that can migrate from one screen to another must be supported;
the users must not be limited by the capabilities of individual devices.

These challenges were at the time significant and, as time would tell, far ahead of
their time in terms of any sort of resolution.

Since the time Weiser first described ubiquitous computing, many projects on
the subject emerged at universities and in industry. By 2001, ubiquitous computing
had also become known by the name pervasive computing [71]. The idea was
to re-evaluate the concepts of ubiquitous computing based on roughly a decade
of hardware progress; elements that were exotic in 1991 were by then becoming
commercially viable, e.g. handheld computers and wireless networks. The refined
vision of pervasive computing can be summarized in three precepts [12]:

– A device is not a mere container of applications that must be managed by
the user. Instead, a device is a window into the computing environment.

– Applications are designed to assist the user in performing a specific task, not
merely to exploit the hardware capabilities of devices.

– The computing environment is used to enhance the surroundings of the user.
It should not be limited to storing data and running software.

In pervasive computing, devices are hence seen from a perspective of possibilities
rather than limitations. A device is a window to external functionality, and should
not be limited by device hardware. The last precept restates the original vision of
ubiquitous computing well, putting focus on the user experience in the computing
environment, and de-emphasizing the focus on traditional software.

Pervasive computing is closely related to, and builds upon, results of the related
research fields of distributed computing and mobile computing [68, 71]. Distributed
computing arose in order to bridge the gap between personal computers in local
area networks. In distributed computing, system components are distributed
across multiple networked computers – nodes – that communicate by sending
network messages. By using this approach to system design, goals beyond the
capabilities of any single node can be accomplished. The concepts of this field,
e.g. remote communication, fault tolerance and security, are essential to pervasive
computing; they are well covered by the literature, e.g. [24]. A related field is
mobile computing, which was conceived when researchers had to confront the
challenges of building distributed systems that include mobile devices. These
challenges include [70]: mobile devices have limited computational resources, e.g.

2.1 Ubiquitous Computing and Beyond 13

processor speed and memory size; mobile connectivity is highly unpredictable
both in terms of performance and reliability; the dependency on a finite energy
source (battery) limits both hardware and software solutions on mobile devices.

In 2006, Rogers [65] suggested that it was time to move on from the vision
of calm computing. She argued that while considerable research efforts had
been carried out in the pursuit to realize Weiser’s vision, even the most advanced
and impressive endeavours had failed to provide a world of calm computing.
Calm computing relies heavily on the concept of context-aware computing, i.e.
identifying the routines of users with the purpose of using this information to
assist them in some way; Rogers argued that such proactive and “smart” systems
were still far off, and instead suggested the pursuit of more practical goals. In
particular, she suggested a mindset where people themselves were to be smart and
proactive in their everyday practices, and that technologies should enable the users
to participate in the creation of the user experience.

These and similar ideas have materialized as the Internet of Things, or IoT.
The term was first coined by Ashton [7] in 2009 in a presentation on supply chain
management. Since then, the definition has been widened to be non-domain-
specific [33], including areas of application such as healthcare, transportation, and
home automation. IoT is now a well-covered area of research, with a number of
books published on the subject, e.g. [31, 78]. With the advent of the Internet, hu-
mans beings from across the world could easily connect with each other. Miorandi
et al. [50] define IoT as shifting the focus to interconnecting physical devices, or
things. Such things can communicate both with each other and the users in order
to provide a given set of services to the users. Miorandi et al. specify the following
three fundamental pillars of IoT:

1. Things must be identifiable.

2. Things must be able to communicate.

3. Things must be able to interact, among themselves and with the users.

With these fundamentals and the right set of methods and tools, the user can take a
proactive role in IoT, building systems that reflect their needs and desires. This
stands in stark contrast to traditional ubiquitous computing, where the computing
environment is supposed to figure out the needs of the user.

Decades have past since Weiser’s original vision of ubiquitous computing.
Today, technologies and hardware are catching up with the vision, and the number
of devices in our surroundings is rapidly increasing. According to a press release by
Gartner – a world leading information technology research and advisory company
– 6.4 billion devices will be connected worldwide in 2016 [49]. For 2020, the
forecast says 20.8 billion devices. While ubiquitous computing has not fully
materialize, e.g. in terms of calm technologies, the discipline has certainly been
heavily influential on modern descendants such as Internet of Thing.

14 BACKGROUND

We have presented three disciplines that enable devices to be connected to each
other: ubiquitous computing, pervasive computing, and Internet of Things. The
disciplines have been presented from an evolutionary perspective, focusing on how
the original vision of Weiser has evolved over time. In many cases, however, the
literature on these topics makes little or no distinction between the three disciplines.
For the intents of this dissertation, the terms will be used interchangeably; the
sometimes subtle differences between the disciplines have no impact on this work.
The primary interest is the core concept of networks of connected devices that need
to be coordinated in order to serve the user. In particular, this research focuses on
how to support user-to-device interactions.

2.2 Middleware

Much like both distributed and mobile computing, pervasive computing relies
heavily on middleware to mediate between the network kernel and the applications
running on pervasive devices [68]. Middleware is any software with the purpose of
supporting the development of distributed applications by managing the complexity
and heterogeneity of the infrastructure of such distributed applications [21]. In
doing so, a simpler and more easily manageable development environment can
be provided. Another useful definition states that a middleware “facilitates the
communication and coordination of application components that are potentially
distributed across several networked hosts” and “provides application developers
with high-level programming abstractions” [67].

We elaborate on the definition of a middleware by providing a concrete example
of how middleware can support development by managing complexity. Network
communication is typically implemented by using network sockets. Sockets are
the entry points to applications that may be running on separate networks, and
provide a two-way communication stream between the applications. On the level
of the application, a protocol for encoding and decoding communication must
be implemented. By using a middleware, the complexity of sockets, protocols,
and other related activities would be abstracted so that the user could achieve
the same result by e.g. performing method invocations through a high-level API.
The middleware effectively hides the details of the communication protocol, and
handles the establishment and maintenance of sockets, thus significantly reducing
the development effort.

Schmidt [72] divides middleware into layers. The top layer interfaces with
applications, and the bottom layer interacts with the operating systems and the
actual hardware of devices. The four layers – from top to bottom – are:

Domain-specific services Middleware in this layer are highly specialized and
target one specific domain, e.g. healthcare or online banking. High-level
services for that domain are defined by the middleware. The Boeing Bold

2.2 Middleware 15

Stroke architecture [73] is an example of a middleware that operates in this
layer.

Common services In this layer, the middleware of the lower layers are enhanced
by defining domain-independent services. These can be reused, e.g. to
manage globally available resources, which allows developers to concentrate
on application logic rather than on the low-level intricacies of recurring dis-
tribution tasks. The Interoperable Replication Logic (IRL) architecture [11]
is one example of this type of middleware.

Distribution These middleware provide high-level programming abstractions, e.g.
reusable APIs, that build upon the capabilities encapsulated in the lowest
layer. As such, distributed applications can be developed similarly to how
conventional applications are developed, e.g. by invoking operations on the
objects of remote devices. Examples of middleware for this layer include
CORBA [36] and Java RMI (Remote Method Invocation) [58].

Host infrastructure Middleware in this layer encapsulate native low-level func-
tionality of operating systems and device hardware. This helps prevent many
programming activities that are tedious, error-prone, and non-portable such
as socket programming and concurrency programming. MetaSockets [66] is
an example of a middleware in this layer.

Other similar efforts to classify middleware have been performed. In a survey by
Sadjadi and McKinley [67], different middleware approaches were classified as
quality-of-service-oriented, real-time, or stream-oriented. In a survey of middle-
ware for Internet of Things by Bandyopadhyay et al. [13], a classification system
based on middleware features was introduced. The features studied were device
management, interoperation, platform portability, context awareness, and security
and privacy issues.

We believe that with the advances in networking technologies and the increas-
ing number of connected devices, the possibility of a fully materialized Internet
of Things (IoT) appears more promising than ever. However, with such large
amounts of devices – with varying hardware platforms, operating systems, and
communication media – the ability to simplify development circumstances will
be key to the adoption and development of IoT. As of yet, no de facto standard
IoT middleware has emerged [64], despite considerable research efforts in the area.
Some of the major technical challenges for such a middleware include interoper-
ability, scalability, provision of abstractions, support for spontaneous interactions,
dynamic infrastructures, multiplicity, and security and privacy [22].

The use of a middleware can be instrumental in allowing developers and
users alike to create systems of devices that enhance the user experience in a
pervasive computing environment. By abstracting and hiding system complexity,
middleware can make application development simpler and less error-prone. We
have mentioned a few available middleware, with varying degrees of practical

16 BACKGROUND

viability and usage. For the work presented in this dissertation we build on a
middleware framework called PalCom, which we introduce next.

2.3 The PalCom Framework
We have chosen to build the solution we present in this dissertation on the foun-
dation of PalCom, which consists of a set of network protocols and a middleware
framework. The metadata in the PalCom protocols lends itself well to the purposes
of the presented solution, although other frameworks could also have been consid-
ered. Furthermore, the current reference implementation of PalCom is maintained
by our research group at the Department of Computer Science, Lund University.

2.3.1 Introduction
Funded by the European Commission [23], PalCom started as a project that ran
between 2004 and 2007. PalCom is an acronym for palpable computing, a concept
that was introduced in the project [4]. Through this concept, the project sought
to make computing more understandable (palpable) to humans, in contrast to
traditional computing paradigms which – while effective for device-to-device inter-
actions – can be incomprehensible to humans. The vision for palpable computing
can be summarized by six pairs of palpable qualities, as listed in Table 2.1. For
each pair, the property on the left corresponds to a quality that is traditionally
desirable in e.g. ubiquitous computing. The property on the right is introduced
by PalCom and constitutes a contradictory quality needed to increase palpability.
As an example, while scalability is an important system property, in palpable
computing it must not come at the expense of understandability since this would
impede humans from interacting with the system.

PalCom has been realized as a set of network protocols and a middleware
framework that offers development resources such as APIs and tools. In his
doctoral dissertation, Svensson Fors [79] gives a detailed presentation of PalCom.
The middleware enables devices to be combined across heterogeneous networks,
and the services they offer to collaborate even if they were not specifically designed

Table 2.1: Definition of palpable quality pairs [62]. A general cornerstone of e.g. ubiquitous
computing (left) is opposed by a new focus (right) added in palpable computing.

Invisibility ↔ Visibility
Scalability ↔ Understandability

Construction ↔ De-construction
Heterogeneity ↔ Coherence

Change ↔ Stability
Sense-making ↔ User control

2.3 The PalCom Framework 17

to do so. Hence, new functionality can be created by coordinating already existing
services in new formations; once created, services in PalCom can be re-purposed
in any number of solutions. PalCom supports this by offering mechanisms for
discovery and routing between different network technologies, a standardized way
to exchange descriptions of services, and a combination mechanism based on
configurations and coordination scripts for assembling services into systems.

The original objectives of the PalCom project were ambitious and covered
a wide area of research, spanning across several disciplines: computer science,
interaction design, industrial design, ethnography, and sociology. As such, there
were many diverging and even contradicting ideas that failed to fully materialize.
From a technical perspective, PalCom has since the conclusion of the project
been further developed by researchers at the Department of Computer Science,
Lund University. In particular, the entire code base of the framework has been re-
implemented, the protocols have been enhanced to meet new criteria, and additional
tools have been developed. Currently, PalCom has a reference implementation
in Java which runs on most computers. Furthermore, a partial implementation
in C makes it possible to run PalCom on smaller devices, although with limited
functionality [55].

PalCom has been successfully deployed in a number of research projects, for
systems of varying scope and domain. It has been used in healthcare systems, to
track and analyze data from patients with various diseases [1, 35]; with proprietary
third-party technologies, such as 1-Wire and Tellstick, to assemble systems of
wired and wireless actuators and sensors [48]; and for flexible video conferencing
and monitoring scenarios [26, 69]. Recent research projects which incorporate
aspects of PalCom include applications for real-time control of mobile robots in
the ENGROSS project [77] and advanced healthcare in the home as part of the
itACiH project (Section 2.4).

2.3.2 Terminology

The main concepts in PalCom are illustrated by the sample system in Figure 2.1.
A PalCom device represents any physical or simulated device in the context of the
PalCom universe, i.e. the conceptual collective that all PalCom devices belong
to. Devices provide functionality as a number of PalCom services that can be
coordinated by PalCom assemblies. Assemblies can either act as the “silent
drivers” of systems or provide functionality in the form of synthesized services
by aggregating the functionality of its coordinated services. In PalCom, devices
connect to the universe through a number of media abstraction objects (MAOs).
These represent some kind of communication media, e.g. WiFi or Bluetooth.
Devices can communicate with other devices that are connected to a corresponding
media abstraction object. Furthermore, a device can route traffic between its media
abstraction objects, thus enabling devices on one network to find and communicate
with devices on a second network.

18 BACKGROUND

MAOMAO MAO

Services

...

...

Assemblies

Device A

routing

Device B

Services

...

Device C

...

Assemblies

MAO

Figure 2.1: The main concepts in PalCom. Devices host functionality as services that can
be combined with assemblies. Devices communicate via a number of media abstraction
objects (MAOs), between which traffic can be routed.

2.3.3 Component Structure

Devices, services, commands and parameters are collectively referred to as PalCom
components. There is a structure for these components, where devices are on the
top level and parameters are at the bottom level: devices host services, services
enable interaction through commands, and commands are supplemented with
parameters to carry data.

A PalCom device can represent any kind of device. A device is typically a piece
of hardware, like a GPS tracker or a digital camera. It can also be a virtual device
simulated in software. Ideally, the PalCom device runs on the physical hardware
itself, accessing the functionality of the device directly. However, this is not always
possible, e.g. due to limited computing resources or locked down hardware (trade
secrets). In such situations, it can be useful to run a simulated PalCom device.
This is usually done be connecting the physical device to a computer on which the
simulation is run. A bridge service that communicates with the hardware through
its drivers can then serve as a connector between the PalCom environment and the
system of the physical device. Hence, it is no more complicated to include existing
hardware and protocols in PalCom systems than it is to include them in ad hoc
systems.

A PalCom service is hosted on a PalCom device and typically represents some
kind of computation or action that can be performed by the device. The service can
have a direct correlation to something in the physical world, such as displaying a
text on the screen of a device or moving one of its actuators. It may also be purely
software-oriented, e.g. with the purpose of updating an internal counter. A service
description defines a service in terms of the interface through which it is accessed.
By having services provide their description on request, they are said to be self-
describing. As such, PalCom services do not rely on standardization at the domain
level for interoperability. Hence, one strength of PalCom is that independently

2.3 The PalCom Framework 19

developed services that were not specifically designed to cooperate can still be
combined since the service descriptions can be used for system coordination in
assemblies.

The service description specifies a list of the commands that the service pro-
vides. A PalCom command is a message that can be sent to, or received from, a
service; it is through this that the user manipulates a given service. Commands
are identified with a (service level) unique ID, specify a direction that indicates
whether the service should send or receive the command, and optionally list none
or more parameters. A PalCom parameter is a construct that holds the data being
passed to or from a service; a command with no parameters can be sent or received,
but does not contain any actual data. Parameters are identified by a (command
level) unique ID, and may contain different kinds of data, e.g. plain text or images.

2.3.4 Discovery

As illustrated in Figure 2.1, a device can have multiple media abstraction objects
(MAO). Each MAO represents some media over which the device can communicate,
e.g. WiFi or Bluetooth. When a service on one device wants to communicate
with a service on another device, it delegates the command to be sent to the
communication layer of the sender device. The communication layer selects a
MAO on which the receiving device is reachable, and sends the command. Note
how PalCom in this way becomes network transparent: service developers do not
have to worry about how the command is going to reach the target device, only if
it actually did or not. Hence, the network complexity is practically hidden from
the perspective of the developers. This is possible since devices are addressed by
a unique ID on the level of PalCom, rather than by MAO-specific IDs such as IP
addresses. This enables devices to seamlessly migrate between networks.

To maintain this flexibility, PalCom uses a proprietary discovery protocol
to enable devices to be aware of each other. In short, this is achieved with a
heartbeat mechanism. At given frequencies, devices (optionally) send broadcast
messages over all available MAOs to tell other devices that they are still “alive”.
The heartbeat also urges other devices to, in turn, identify themselves as alive. If
no heartbeat has been received for a given device and an adjustable amount of
time, the device is considered unreachable on that MAO. For example, if a device
migrates from one network to another, it would eventually become unreachable
for all devices on the old network, since the heartbeats from the device would stop
arriving. However, for devices connected to both the old and the new network
the device would immediately re-appear. Since the device is always addressed
by its PalCom ID, the switch between networks would go unnoticed. Service
descriptions and other metadata is propagated by the discovery protocol.

On devices with more than one MAO it can be meaningful to enable routing.
Routing enables messages sent from devices on one MAO to be redistributed to
affected devices on all other MAOs of the receiving device. Hence, routing can

20 BACKGROUND

expand the reach of devices beyond their own communication capabilities by using
those of other devices. In Figure 2.1, Device A has routing enabled as illustrated
by the dotted line between the two MAOs of the device. Because of this, Device B
will be able to communicate with Device C and vice versa, even thought there
is no direct line of communication between the two. For example, a Bluetooth
gadget device might be limited to Bluetooth (MAO) for communication. To enable
non-Bluetooth devices to interact with the gadget, a Bluetooth MAO could be
enabled on a smartphone which has several other MAOs and routing enabled.
Other devices could then reach the gadget through the smartphone.

2.3.5 Configuration and Coordination
In PalCom, the functionality of services is strictly separated from configuration and
coordination. Typically, services do not establish connections to other services;
they provide functionality as described in the service description, and do not need
to know how or from where commands are arriving.

Functionality Services should provide functionality, and only functionality.

To create connections between services, a PalCom assembly is used. The configu-
ration of services is the first of the two major parts of an assembly. In Figure 2.2,
the assembly (A) is configured to create connections to two services: S1 and S2.

Configuration Assemblies specify to which services connections should be estab-
lished.

The other major part of an assembly is the coordination of services. Coordination
is specified in the form of an event-based scripting language. A script is made up
of a set of event-action list pairs. There are a several events to choose from, e.g. the
event of a command arriving from a service. For each event, one or more actions
are specified. The are a number of available actions, e.g. sending a command to a
service or setting the value of a variable. In the script excerpt of A in Figure 2.2,

when C1 from S1
 send C4(P3, "ltrl") to S2

Figure 2.2: The configuration of assembly A includes services S1 and S2. The assembly
script (dotted box) describes the coordination of commands (Ci) and parameters (Pi).

2.3 The PalCom Framework 21

the reception of the output command of S1 – which we denote C1
←© – is listed

as an event. When the command is received, the second input command of S2

will be sent, i.e. C4
→©. Note how only one of the parameters of C1

←© is used; the
first parameter of C4

→© – which we denote C4::P4 – gets the value of C1::P3 and
C4::P5 gets the value of a string literal (“ltrl”).

Coordination Assemblies script the interaction behavior of services through a
set of event-action list pairs

In most cases, assemblies are completely autonomous and silently drive systems.
Another possible use of assemblies is to aggregate functionality into new, combined
functionality and provide that in the form of a synthesized service. Synthesized
services are specified as part of the assembly, and can be included in scripts – its
own or that of other assemblies – like any other service.

2.3.6 Security
An important aspect in PalCom is system security, which can be provided on
two different levels. On the device level, a standard media abstraction object that
tunnels PalCom communication as TCP traffic between two devices can be used.
These tunnels can be secured with certificates and SSL (Secure Sockets Layer)
encryption, thus providing point-to-point security between devices. The server
side of a tunnel specifies which certificates to accept, e.g. certificates signed by
a particular CA (Certificate Authority) or those on a white-list managed by the
server side. On the level of services, individual connections can be encrypted with
certificates and DTLS (Datagram Transport Layer Security) [3]. This provides
fine-grained control over which system resources are encrypted, and can be useful
in situations where TCP-based solutions are inappropriate. Individual services that
require encrypted connections specify which certificates to accept.

2.3.7 Utilities
To enable and simplify its operation, a number of helpful utility resources are
provided in PalCom. We briefly present the major ones.

PalcomBrowser. The PalCom browser (PalcomBrowser) is used for browsing the
PalCom universe. It is itself a PalCom device with selectable media abstraction
objects; the tool list all devices reachable through these media abstraction objects.
Devices can be examined, and their services can be tested in real-time by sending
and viewing commands. This is enabled by the metadata in the protocol that all
services implement, which includes the specification of the commands the service
can send and receive, and a natural language description. By interpreting this
metadata, PalcomBrowser facilitates a mode of direct interaction with services
through a crude GUI. Moreover, the browser also enables the creation of assemblies

22 BACKGROUND

in a graphical editor. In this editing mode, PalCom components are dragged and
dropped in a tree structure to model both configuration and coordination.

TheThing. TheThing is an all-purpose PalCom device that acts as a virtual machine
for launching and managing system components. TheThing is used to host assem-
blies, an activity that is conventionally inappropriate on specialized devices. For
this purpose, TheThing is typically run on a physical device that can reach all ser-
vices configured by the hosted assemblies. The tool can also host services, which
is useful during development to test services, for domain-independent services e.g.
text formatting and unit conversions, or for bridge services that connect PalCom
with third-party technologies. Furthermore, TheThing can be used to define cross
service/assembly parameters, i.e. values that should be defined once for multiple
uses. Different PalCom components can access these parameters from the same
source. Lastly, a typical use case for TheThing is to act as a server, a centralized
hub for large systems. The PalCom device of TheThing would in such cases enable
routing between a number of media abstraction objects, thus allowing devices on
different networks to communicate.

Resource library. The PalCom library provides a number of resources to enable
the development of PalCom systems, e.g. the APIs needed for developing new
services or media abstraction objects. The most common usage of the library is for
developers to implement services for new functionality. In such cases, the abstract
Java class AbstractSimpleService is inherited and extended in order to
create new specialized or general-purpose services.

2.4 The itACiH Project
The contributions presented in this work have been evaluated in the context of the
project itACiH: IT Support for Advanced Care in the Home. From applying our
solution in the project, new real-world requirements were continuously uncovered,
which helped in evaluating and improving the solution.

2.4.1 Introduction
It has long since been known that the number of patients that get diagnosed with
some sort of cancer is increasing. A report from 2010 [15] states that the number
of diagnoses in Sweden had been steadily increasing for the past 20 years, and that
the number was projected to increase further. In order to handle this development,
new organizations, processes, and systems with the purpose of streamlining the
treatment of these patients are needed. Hospital-based home care (HBHC) is
one such endeavour. Not surprisingly, many patients appreciate the possibility of
being treated in their homes rather than at the hospital. This is fortunate, since
an increased rate of treatment in the home can also decrease overall treatment

2.4 The itACiH Project 23

costs, an important factor to consider for maintaining current levels in quality-
of-care on a larger scale. A requisite for the patients agreeing to this type of
treatment is that they have confidence in the security aspects of their treatment.
To make the patients feel safe at home, innovation is required in many areas, e.g.
communication between patients and the medical staff, remotely surveying the
states of patients, and remotely adjusting medical equipment.

In the itACiH project (2012–2015), a new platform for supporting HBHC was
developed. The project started with a focus on home-based care for terminally ill
cancer patients, with a long-term goal of providing support for additional treatment
forms and medical conditions other than cancer. The project was a cooperation
between academia and industry, and was founded by Vinnova [81] as part of
their program on challenge driven innovation. In the project, academic research
was combined with cross-discipline competence from e.g. medical, telecom, and
security companies. An agile project plan was applied and the work was iterative,
which allowed end-users such as nurses to influence how the project developed.

2.4.2 Challenges
In Sweden, the availability of HBHC is dependent on which part of the country the
patient lives in. This is because it is made possible by specialized facilities, where
patients are enrolled at a hospital ward, but treated at home. For palliative care of
cancer patients, the treatment focus is mostly on relieving pain and maximizing
quality-of-life. This kind of treatment involves medical equipment in the home,
and weekly visits from the medical staff. For the treatment facilities included in
the itACiH project, there was no prior system or infrastructure to support HBHC.
In practice, the medical staff was carrying out their daily work with pen and paper.
We outline the challenges that were identified in the project with regards to this
mode of operation and the presented home-based treatment form.

Quality of Digital Records. During visits in the homes of patients, the medical
staff needs to collect data in various forms and from several sources: textual
notes from discussions with the patients, medical forms and checklists filled out
by staff or patient, current or historical equipment readings, etc. Collecting this
data on paper is problematic: after returning to the hospital ward, the staff has to
manually re-enter the data into the patient record system. In practice, this means
that all documents have to be scanned and committed to the records as images.
Because of this, the quality of the digital records are negatively affected: scanned
documents cannot be searched or used for statistical evaluations, nor can they be
graphically rendered to observe trends. Having both the equipment and the staff
enter data directly in digital form would open up a lot of possibilities in terms of
both efficiency and quality.

Real-time Data Reports. Collecting patient data on paper has other negative
effects. For equipment in the homes of patients, the staff has to collect sample

24 BACKGROUND

measurements manually, e.g. by reading the display on the physical device. This
means additional visits if up-to-date measurements are important. Aside from the
additional travel time, this is a problem because the data cannot be analyzed before
the sample is brought back to the ward. Since the staff usually visits multiple
patients during the same trip, they may not return to the ward until later in the
day. If tests based on the collected data indicate the need for a change in the
treatment, these changes are also delayed. The same problem applies for all data
collected on paper. Having both equipment and staff report measurements remotely
would alleviate the problem of treatment delays, providing real-time reports and
increasing the accuracy of the readings.

Equipment Remote Control. Adjustment and general control of the equipment
in the home of the patient is another challenge. The equipment that is used was
designed for hospitals, and is typically operated by buttons on the device itself. In a
hospital setting, this is unproblematic since access to the devices is readily available
to the staff. Put them in the home of a patient, however, and every adjustment and
observation requires an additional visit. Again, this is troublesome for the staff
due to the additional travel time; for patients, the repeated disturbance can cause
lower quality-of-life. In the case of cancer patients, pain relief is often provided
using infusion pumps delivering anesthesia. The dosage has to be fine-tuned,
which involves several cycles of adjust-observe-repeat. If each such cycle requires
a visit, the logistics alone will cause lower quality-of-care. Making the home-
based equipment available for remote monitoring and control would mean less
interference for the patients, and more accurate and timely equipment adjustments.

Security and Sense of Safety. It is important that the patients feel safe in their
homes, by having a high level of confidence in the safety of the treatment form.
Otherwise, the benefits in terms of quality-of-life that come from being treated
at home could be outweighed by rational or irrational fears. The patients need
to know that someone who understands their situation and condition is keeping
an eye on them. For patients being treated centrally at the ward, a button can be
pressed to summon a nurse at any time. This sense of safety must be supported by
the infrastructure, e.g. through video conferencing and monitoring solutions. If
needed, staff can be dispatched to the home of the patient. However, if a situation
can be managed remotely, travel time is saved, and the patient gets more timely
attention. Of course, a false sense of safety has little practical value. Hence,
infrastructure security to protect patient data and critical system operations is a key
challenge.

2.4.3 System Architecture
One of the initial focuses of the itACiH project was to develop a working prototype
for a system that would support HBHC for cancer patients. Due to the distributed
nature of such a system, and the need for dynamic equipment installations in the

2.4 The itACiH Project 25

homes of patients, it was decided to build the system using the PalCom framework.
In designing the original architecture of the itACiH system, a few key nodes
(locations, personas) were identified. Figure 2.3 illustrates these, and we elaborate
on the nodes as they were initially envisioned in the project.

Server The server is the primary junction point of the system. All other nodes
connect to the server in some way, and either read or write (or both) data.
The server stores all types of data about patients: symptom assessments,
equipment readings, etc. To ensure patient confidentiality, patient data is
de-coupled from patient information through the use of pseudo anonymous
patient identifiers.

Home Support for communication with equipment based in the home of the
patient is supported through a communication hub to which equipment
connects. Measured values can thus be reported to the rest of the system.
To be practical, some equipment needs to be mobile; wireless solutions
are required. Non-static equipment installations and ubiquitous interaction
patterns require innovations to support the home hub. Technologies for video
communication solutions are employed to increase patient safety.

Mobile team The mobile teams of nurses that visit the patients in their homes are
equipped with tablets, through which they can communicate information in
real-time. Features include viewing patient information, or looking up which
tasks are scheduled for a visit and marking those tasks as completed when
appropriate. Furthermore, the staff should also be able to fill out electronic
counterparts of forms and enter information about the condition the patient,
making it instantly available throughout the system.

Figure 2.3: Initially proposed infrastructure for the itACiH system. All nodes access data
from a centralized server. The homes of patients host a dynamic installation of devices (d).

26 BACKGROUND

Ward station The ward station is used by the staff for interacting with home-based
equipment and for viewing patient data. This station integrates information
from all the various sources in the system, e.g. equipment readings (home)
and symptom assessments (mobile team). For staff members that are unable
to access the ward station, and that are not equipped with a tablet, there is
another option: a web application offers similar functionality to the ward
station, and can be accessed using an ordinary web browser.

Patient For patients, there are a number of interesting scenarios to support, e.g.
self-administered condition assessments, or registering that a prescribed
drug has been consumed. The patients use a scaled down version of the
tablets used by the mobile team, where certain features have been removed
or altered to protect the system from having the patient make critical input
mistakes.

Relative Similar to patients, relatives or friends involved in the treatment of a
patient may be interested in monitoring the condition of the patient. Depend-
ing on both the needs of the patient and the relatives, this is achieved either
using a further scaled down version of the mobile team tablet, or using a
web application similar to the one that complements the ward station.

The evaluation of the work presented in this dissertation has been carried out in
the context of the mobile team, although others have applied the solution in e.g.
the home node. We elaborate on the subject in Chapter 7.

2.4.4 Development
The itACiH project was developed using participatory design [32]. Prospective
users such as physicians and nurses were part of the development process, and
actively participated in the design of the system. Development was iterative, i.e.
the system was built and delivered in increments to the end-user, where it was
used and hence evaluated by professionals in a real-life, practical environment. To
safeguard against failures due to the prototype nature of early releases, the system
was used alongside the normal, mostly paper-based routine during a transitional
period. Tools supporting the nurses in the field were used and evaluated in the
field. Home-based equipment and solutions, however, were initially set up in a
special room at the ward. The purpose was to ensure patient security while still
being able to evaluate the technical solutions. By using this “simulated home”,
should anything go wrong e.g. when remote managing equipment, the staff would
be right outside the door instead of a possibly long car drive away.

The iterative design loop was turned around on a weekly basis, and the system
was updated to a new and improved version every month. The development
team was situated in close proximity to the medical staff, at times in the same
building. This enabled good communication between the developers and the end-
users. Comments could hence relatively quickly become improvements to the

2.5 Discussion 27

system, and suggested functionality could easily be collected and feed into the
design process. Furthermore, the medical staff was involved in prioritizing new
functionality, which put focus on what was actually needed in the field.

Medical systems need to fulfill certain requirements in order to be cleared for
active clinical use; the certification process in the itACiH project followed the iter-
ative model. By building the system on PalCom, a component-based architecture
was established. The system was structured as a collection of separate sub-systems.
This supported the iterative review process by allowing for partial reviews after
changes and additions to individual sub-systems. The quick certification process
was key to allowing incremental releases.

2.4.5 Project Post-Mortem

The first stage (two years) of the project ended in November of 2013. The success
of itACiH was apparent to the funding agency, and the project received another
two years of funding. The second stage ended in December of 2015.

During the first stage of the project, much of the infrastructure and basic
functionality was developed. At the end of Stage 1, the itACiH system was actively
being used on a daily basis by the nurses and doctors of the unit for advanced home
care (ASIH) in Lund. Much of the envisioned functionality for the server, ward
station and mobile team had been implemented; the staff used two ward stations
and 7 Android tablets to care for roughly 50 patients. The second stage of the
project focused on refining and adding new functionality for supporting the original
treatment form. Furthermore, the system was enhanced by adding initial support
for additional medical conditions, e.g. renal failure. With this, the home of the
patient was introduced to the infrastructure. Stage 2 had an unexpected emphasis on
operational support, especially on staff scheduling. This feature proved universally
useful across treatment forms and staff roles; the ward station was discontinued
and replaced by the web application due to its superior accessibility. The project
did not explicitly explore the challenges for including relatives and the patients
themselves in the treatment process.

Since the conclusion of the project, further development and commercialization
of the itACiH system has been carried out in a spin-off company with the same
name [37]. As of the end of 2016, all ASIH units in Skåne County were using the
operational support of itACiH – a total of over 500 active users. Other parts of the
system are still in active use at unchanged levels since the end of the project, and
the plan is to expand in those areas during 2017 and beyond.

2.5 Discussion
In order to support and make the Internet of Things available to the users, it must
be supported by rigorous middleware. Such middleware must allow for devices

28 BACKGROUND

to be identifiable and able to communicate. Furthermore, devices must be able to
interact among themselves and with the user. As of yet, no de facto middleware
has emerged. However, considering these three IoT principles, we see PalCom as a
viable option. In PalCom, devices are identifiable by unique, network transparent
IDs which allows them to migrate between networks. The PalCom protocols enable
device discovery and communication. In IoT, users are encouraged to undertake a
proactive role by building the systems they need; the original vision for PalCom
was to make computing more understandable for humans. To that end, protocol
metadata and self-describing services allow users to understand and assemble
existing services into useful systems. Hence, PalCom supports device-to-device
interactions by keeping the human in the loop. Previously however, only crude
auto-generated GUIs supported human-to-device interactions. From applying
PalCom practically, we have found that the need for both types of interactions is
substantial. In the system from the itACiH project, there are plenty of nodes where
devices need to interact. For most of these nodes, there is also a need for human
interactions in the form of GUIs. Generally, the design and implementation of
GUIs is a complicated and time consuming task; with the iterative work process of
e.g. itACiH, where releases are frequent, this problem is amplified. In summary,
the recurring need for GUIs in the itACiH system and the crude support for human-
to-device interactions in PalCom reveals a general need for a solution to efficiently
create GUIs for PalCom systems.

Chapter 3

Related Work

We have identified a number of related technologies that aim to simplify applica-
tion development in general and GUI development in particular. A User Interface
Description Language can be used to describe GUIs for multiple platforms. Con-
ventional graphical editors simplify GUI design with intuitive drag-and-drop me-
chanics. Visual programming replaces the complexity of traditional programming
languages with visual alternatives, and one technology automatically generates
GUIs based on domain-specific objects. We relate our work to these technologies.

3.1 User Interface Description Languages
When developing applications for multiple platforms, it can be particularly bene-
ficial to develop the core application logic of the application separately from the
GUI. In such cases, a User Interface Description Language (UIDL) can be used to
develop the application GUI. A UIDL can be defined as a “high-level computer
language for describing characteristics of interest of a UI with respect to the rest of
an interactive application” [75]. As such, a UIDL provides the means of specifying
the GUI independently from the target platform and the programming language
that would have served to implement it otherwise. Hence, GUIs described with
a UIDL are said to be platform-independent, i.e. they can be presented on any
(supported) computing platform.

There is a wide range of UIDLs for different purposes that are more or less
readily available. In a literature survey on the topic of UIDLs, Guerrero-Garcia
et al. [34] classified UIDLs according to criteria such as tool support, supported
platforms, availability, etc. None of the surveyed languages have been widely
adopted across multiple organizations, i.e. there is no de facto standard UIDL.
Instead, we perceive these languages as ad hoc solutions to related problems from
different domains. Furthermore, many of the languages surveyed by Guerrero-
Garcia et al. lack tool support or only support a rendering tool that interprets GUI
descriptions. In many cases, as a consequence of this, GUI descriptions have to
be created by manually writing program code according to the specification of
the selected UIDL. For the solution presented in this dissertation, graphical tool

30 RELATED WORK

support was considered a priority in order to not exclude non-experts from the
process of creating GUIs.

From a technical perspective, UIDLs vary widely in how they define the
visual aspects of a GUI and how they define interaction behavior [34, 75]. In
some languages, there is no clear distinction between the former and the latter,
which we refer to as presentation and functionality respectively. In UIML [2],
GUI presentation is described as a set of interface elements, and functionality
is specified as mappings from those elements to external entities, i.e. logic in
an application model. This is similar to the language in our solution, which is
unsurprising since UIML was used as a source of inspiration for early versions
of the language. Another language that shares similarities with the language
we present is XIML [59]. In XIML, the presentation (interface components) is
complemented with attributes and relations. Attributes are features or properties
of components, and relations link one or several components together in order to
specify functionality. A different approach is taken in for example AUIML [8],
where the focus is not on the presentation itself but rather on specifying the purpose
of user interactions. The designer may choose to specify precisely what to display,
or allow the renderer to interpret abstract interaction representations based on the
runtime context.

The solution we present in this dissertation is based on a new UIDL. This
language shares similarities with many other UIDLs, both in purpose and execution.
While there are technical intricacies and subtleties that differentiate our language
from others, the main difference lies in our domain integration with Internet of
Things via PalCom.

3.2 Conventional Graphical Editors

An integrated development environment (IDE) is an application that integrates
features needed for developing, compiling and debugging new applications, all
in the same environment. The purpose of collecting these features is to simplify
the software development process, thereby shortening the development times for
applications in general. In order to specifically simplify the development of the
GUIs for new applications, many IDEs incorporate a graphical editor for creating
and editing GUIs. Examples of such editors include Windows Form Designer
in Visual Studio [39], WindowBuilder [89] in Eclipse, and Interface Builder in
Xcode [54].

A typical graphical editor presents a “canvas” to the user on which she can
compose a GUI. The user starts by selecting a graphical component from a palette
adjacent to the canvas, e.g. a button or a text box. The component is then positioned
in relation to other components in the GUI by dragging it from the palette and
dropping it onto the canvas. By selecting (highlighting) a component that has
been placed on the canvas, a list of its properties is displayed in the editor; the

3.3 Visual Programming 31

user can customize the component (size, font, color, etc.) simply by entering new
values into the editor. This method of working simplifies the process of creating
GUIs by requiring little or no programming skills, and by providing continuous
visual feedback on the final result. After partially or completely finishing the
graphical design of the GUI, however, the user must define the behavior of the
GUI. This is typically done by writing program code that links functionality to the
manually added graphical components, so called “glue code”. In practice, behavior
is specified by implementing callback methods, i.e. methods that are invoked
by graphical components when certain events are triggered. A button might for
example call onClicked() every time it is clicked in the GUI by the end-user.
In contrast to the first phase of GUI development, this second phase requires
programming skills from the user. Depending on the complexity of the application,
and whether application logic has been developed separately, the programming
effort might be small or large in scale.

Some IDEs are platform-dependent, i.e. created applications only run on one
platform. One such example is Android Studio [74]. Due to the increasing popular-
ity of the mobile market and the many mobile platforms available, cross platform
IDEs are becoming more common. Qt Creator [63] is an example of a develop-
ment environment that can be used for creating applications that run on several
platforms, including iOS, Android and Windows Phone. Our solution adopts the
same platform-independent approach. Furthermore, many of the traditional aspects
of graphical editors have influenced the solution we present in this work. As such,
our solution is similar to other graphical editors in e.g. the use of drag-and-drop
mechanics and the concept of canvas editing. Unlike conventional editors, however,
our solution does not require program code to be written when developing GUIs.

3.3 Visual Programming

To get over the barrier caused by the complexity of programming in traditional
languages such as C++ or Java, visual programming [47] is one possible solution.
As a broad definition, visual programming refers to “any system that allows the
user to specify a program in a two-(or more)-dimensional fashion” [52]. In practice,
this usually translates to a graphical development environment where traditional
and novel programming concepts are represented graphically, and can be created
without having to write program code. One example of such an environment is
Scratch [61]. Scratch seeks to enable people of all ages, backgrounds and interest
to develop their own programs, even people that previously had not imagined
themselves as programmers. The approach of Scratch is to represent programming
statements graphically as colorful pieces of a jigsaw puzzle; these can be fitted
to define logic. The PalCom tool PalcomBrowser offers a primitive form of
visual programming that is used when creating the assemblies that configure and
coordinate PalCom services into fully functional systems.

32 RELATED WORK

Some visual programming solutions focus entirely on the specification of
application logic, e.g. Bloqqi [27], a data-flow language for building control
systems. In others, however, visual programming is merged with the constructs
of conventional graphical editors. This allows GUIs to be created graphically,
without requiring program code to be written. One such tool is App Inventor [30],
which offers visual drag-and-drop building blocks in the place of a text-based
programming language. Using App Inventor, even inexperienced users can manage
to create fully functional Android apps. Like traditional graphical editors, App
Inventor offers a palette of graphical components which can be placed on a viewer
(canvas). Unlike traditional graphical editors, however, functionality is specified
with an approach similar to that of Scratch, i.e. by fitting jigsaw pieces. Recently,
Google announced App Maker [51], a new “low-code” application development
tool [6]. While details are scarce as of the time of this writing, App Maker is
presented as a visual programming tool that requires little or no program code to be
written when creating GUIs. Similar to App Inventor, App Maker appears to follow
the conventional editor workflow of selecting and placing graphical components
on a canvas.

Another solution based on the idea of visual programming is JavaBeans [25].
With JavaBeans, Java components – both graphical and otherwise – can be pack-
aged so that they can be used in a graphical programming environment. One
example of an environment with support for JavaBeans is NetBeans [17]. Simi-
lar to other graphical editors, GUIs are designed by selecting and placing beans
(components) on a canvas. Functionality is then specified by creating connections
between beans, a process that does not involve programming. Instead, connections
are specified by selecting a source event and a target operation, and by providing
connection parameters. Since application logic can be developed by programmers
and packaged as beans, the result is that GUIs can be created by talented designers
that do not need to be programmers themselves.

The above is a selection of solutions that are related to our own in that they
aim to remove the barrier of having to write program code from the GUI creation
process. Unlike ours, however, these solutions still follow the traditional workflow,
albeit without having to write program code: manually add graphical components,
and attach functionality to those components retroactively.

3.4 Automatic GUI Generation

The Naked Objects pattern introduces an object-oriented approach to GUI devel-
opment. In his doctoral dissertation, Pawson [57] presents the pattern in detail.
With Naked Objects, the user is presented a 1:1 graphical representation of the
domain objects in a system, and can manipulate those objects by performing di-
rect method invocations through the presented graphical components. The idea
is to simplify the widely adopted model-view-controller (MVC) pattern, which

3.5 Discussion 33

Pawson describes as being implemented as a four-layer architecture. In MVC, the
business concepts of a system may appear across all four of these layers in various
forms, which adds to the complexity of the system. With Naked Objects, business
concepts are instead concentrated to the domain object layer and have one direct
mapping in the presentation layer. In practice, the interfaces of domain objects are
interpreted in order to automatically generate the GUI. For this to work properly
the object-oriented concept of behavioral completeness must be supported by all
domain objects. Behavioral completeness implies that objects must not only model
the properties of their real-world counterpart, but also their behavior.

Naked Objects can be seen as primarily servicing the programmer. By applying
the pattern, developers do not have to explicitly devote resources towards GUI
development since those are automatically generated. Instead they can focus on
the application logic of the domain objects. The Naked Objects pattern can be
defined by the following three principles [60]:

1. The domain objects should encapsulate all application logic.

2. The GUI must represent all aspect of the domain objects.

3. The GUI must be created automatically from domain objects.

For the solution presented in this dissertation, we agree that application logic
should be managed separately from the GUI. Furthermore, our solution is also
based on generating GUIs based on domain objects (PalCom services). However,
we do not apply a completely automated approach and do not enforce a strict 1:1
relation between domain object and representation. In those two aspects, Naked
Objects are closer to the approach for GUI generation applied in the PalCom tool
PalcomBrowser.

The pattern of Naked Objects is currently being used in commercial solutions
such as Apache Isis [5] and BlueJ [14]. Research efforts toward applying Naked
Objects for the development of Android applications include JustBusiness [29], a
framework for atomically generating the GUIs of Android applications.

3.5 Discussion
The solution we present in this dissertation shares many similarities with the
types of technologies that have been presented here. We base our solution on a
UIDL which differs from other languages mainly in its domain integration with
Internet of Things via PalCom. The graphical editor we present for this language
borrows concepts from conventional graphical editors, e.g. the use of drag-and-
drop mechanics. For our solution, however, we wanted to increase the user base
by not requiring explicit programming, which is the case when specifying GUI
functionality in conventional graphical editors. Visual programming is proposed
by some as a solution to this problem. However, for such a technology to be

34 RELATED WORK

considered for our purposes, it would have to produce platform-independent GUIs.
Furthermore, we believe that the final step in the conventional GUI development
approach, i.e. retroactively attaching functionality to manually added graphical
component, is too open ended for the average casual user, even when visual
programming is applied. Our solution instead introduces a novel approach to GUI
functionality specification that is based on interpreting metadata in PalCom to
selectively generate GUI components. This approach, unlike completely automatic
techniques such as Naked Objects, keeps the human in the loop which allows for
more specific GUI designs.

Chapter 4

An Inverted Solution

The recurring need for GUIs in the itACiH system reveals a general need for a
cost effective method for creating the GUIs of end-user devices. From a practical
perspective, in systems such as these where most nodes require a GUI of some
sort, keeping development costs down becomes a priority. To enhance GUI devel-
opment productivity, and to avoid excluding non-programmers from the process,
we introduce an “inverted” approach to GUI development.

4.1 Requirements
For the system that was built during the itACiH project, the PalCom framework was
chosen as supportive middleware due to its extensive support for such ubiquitous
systems. The lack of support for creating GUIs in the PalCom framework and the
recurring need for GUIs in the itACiH systems motivates the creation of a uniform
solution for developing GUIs specifically for PalCom systems. This new solution
needs to relate to the already established user roles of PalCom. Table 4.1 shows the
original roles that PalCom users could undertake prior to this work. The primary
distinction between the roles is that they require different levels of technical
expertise from the user. Assemblers create assemblies using PalcomBrowser – a
standard PalCom tool. No other software, and hence no other technical skills,
are required. The user experience it completely graphical, demanding no coding
knowledge from the user. This non-programming quality is intrinsic of the role of
the assembler. Developers implement new PalCom services using for example a
third-party IDE and APIs in the PalCom library. For this role, users are expected

Table 4.1: Original user roles in PalCom. Developers create services by writing program
code; assemblers create (assemble) systems of such services in a graphical tool.

Role Creates Uses
Developer Service PalCom library, 3rd-party IDE
Assembler Assembly PalcomBrowser

36 AN INVERTED SOLUTION

to have the technical expertise required to install required software (compilers,
libraries, etc.) and to program in a given programming language – currently Java.
This is a considerable step-up in the requirement of technical skills compared to
that of assemblers.

In order to address the problem statement from Chapter 1, we introduce a
solution that provides support for creating GUIs targeted at PalCom systems. The
solution is introduced at the level of the assembler role. This choice of skill level
has practical implications; we formulate the following requirements:

Requirement 4.1 The solution must be platform-independent. PalCom systems
can be deployed on multiple platforms, a feature that must be retained for
the GUIs of such systems. Users at the assembler level, however, cannot be
expected to have the necessary knowledge to adapt the GUIs for multiple
platforms. Instead, the new solution must allow the user to create platform-
independent GUIs that can be deployed on any supported platform.

Requirement 4.2 The solution must allow for codeless functionality specification.
In PalCom, functionality is provided through services that are produced by
developers. When assembling PalCom systems, assemblers can incorporate
these services into their system. This allows them to define the functionality
of entire systems without having to write any program code. The same
concept must also hold true when creating GUIs for such systems.

For our solution, we propose a hybrid between a platform-independent UIDL and
a graphical editor. By harnessing the platform-independent nature of a UIDL and
combining that with the user friendliness of a graphical editor, a solution that
satisfies both Requirement 4.1 and Requirement 4.2 can be realized. Specifically,
we introduce a graphical editor for a PalCom-specific UIDL targeted at users on
the level of the assembler role, i.e. the same type of users that create assemblies.

4.2 The Inverted GUI Development Approach

To avoid violating Requirement 4.2 we introduce a novel approach to how function-
ality is specified for GUIs. In essence, the conventional GUI development approach
is turned 180◦. We refer to this as the inverted approach to GUI development, and
define it as follows:

The inverted approach focuses on presenting functionality as graph-
ical components in a GUI, rather than on retroactively attaching
functionality to manually added graphical components.

We illustrate the inverted approach from a perspective of workflow and architecture.

4.2 The Inverted GUI Development Approach 37

4.2.1 Conventional Approach

The typical workflow of a conventional graphical editor can be summarized as
follows:

1. Choose graphical component.

2. Place on canvas.

3. Add code to attach functionality.

The user chooses graphical components from a palette or menu. These are dragged
onto the canvas and dropped to specify placement in relation to other graphical
components. For the final step, behavior is specified by attaching the component
to functionality. In conventional editors, this is done by implementing callback
methods. In the best of cases, i.e. if the principle of separation of concerns
is followed, the implementation may consist solely of glue code that connects
the component to the application model. In the worst case scenario, extensive
coding – possibly including application logic – may be required in order to define
the behavior of the component. The conventional development workflow for the
former case is illustrated in Figure 4.1. For graphical editors which include visual
programming elements, the final step may not require explicit program code to
be written, i.e. conventional programming. However, a manual and retroactive
intervention that may be more or less extensive is still required.

In Figure 4.2, a typical system architecture when developing with the con-
ventional approach is illustrated. The GUIs that are produced with conventional
editors are deployed on devices other than the development device. However, both
the GUI and the attached application model must run on the same device, and
in the same runtime process. This implies that all functionality of the GUI must
be locally available; any access of remote functionality must be embedded in the
locally deployed application model. Since the application model shares the same
runtime process as the GUI, it will be unavailable whenever the application of
the GUI is not running. This effectively makes the model useless to other system
components, e.g. an alternate GUI.

1 CanvasMenu

Text box
Image
Button
⋮

MODEL

public void actionPerformed(ActionEvent e) {
// Additional glue code omitted.
motor.start();

}

Start

2 3

Figure 4.1: Workflow for conventional development approach. The user manually adds
graphical components (“Start” button) to the GUI. Functionality from the model is then
attached by writing more or less extensive glue code.

38 AN INVERTED SOLUTION

Editor Model

GUI

Glue code

Produces

Figure 4.2: Architecture for conventional development approach. The editor produces a
GUI that is run on a separate device. The GUI shares runtime process (dotted box) with the
application model, which it accesses though the user-specified glue code.

4.2.2 Inverted Approach
By applying the inverted development approach, the workflow instead becomes:

1. Choose functionality component.

2. Place on canvas.

3. Select representation and customize link.

The user starts by dragging and dropping functionality components – rather than
graphical components – onto the canvas. In our case, the metadata available in
PalCom makes this possible. It also aids in the third stop by providing information
for suggesting suitable graphical components that can represent the chosen func-
tionality. Once representation has been selected, the user may customize the link
that is created between the functionality (PalCom) component and the graphical
component. Otherwise, default behavior is inferred. The inverted development
workflow in the context of PalCom is illustrated in Figure 4.3.

Architecture-wise, the inverted approach differs from the conventional ap-
proach in a few key ways. The architecture is illustrated in Figure 4.4. Since the
focus of the approach is on presenting functionality, a strict separation of concerns
between GUI and model can be ensured. Because of this, the two elements can
run on separate devices, thus making distributed functionality feasible. The native

Start

CanvasMenu

MotorService
 ▸ Stop (in)
 ▸ Start (in)
 ▸ BatteryLow (out)
⋮

Start (in)
invoker{clicked}

☒Button
☐Check box
⋮

1

2

3 3

Figure 4.3: Workflow for inverted development approach. The user selects the desired func-
tionality (“Start” command). From suggestions based on metadata, a graphical component
(“Start” button) is selected and linked to the original source of functionality.

4.3 Aspirations 39

Model

GUI

Editor

Metadata

Produces

Network com.

Figure 4.4: Architecture for inverted development approach. Through strict separation of
concerns, the GUI and model are run independently on separate devices. Since the model is
always-on, the editor can read it in real-time during the design process.

distribution features of PalCom makes this a powerful characteristic. By distribut-
ing the model, it becomes possible for one GUI to access multiple models, and for
multiple GUIs to access the same model. Furthermore, since the model is always
available (independently of the GUI), its functionality can be integrated into the
editor as described above.

4.3 Aspirations
The inverted GUI development approach has been realized as a PalCom-centric
UIDL (PML, Chapter 5) and a set of tools (Chapter 6), most notably the Graphical
PML Editor (GPE). With the way in which GPE supports the construction of GUIs,
the user starts from PalCom component such as services and their commands, and
represent those graphically as e.g. buttons and text boxes. In other words, the user
starts by identifying what she wants to do, after which she gets suggestions for
graphical components that can represent that functionality.

By having GPE implement the inverted development approach, users can
develop entire GUIs without having to write any program code. This is in line with
our goal of introducing GUI development at the level of the PalCom assembler
role, and Requirement 4.2. As such, GPE is used by the same type of users that
previously used PalcomBrowser to create PalCom system by assembling services.
Ultimately, it is the ambition that both these tools are to be operable by non-
programmers. To that end, none of the tools require conventional programming to
take place. However, even though no program code needs to be written manually,
we cannot reject the possibility that programming skills are actually required.
This is because neither tool has been formally evaluated in the demographic of
non-programmers. It is however, as mentioned, the aspiration for this group to
adopt the tools.

GPE is built on top of the platform-independent language PML. A body of
PML code that properly describes a GUI is referred to as a PML description; GPE
is used to produce such descriptions, which can be loaded and interpreted as GUIs
on any supported platform. Hence, the presented solution satisfies Requirement 4.1.

40 AN INVERTED SOLUTION

The ambition with this requirement is for the user to be able to use one and the
same solution when creating GUIs for different platforms. For assemblers, this
is a necessity. For developers, it avoids the overhead costs of having to learn the
tools of additional platforms. However, it is not necessarily the ambition that a
description is to be portable between platforms without modification. In other
words, interpreted GUIs need not look identical on all platform; there may be
minor or major variations in how graphical component look and feel, how they are
structured and arranged, etc.

By default, PML offers a suite of standard graphical components such as
buttons, text and image boxes, and drop-down lists. It is the ambition that this
selection is to be sufficient to cover most needs for basic GUI development and
quick prototyping. It is however not feasible for such a suite to cover all possible
future needs of the user in terms of graphical expressiveness. Furthermore, a
balance must be struck between expressiveness and complexity in order to allow
for a diverse array of GUIs to be created while at the same time not alienating the
technically less capable non-programmer. To address this problem, we extend the
PalCom library to enable users on the level of the developer role to create custom
PML parts, i.e. graphical components. This construct is for advanced users, and is
completely analogous with how services are created and loaded during runtime.
It allows developers with specialized needs to create completely new or extend
existing parts as needed. With custom parts, the ambition is for PML to be a viable
option also for larger development projects.

Based on the discussions above, we extend the original user roles of PalCom
from Table 4.1 as per Table 4.2.

Table 4.2: Extended user roles in PalCom. In addition to services, developers also create
specialized graphical components (parts). These and a set of standard parts are used by
assemblers to create GUIs (descriptions) for single services or assembled systems.

Role Creates Uses

Developer Service PalCom library, 3rd-party IDECustom PML part

Assembler Assembly PalcomBrowser
PML description Graphical PML Editor

Chapter 5

Language Support

PalCom User Interface Description Language, PUIML, or more commonly PML
is a platform-independent, XML-based language that is used to describe GUIs
and their interaction with the underlying application model in terms of PalCom
services. PML supports the inverted approach to GUI development by specifying
behavior exclusively in terms of links between components. Once created, PML
descriptions can be interpreted on specific platforms to form fully functional GUIs.

5.1 Overview
A PML description – formally PalCom User Interface Description – is a body of
PML code that describes all aspects of the GUI that will be created by interpreting
it. Similar to PalCom assemblies, every PML description must specify which
PalCom components, i.e. devices, services, commands and parameters, are part
of its configuration. PalCom components are represented by a particular type of
PML component. Through their class and properties, these identify and manage all
communication for the PalCom component they represent. The graphical content
of the GUI is also represented in terms of PML components. These have their
own type, and belong to one of several classes that specify the kind of graphical
component being represented, e.g. a text box or a button. PML provides a suite of
classes for standard graphical components to select from, and the assortment can
easily be expanded through an API in the PalCom library. The PML components
represent graphical components in a generic, platform-independent manner. Visual
details can be customized by adjusting the style properties of the PML component.
The structure of GUIs is defined by nesting compatible components within each
other, e.g. a button inside a window.

As discussed in Chapter 4, the inverted GUI development approach focuses on
allowing the user to select functionality to be presented as graphical components in
the GUI, rather than on choosing graphical components and attaching functionality
to those e.g. with glue code. To support this novel approach, PML defines behavior
by assigning behavior properties for components. These properties link one
component of the description to another, giving the link a specific role. Figure 5.1

42 LANGUAGE SUPPORT

role{qualifier}
Source Target

Figure 5.1: Generic link between two PML components. Links have a given role and can
be further specialized by a qualifier. Specific examples of links are illustrated in Figure 5.2.

illustrates a generic link between two PML components. Whether two components
can be linked, as well as what roles are acceptable for the link depends on the
classes of the linked components. The four roles for links are “invoker”, “reactor”,
“provider” and “viewer”.

The role of invoker is used when one PML component (source) is to trigger, or
invoke, an action at another component (target). The role is complemented with a
value – the qualifier – that indicates what event must occur at the source component
to activate the link. The action that is triggered at the target component depends
on its class specification. For example, consider an invoker link between the
PML components of a graphical button and a PalCom command (input), with the
qualifier as the “clicked” event of the button. This link would cause the command
to be sent to its corresponding PalCom service whenever the button is clicked by
the end-user. The role of reactor is the reactive counterpart of the invoker role: an
action (qualifier) at the source component is triggered by an event at the target
component.

The role of provider is used when a property value of one PML component is
to be assigned as the new value for a property of another component. The qualifier
of this role indicates which property of the source is to be used for the assignment.
The action that activates the link, and hence the assignment to be performed,
depends on the class of the source component. Similarly, the property value that
is set for the target component depends on its class specification. Consider as
an example a provider link from the PML component of a text box, to the PML
component of a PalCom parameter. The qualifier is the text property of the text
box. This link would cause the value property of the parameter to get assigned the
text in a text box, as entered by the end-user. In this example, this would happen
every time the end-user edits the text in the GUI. The reactive counterpart of the
provider role is the role of viewer: the value of a property (qualifier) at the source
component is assigned the value of a property at the target component.

In many cases, an invoker link from Component A to Component B can be
replaced by a reactor link from Component B to Component A. The same applies
for provider links, which can be replaced by viewer links in the reversed direction.
The main motivation for having two pairs of practically interchangeable roles is
that PML was originally designed with an emphasis on graphical components:
links should originate from graphical components and target PalCom components.
There is, however, no limitation as to which types of PML components can act
as source and target for links. For example, a component representing an output
command of a service could be linked as invoker for a component representing

5.2 The Echo Example 43

an input command of another service. In this case, the link would activate upon
receiving the first command, thus sending the second command to its service. A
second reason for the four roles is that in the current implementation, the link
qualifier applies to the source component only. As such, the direction of a link
affects which behavioral aspects can be specified. For future revisions of PML,
we are considering making links undirected, i.e. with no specific source/target.
By also introducing qualifiers on both sides of links, only two roles would be
necessary in the considered implementation.

5.2 The Echo Example

As a simple but concrete example of how PML uses links to specify GUI behavior,
Figure 5.2 illustrates both the graphics and the links of a GUI for echoing messages.
The GUI is described using PML, and was interpreted on an Huawei Nexus 6P
running Android 6 using the interpreter tool to be presented in Chapter 6. In the
example, the GUI connects to a PalCom service that echoes all messages sent to it
back to the sender – EchoService. The service has one input command, Voice→©,
and one output command, Echo←©. Both commands carry a parameter containing

viewer{text}

provider{text}

viewer{text}

Voice

message

Echo

message

c Empty (“ ”)

invoker{clicked}

invoker{clicked}

Ech
o

Service

4

3

2

1

Figure 5.2: Screenshot of a PML description interpreted on a Huawei Nexus 6P. Links
between graphical components, a command (speech bubble), parameters (paper clips) and a
constant (C) model the behavior of the GUI, i.e. displaying echoed messages.

44 LANGUAGE SUPPORT

the echo message: Voice::message and Echo::message, respectively. In the GUI,
the user can type in the uppermost text box (“Hello again, world!”). By pressing
the button labeled “SEND”, Voice→© with the content of the text box as its message
is sent to the echo service. When received, EchoService responds by sending
Echo←© containing the same message back to the GUI. Upon reception, the content
of the message parameter is displayed to the user (“Hello, world!”). Pressing the
button labeled “CLEAR” clears this message, resetting it to empty.

All PML links needed to model this behavior are illustrated in Figure 5.2. The
text box provides its text value to Voice::message whenever the text changes (1).
The send button is linked as invoker to Voice→© (2), i.e. when the user clicks
the button the command (and its parameter) is sent to the echo service. The text
label is linked as viewer for both Echo::message and an empty constant (3). Upon
receiving Echo←©, the text value of the label is updated with the value of the
parameter. Since the clear button invokes the constant (4), whenever it is clicked
the empty value is propagated to its viewers, hence clearing the echo message
label.

5.3 Structure

The code in PML descriptions is formatted according to the standard XML specifi-
cation. A structured and readable format such as XML was favored so that power
users could make advanced edits to PML descriptions without the need for special
tools. PML descriptions are structured by division into three component blocks –
universe, structure, logic – and three property blocks – style, discovery, behavior.

Universe The units of a description are defined in the universe block. Units
represent the PalCom components (devices, services, etc.) that can be used
in the description. The universe block is supplemented by the discovery and
behavior blocks. The discovery block contains properties that identify the
PalCom components of units. The behavior block contains properties that
specify the behavior of units.

Structure In the structure block, the parts of a description are defined. Parts
represent the graphical components that make up the GUI that will be
presented to the end-user. The block is supplemented by the style and
behavior block. The style block contains properties that affect the visual
characteristics of parts. Like for units, the behavior block contains properties
that specify the behavior of parts.

Logic Facts are defined in the logic block of the description. Facts represent
internal components (constants, variables) that can be used in the description.
The logic block is supplemented by the behavior block.

5.3 Structure 45

1 <puiml>
2 <universe><unit/><unit/>...</universe>
3 <discovery><property/><property/>...</discovery>
4

5 <structure><part/><part/>...</structure>
6 <style><property/><property/>...</style>
7

8 <logic><fact/><fact/>...</logic>
9

10 <behavior><property/><property/>...</behavior>
11 </puiml>

Listing 5.1: Overview of a PML description, illustrating the six blocks for PML components
(universe, structure, and logic) and properties (discovery, style, and behavior).

Listing 5.1 illustrates the structure of a PML description, including the six blocks
with components and properties. Note that this is not proper PML code, and serves
only to illustrate the structure.

In PML, all components are represented as XML elements with a corresponding
tag name of “unit”, “part” or “fact”. These elements have two XML attributes: “id”,
a string that uniquely identifies the component in the context of the description; and
“class”, which specifies what type of component is being represented. Depending
on the class of the component, its element may contain other nested components.
These concepts are illustrated in Listing 5.2, where a service (class attribute, line 3)
is specified as being hosted on “device1” (ID attribute, line 2).

Discovery, style and behavior properties are represented as XML elements
with the tag name “property”. All property elements must have the attribute “name”
set to specify which property is being set for the PML component in question. A
value is assigned to the selected property by editing the inner text of the property
element. In order to successfully link a property to an existing component, one of
the attributes “unit-name”, “part-name” or “fact-name” must also be set, depending
on what sort of component the property should apply to. The attribute value should
match the value of the ID attribute of a previously defined PML component. On
line 10 in Listing 5.3, the property ”p:id” of a unit “device2” (unit-name attribut)
is set to “C:30e8f8a2”. As an alternative way of structuring PML descriptions, one
can choose to specify the properties of a component directly in its definition, rather
than in one of the global properties blocks. To do this, a local properties block is
created inside the element of the component. In Listing 5.3, the property “p:id” of

1 <universe>
2 <unit id="device1" class="P:Device">
3 <unit id="service1" class="P:Service"/>
4 </unit>
5 </universe>

Listing 5.2: PML components are defined by the tag name, e.g. “unit”, and the class
attribute, and can be nested for logical structuring, e.g. a service on a device.

46 LANGUAGE SUPPORT

1 <universe>
2 <unit id="device1" class="P:Device">
3 <discovery>
4 <property name="p:id">C:30e8f8a2</property>
5 </discovery>
6 </unit>
7 <unit id="device2" class="P:Device"/>
8 </universe>
9 <discovery>

10 <property unit-name="device2" name="p:id">C:30e8f8a2</property>
11 </discovery>

Listing 5.3: PML properties can be specified both locally, i.e. inside an component (line 4),
and globally by referencing an existing component (unit-name, line 10).

“device1” is set on line 4. Note how contrary to for global properties, no unit/part/
fact-name attribute has to be specified for local properties; the property element
is nested inside the component element, implicitly specifying which component
the property belongs to. Both ways of structuring descriptions yield the same end
result. The difference between the two alternatives is hence mostly of interest for
power users making direct description edits. Defining properties locally can be
useful for smaller descriptions in order to have all information pertaining to a PML
component in one place. For larger descriptions, defining properties globally will
allow for a quicker overview of the description structure, while keeping the details
provided by the properties in one collective place.

5.4 Details
A more fine-grained insight into PML is provided by expanding on the purpose
and content of each of the six blocks of a PML description. The abstract syntax
of PML is presented as part of Appendix A. To practically demonstrate PML, the
code that makes up the echo example in Section 5.2 is presented for each respective
description block. The description for the example was originally created using the
graphical editor to be presented in Chapter 6; the presented code has been edited
for readability purposes.

5.4.1 Universe Block

In the universe block, the units of the PML description are declared. Units represent
PalCom components. Hence, there is only four classes that units can belong to;
Table 5.1 outlines these classes. Units can contain other units – units can be nested.
How units can be nested depends on their classes. The universe block can contain
an unbound number of units of class “P:Device”. Units of class “P:Device” can
in turn only contain units of class “P:Service”, since a device cannot contain e.g.
a command without it belonging to a service first. Analogously, “P:Service” can

5.4 Details 47

Table 5.1: Valid classes for PML units, i.e. PalCom components.

P:Device PalCom device.
P:Service PalCom service.
P:Command PalCom command.
P:Param PalCom parameter.

1 <universe>
2 <unit class="P:Device" id="devHost">
3 <unit class="P:Service" id="svcEcho">
4 <unit class="P:Command" id="cmdVoice">
5 <unit class="P:Param" id="prmVoiceMsg"/>
6 </unit>
7 <unit class="P:Command" id="cmdEcho">
8 <unit class="P:Param" id="prmEchoMsg"/>
9 </unit>

10 </unit>
11 </unit>
12 </universe>

Listing 5.4: Universe block of the echo example, Section 5.2.

only nest “P:Command”, which in turn only nests “P:Param”. It is important to
note that how units are nested affects how they will be located in the PalCom
universe. For example, when trying to locate a PalCom service, the discovery
properties of the service-unit (“P:Service”) will be used. However, these alone
are not enough to identify the service. The discovery properties of the parent
device-unit (“P:Device”) must be used to specify the PalCom device on which the
service is hosted. This means that the same service-unit could be used to describe
different services just by being nested in a different device-units.

Listing 5.4 shows the universe block of the PML description for the echo
example. Note that this code only specifies the relation between the PalCom
components: one device hosting one service, which has two commands with one
parameter each. Each unit is given a unique internal ID through the ID attribute.
The identity of the PalCom components is specified in the discovery block by
referencing these IDs.

5.4.2 Discovery Block

In the discovery block, the discovery properties of the PML description are declared.
Discovery properties apply to the units declared in the universe block, and are
mainly used to identify the corresponding PalCom components of units, i.e. how
they can be located in the PalCom universe. The class of the unit determines which
discovery properties are available to set. Some of these properties are required and
must be specified, while others are optional and may be left out for an implicit
default value.

48 LANGUAGE SUPPORT

1 <discovery>
2 <property unit-name="devHost" name="p:id">C:30e8f8a2</property>
3 <property unit-name="svcEcho" name="p:required">true</property>
4 <property unit-name="svcEcho" name="p:instance">1</property>
5 <property unit-name="svcEcho" name="p:cdid">X:EchoDevice</property>
6 <property unit-name="svcEcho" name="p:cn">BAJ1</property>
7 <property unit-name="svcEcho" name="p:udid">X:EchoDevice</property>
8 <property unit-name="svcEcho" name="p:un">BAJ1</property>
9 <property unit-name="cmdVoice" name="p:id">Voice</property>

10 <property unit-name="cmdVoice" name="p:direction">in</property>
11 <property unit-name="prmVoiceMsg" name="p:id">message</property>
12 <property unit-name="cmdEcho" name="p:id">Echo</property>
13 <property unit-name="cmdEcho" name="p:direction">out</property>
14 <property unit-name="prmEchoMsg" name="p:id">message</property>
15 </discovery>

Listing 5.5: Discovery block of the echo example, Section 5.2.

The discovery block of the PML description for the echo example is presented
in Listing 5.5. Note how each property refers to a previously declared unit through
its internal ID (unit-name attribute). Line 2 specifies the identifier used for discover-
ing the device “devHost”. Lines 3–8 specify properties for discovering the service
“svcEcho”; lines 6–8 are used to support versioning of services. The commands
Voice→© and Echo←© and their respective message parameters are identified on
lines 9–11 and 12–14 respectively.

5.4.3 Structure Block

In the structure block, the parts of the PML description are declared. Parts represent
the graphical components of the GUI that will be presented to the end-user, and
can belong to one of several classes from the standard suite of PML; Table 5.2
outlines these. Additionally, parts can represent custom graphical components, as
developed using the PalCom library. In such cases, the Java canonical class name
of the custom part is used for the class attribute.

The structure block can and must hold one, and only one, part of class
“G:Application”. This class represents the interpreting application inside the
description, and must be the first part defined in any description. Similar to units,
parts can be nested, i.e. parts can contain other parts. The nesting of parts is used
to logically structure the GUI; the way in which they may be nested depends on
the classes of the parts. In principle, only parts of container classes (containers)
can contain other parts. As an example, a button (part of class “G:Button”) can
logically reside within a window (part of container class “G:Window”), but a
button can not logically reside within another button.

It is through the logical nesting of parts, in conjunction with the layout-related
style properties provided for container parts, that the GUI gets its structure. Layout
properties define how graphical components should be laid out within the container

5.4 Details 49

Table 5.2: Valid classes for PML parts, i.e. graphical components.

G:Application ◦ Logical component that represents the interpret-
ing application internally.

G:Window • Top-level, self-contained, structural component.
May contain other components.

G:Area • Structural component. Primary purpose is to con-
tain and layout other components.

G:Tabbed • Structural component. Contained components are
represented as tabs, and displayed after selection.

G:RadioGroup ◦ Logical component that groups radio buttons.
G:RadioButton Clickable, two-state component. One instance per

group can be checked.
G:Label Component for displaying simple text.
G:Button Clickable component.
G:CheckBox Clickable, two-state component. Multiple in-

stances can be checked.
G:TextField Component for text input.
G:Image Component for displaying images.
G:TextArea Component for displaying text (advanced).
G:NumberSlider Component with horizontally slidable handle. Se-

lects numeric value in given range.
G:DropDownList Compact (expandable) component for item selec-

tion from a list.
G:SystemNotification System wide notification. Visible even when the

application is not.
G:YesNoDialog Dialog box that may block the rest of the applica-

tion until confirmed/dismissed.
G:QuickNote Temporarily visible text message.
G:Sound Plays a notification sound.

◦ Limited container • Full container

50 LANGUAGE SUPPORT

1 <structure>
2 <part class="G:Application" id="appEcho">
3 <part class="G:Window" id="winMain">
4 <part class="G:Area" id="areaTop">
5 <part class="G:TextField" id="txtMessage"/>
6 <part class="G:Button" id="btnVoice"/>
7 </part>
8 <part class="G:Area" id="areaBottom">
9 <part class="G:Label" id="lblMessage"/>

10 <part class="G:Button" id="btnClear"/>
11 </part>
12 </part>
13 </part>
14 </structure>

Listing 5.6: Structure block of the echo example, Section 5.2.

component, e.g. from left to right or from top to bottom. To properly structure the
graphical components of a PML GUI, there are three things to consider:

1. The nesting of a part decides in which container its corresponding graphical
component should be placed.

2. The order in which the parts are declared decides the order in which the
corresponding graphical components will be laid out within the container.

3. The specified layout-related style properties of the container part decide the
formation in which the graphical components should be laid out.

Of these, Items 1 and 2 are specified in the structure block whereas Item 3 is
specified in the style block. Listing 5.6 shows the structure block of the PML
description for the echo example. Note how the content matches the structure of
the GUI in Figure 5.2: a window (line 3) divided into two separate sections, one
containing a text box and a button (lines 4–7), and another containing a label and a
button (lines 8–11).

5.4.4 Style Block
In the style block, the style properties of the PML description are declared. Style
properties apply to the parts declared in the structure block. They are used to
specify what the corresponding graphical component of a part should look like in
the resulting GUI; the properties that are available to set depend on the class of
the part. For example, container parts provide several layout-related properties,
such as component arrangement and padding, while text input/output parts offer
several font-related properties, such as font size and color. Some style properties
are compulsory and must be given a value, while others are optional and may be
omitted for an implicit default value.

The style block of the PML description that describes the echo example is
presented in Listing 5.7. Note how the layout formation of sub-parts is specified

5.4 Details 51

1 <style>
2 <property part-name="winMain" name="g:title">Echo app</property>
3 <property part-name="winMain" name="g:layout">linear</property>
4 <property part-name="winMain" name="g:layout-gap">0,25</property>
5 <property part-name="winMain" name="g:layout-orientation">vertical</

property>
6 <property part-name="areaTop" name="g:layout-gap">0,25</property>
7 <property part-name="areaTop" name="g:layout-orientation">vertical</

property>
8 <property part-name="areaTop" name="g:border">raised</property>
9 <property part-name="txtMessage" name="g:align-h">center</property>

10 <property part-name="btnVoice" name="g:size">-1,-1</property>
11 <property part-name="btnVoice" name="g:text">Send</property>
12 <property part-name="areaBottom" name="g:layout-gap">0,25</property>
13 <property part-name="areaBottom" name="g:layout-orientation">vertical</

property>
14 <property part-name="areaBottom" name="g:border">raised</property>
15 <property part-name="lblMessage" name="g:font-size">18</property>
16 <property part-name="lblMessage" name="g:align-h">center</property>
17 <property part-name="btnClear" name="g:size">-1,-1</property>
18 <property part-name="btnClear" name="g:text">Clear</property>
19 </style>

Listing 5.7: Style block of the echo example, Section 5.2.

for container parts. On lines 3–5, for example, the main window of the GUI
(“winMain”) is set to arrange sub-parts in a linear and horizontal fashion, i.e.
one after another from top to bottom, with a given amount of padding between
components (“0, 25”).

5.4.5 Logic Block

In the logic block, the internal components of the PML description are declared.
These represent constants and variables, and can for example be used as default
texts in GUIs or to model states. In PML, these components are referred to as facts.
Facts can belong two one of two classes, as as outlined in Table 5.3

Listing 5.8 shows the logic block of the PML description for the echo example;
a single constant is declared.

Table 5.3: Valid classes for PML facts, i.e. internal components.

G:Constant Holds a constant value.
G:Variable Holds a value that can be changed.

1 <logic>
2 <fact class="G:Constant" id="cstClear"/>
3 </logic>

Listing 5.8: Logic block of the echo example, Section 5.2.

52 LANGUAGE SUPPORT

5.4.6 Behavior Block

In the behavior block, the behavior properties of the PML description are declared.
These are primarily used to specify the behavior of the GUI. As introduced in
Section 5.1, this is done by creating links between pairs of PML components,
and assigning a role to that link. A secondary purpose of the behavior block is to
declare properties that are behavior-related but that are not links. One example of
this is the property that specifies the delimiter that text areas use for separating
lines in data to be displayed in the GUI. When used this way, behavior properties
are similar in function to discovery and style properties. Behavior properties apply
to the units, parts and facts declared in the universe, structure and logic block
respectively. What behavior properties are available to set depends on the class of
the component; some properties are required, while others are optional.

When used for specifying links, behavior properties are more complex than
other property types. The roles of links are specified by using one of the property
names “p:invoker”, “p:reactor”, “p:provider” and “p:viewer”. The qualifier is
specified by assigning a value to an attribute that depends on the role of the link,
e.g. “event” for invoker links. Furthermore, a component can be the source for
multiple links with the same role and qualifier. In such cases the attribute “order”
can be set, starting at 0, to specify the order in which the links will be activated.
For example, if a button has invoker links to multiple PalCom commands for the
“clicked” qualifier, the command for the link with the lowest ordering value will be
sent first when the button is clicked.

The behavior block of the PML description that describes the echo example is
presented in Listing 5.9. The specified links (lines 2–7) are illustrated in Figure 5.2,
with the exception of the link on line 2 which has been omitted in the figure. In
this example, all link sources are graphical components and hence specified by the
“part-name” attribute. Link targets are specified as the inner text of the elements
that represent the links. We elaborate on the each individual behavior property:

1 <behavior>
2 <property part-name="appEcho" name="p:invoker" event="loaded">winMain</

property>
3 <property part-name="txtMessage" name="p:provider" get="text">prmVoiceMsg

</property>
4 <property part-name="btnVoice" name="p:invoker" event="clicked">cmdVoice<

/property>
5 <property part-name="lblMessage" name="p:viewer" set="text" order="0">

prmEchoMsg</property>
6 <property part-name="lblMessage" name="p:viewer" set="text" order="1">

cstClear</property>
7 <property part-name="btnClear" name="p:invoker" event="clicked">cstClear<

/property>
8 <property fact-name="cstClear" name="p:value"></property>
9 </behavior>

Listing 5.9: Behavior block of the echo example, Section 5.2.

5.5 Interpretation 53

– On line 2, the interpreting application is instructed to open the main window
(“winMain”) when it is loaded.

– On line 3, the text box (“txtMessage”) is set to provide its text value to the
message parameter of Voice→©. When the command is sent, its parameter
will already be set to the latest value entered by the end-user in the text box.

– On line 4, the send button (“btnVoice”) is linked as invoker for Voice→©;
whenever the button is clicked, the command is sent to the echo service.

– On line 5, the text label (“lblMessage”) is linked as viewer to the message
parameter of Echo←© to capture the response from the service. Whenever
the command is received, the value of its parameter is be displayed.

– On line 6, the same label is also set as viewer for the constant “cstClear”.

– On line 7, the clear button (“btnClear”) is linked as invoker to the constant .
This means that whenever the clear button is clicked, the value of “cstClear”
is propagated to its viewers, hence clearing the echo message label.

– On line 8 the value of the constant (“cstClear”) is set to empty.

Note that the inner text (value) of the element that represents the constant (line 8)
is empty. Furthermore, note how the ordering mechanism is used to accommodate
the two viewer links of text label on lines 5–6.

5.5 Interpretation
A PalCom User Interface Description Interpreter – also simply referred to as a
PML interpreter – is an application that is used to produce fully functional GUIs
from PML descriptions. The interpreters provide the application fundamentals
needed to display the GUIs that are created from interpreting descriptions. As such,
each interpreter is specific to one platform, i.e. an interpreter must be developed
for each platform that is to support PML. To minimize such development efforts,
we have factored out the platform-independent parts as illustrated in Figure 5.3.

The interpretation process starts by loading an existing PML description. In
the interpreter application, the input file is processed by the front end. The front
end parses the content of the file and evaluates if it constitutes valid PML code. If
successful, the front end outputs an intermediate representation (IR) of the parsed
description. This representation models the PML parts, units, and facts, and all
properties – including links. Furthermore, the IR functions as a common core for
all interpreters: during interpretation startup, the IR is responsible for initializing
all PML components; during runtime, it handles all application logic for the GUI,
most notably the logic needed to activate links. In particular, when PML units are
initialized, connections to the specified PalCom services are established; during

54 LANGUAGE SUPPORT

Units Services

...

Display

IR

Parts

Facts

Graphical
Components

Communication

GUI

Front
End

Back
End

Description

Load Create

Load Create

Platform-dependent ⇡

Platform-independent ⇣

Runtime ⇢⇠ Startup

Figure 5.3: Interpretation of a PML description: the front end creates an intermediate
representation (IR) of the described GUI; the back end creates the actual GUI based on this
IR. Data structures in the IR handle the communication with the specified PalCom services.

runtime, the IR handles all communication with the services, e.g. by sending
PalCom commands. Both the front end and the IR have been included in the
PalCom library; they can be reused for interpreters on all applicable platforms.

In the final step of the interpretation startup process the back end renders the
GUI. This happens when the intermediate representation initializes the PML parts
of the represented description. Unlike units and facts, which can be initialized in-
ternally by the representation, parts are platform-dependent and must be initialized
by the back end. This is achieved by passing the IR to the back end via callback
methods – one for each available part class. The expanded PalCom library provides
an API for this purpose, since a platform-dependent back end must be created for
each platform that is to support PML. The back end uses the information in the IR
to render its PML parts as graphical components, e.g. text boxes or buttons. The
end result is the GUI that is presented to the end-user on a display.

During runtime, the GUI acts as a mere view for the intermediate representation.
All input by the user is forwarded to the IR so that the proper links can be activated.
Similarly, when the IR is updated with new data, e.g. by receiving a command,
it determines which links are to be activated and propagates the data to the GUI
accordingly. It is this strict separation of concerns that allows the back end to be
the only part that must be re-implemented for each new platform.

5.6 Discussion
In order to support the inverted GUI development approach, PML specifies GUI
behavior exclusively in terms of links between components in the intermediate

5.6 Discussion 55

representations of GUIs. Since all application logic used in GUIs described with
PML is modularized as PalCom services, these intermediate representations can
contain both an abstraction of the application model (services) and an abstraction
of the GUI itself. This makes it possible to link individual components from both
abstraction for the purpose of defining GUI behavior, thus completely eliminating
the need to write program code in traditional languages such as C++ or Java.

Since PalCom systems can be deployed on a number of platforms, PML was
designed to describe GUIs in a platform-independent manner. PML parts represent
generic graphical components that are applicable on most platforms; for specialized
needs, custom parts can be implemented by developers. PML parts are nested
to create structure in the GUI, and style properties can be set to adjust graphical
aspects such as layout and component size. As part of this work, interpreters for
two platforms have been implemented; we introduce these in the next chapter. To
add support for additional platforms, only a platform-dependent back end that
renders the GUI needs to be developed, since all other parts of the interpreter are
platform-independent and included in the PalCom library.

Chapter 6

Tool Support

The Graphical PML Editor is a tool that is used to create and edit PML descriptions.
The editor implements the inverted approach to GUI development, exclusively
through graphical interactions, i.e. no program code is needed. GUIs created
with the tool can be deployed in systems with a number of different architectures.
Support for these is provided by the classic PalCom tool TheThing, and by contri-
butions from this work: TheAndroidThing, SwingPUIDI, and AndroidPUIDI.

6.1 Deployment Architectures
The focus of the inverted approach to GUI development is on presenting function-
ality as graphical components. Because of this, a strict separation of concerns
between GUI (view) and model can be ensured. For the approach to be possible,
however, all functionality must be available in the form of PalCom services. How
these services are hosted and accessed by GUIs depends on the system architecture.
We discuss four such architectures in order of increasing complexity, as illustrated
from left to right in Figure 6.1.

6.1.1 Autonomous Model
TheThing is a launcher and manager of resources in PalCom, and has been used
extensively as an architectural tool for the systems we have built. Ideally, function-
ality should be hosted on the hardware of the device to which it pertains. Although
efforts towards making this goal possible have been made, e.g. in the form a light-
weight C implementation of PalCom [55], the more common case is to connect
the device to some less restricting hardware, e.g. a computer. The intermediate
device communicates with the target hardware, and presents it functionality in the
form of PalCom services. Furthermore, many types of services do not map directly
to any physical device. For example, a service for printing documents maps well
to a physical printer device; a service for arithmetic operations, however, could
logically be hosted on any device, preferably one that is widely accessible. For
these reasons, TheThing is an indispensable feature in most PalCom systems. It

58 TOOL SUPPORT

(a) Autonomous mo-
del.

Model

GUI

Local com.

(b) Local model.

Model

GUI

Network com.

(c) Distr. model(s). (d) Locally augmen-
ted distr. model(s).

Figure 6.1: Common system architectures in PalCom. Tools include TheThing/
TheAndroidThing for models, and SwingPUIDI/AndroidPUIDI for GUIs.

effectively acts as the application model. In the simplest of architectures (Fig-
ure 6.1a), a system could consist of no more than a single TheThing performing
some isolated task, e.g. collecting and storing sensor readings.

6.1.2 Local Model
For the work of this dissertation, the focus is on semi-autonomous and non-
autonomous systems that require input from the user, to some varying degree. Such
input is provided by means of a GUI. A simple architecture that allows for this is
illustrated in Figure 6.1b. Like before, the model is managed by TheThing, with
functionality in the form of services. The GUI is built and described with the solu-
tion of this work. As described in Chapter 5, fully functional GUIs are produced
from PML descriptions through interpretation. We introduce SwingPUIDI, an
interpreter tool that produces GUIs based on the widget toolkit Swing (Java). GUIs
produced with this tool run on any hardware that accommodates TheThing. In
this architecture, the GUI and the model run on the same hardware and communi-
cate using local (internal) interfaces. They are, however, separate processes and
hence the model can prevail without the presence of the GUI. This is essential for
systems where user input is only needed sporadically, and the system functions
autonomously for the majority of its uptime. From a perspective of tool maturity,
SwingPUIDI was a proof-of-concept, and is currently not maintained.

6.1.3 Distributed Models
A more versatile architecture, that takes greater advantage of the distributed capa-
bilities of PalCom, is illustrated in Figure 6.1c: a GUI connects to one or several
distributed models over some arbitrary network technology or technologies. The
notion of accessing distributed functionality is in itself of interest, allowing for all

6.1 Deployment Architectures 59

manner of systems to be remote controlled via a GUI. Furthermore, the distribution
aspect of this architecture opens up for multiple models to be accessed by the
same GUI. This implies that the functionality of any number of devices can be
aggregated into a single graphical access point for the user. Another implication
of the distribution aspect is that the models and GUI run not only in separate
processes, but also on separate hardware. This allows for the GUI to be run on
hardware that is of a different type from that of the models.

In many cases, e.g. in the itACiH system, we have found that mobile devices
offer a preferable method of interaction for these types of systems. The flexibility
and portability of such devices prompted us to develop a second PML interpreter:
AndroidPUIDI. This tool, as its name suggests, runs on devices powered by
the mobile operating system Android. Android is currently the primary target
development platform and hence, unlike SwingPUIDI, AndroidPUIDI is actively
maintained and improved upon.

6.1.4 Locally Augmented Distributed Models
In stationary systems, where the GUI device infrequently or never migrates be-
tween different networks, the plain distributed models architecture is satisfactory.
Disturbances such as occasional network outages can adequately be handled by
the built-in mechanisms of PalCom, e.g. reliable transfer of messages. In sys-
tems where loss-of-contact is the rule rather than the exception, however, such
mechanisms in themselves are not sufficient.

We have experienced these types of problems as particularly intrusive on
mobile devices, where long offline period are common, the battery can run out
at any moment, etc. To ensure dependable operation under such conditions, an
architecture where the distributed models are augmented by a local (on-device)
model can be applied. The architecture is illustrated in Figure 6.1d. The local
model can mirror selected application critical functionality from the remote models,
thus making it available during offline sessions. Furthermore, the local model can
enhance the remote functionality to compensate for the mobile shortcomings, e.g.
buffering GUI input locally on stable storage. Naturally, the local model can also
provide independent functionality, e.g. giving access to native mobile features such
as messaging, phone calls, and GPS positioning.

The results of the work presented in this dissertation have primarily been
applied to mobile scenarios. To add support for this architecture on Android, we
introduce TheAndroidThing. This tool is the mobile counterpart of TheThing,
and features the same functionality adapted for non-stationary use.

6.1.5 Discussion
TheThing and TheAndroidThing have features (services) for remote manage-
ment of services, assemblies, etc. Systems can hence be updated and main-

60 TOOL SUPPORT

tained remotely, which is essential in large, distributed systems. SwingPUIDI and
AndroidPUIDI have similar features for updating and installing GUI descriptions
and custom PML parts (graphical components). In mobile systems, these features
for both model and GUI tools can be particularly invaluable since mobile devices –
from experience – can be difficult to collect for a coordinated system update.

6.2 The Graphical PML Editor
The focus when developing the Graphical PML Editor (GPE) was to support the
inverted GUI development approach. By eliminating the need to write program
code, the goal of inviting more types of users to participate in the GUI design
process could be achieved. An early version of GPE was developed as part of a
master’s thesis work [83]. The user’s manual for the version of GPE that we report
on here has been published as [84].

6.2.1 Editor Overview
The editor is divided into four distinct sections through which the user interacts
with the tool; Figure 6.2 shows an overview of the editor with the four sections
distinguishable in the positions outlined below.

Network pane (left) Lists all available functionality, i.e. PalCom devices, ser-
vices, commands, and parameters.

Toolbar (top) Contains input options for interacting with the editor, e.g. opening
and saving descriptions, or changing component properties.

Canvas (center) Shows an approximate preview of what the GUI will look like
once interpreted.

Application bar (bottom) Lists application-wide components such as constants
and notifications.

Following the inverted development approach, the user starts from functionality
and gets suggestions for graphical components that can represent that functionality.
This functionality is accessed in the form of PalCom components. In GPE, the
user can examine all devices that are available on the connected network(s) using
the network pane. The network pane presents functionality in tree structures with
devices at the top (root). Individual components in trees can be expanded and
collapsed (orange triangles), thus respectively revealing and hiding underlying
components: expanding a device reveals its services, expanding a service reveals
its commands, etc.

The user chooses functionality by clicking on and dragging PalCom compo-
nents from the network pane onto the canvas. The canvas shows an approximate

6.2 The Graphical PML Editor 61

Fi
gu

re
6.

2:
C

re
at

in
g

th
e

ex
am

pl
e

G
U

If
ro

m
C

ha
pt

er
5

in
th

e
G

ra
ph

ic
al

PM
L

Ed
ito

r.
Th

e
us

er
dr

ag
s

fu
nc

tio
na

lit
y

(P
al

C
om

)c
om

po
ne

nt
s

fr
om

th
e

ne
tw

or
k

pa
ne

(l
ef

t)
to

th
e

ca
nv

as
(c

en
te

r)
–

th
e

ed
ito

rs
ug

ge
st

s
gr

ap
hi

ca
lc

om
po

ne
nt

s
th

at
ca

n
pr

es
en

tt
ha

tf
un

ct
io

na
lit

y,
an

d
po

ss
ib

le
lin

ks
.

62 TOOL SUPPORT

preview of what the GUI will look like once its description has been interpreted.
Technically, the canvas contains a number of tiles for the different windows of the
GUI, and controls for adding additional windows. On each tile, graphical com-
ponents are laid out. Upon dragging any component to a window tile, the editor
presents a number of graphical components that can present that functionality,
and a number of possible links. Descriptions can be run on targets devices during
development, directly from the editor.

The toolbar contains a number of input options for interacting with the editor.
It is split in two sides:

– If any component is selected in the editor, the left side of the toolbar provides
options to review and edit links and general component properties, e.g. text,
size, and color. Otherwise, the option to add new components is presented.

– The right side provides general options: open and save descriptions, undo
and redo changes, and changing editor settings. Custom PML parts (graph-
ical components) can also be added to expand the standard suite of PML.
Furthermore, descriptions can be run on a connected Android device.

Components that do not belong to any specific window, i.e. notifications and
PML facts, are managed in the application bar. The application bar lists these
application-wide components, and provides controls for adding additional ones.
Notifications can be used to notify users of events, or prompt them to provide
immediate input. Facts are mainly used to update components with the values of
specific constants and variables.

6.2.2 Architecture
The Graphical PML Editor is implemented as a specialized PML interpreter; the
architecture is illustrated in Figure 6.3. When the user opens a description from
the toolbar in the editor, the specified file is passed to the interpreter, where it is

GUI

Interpreter

Update
IR

Produces
Render
Canvas

Editor

Interpreter

Model

Refresh Network Pane Network com.

Ed
it

in
g

G
U

I

D
ep

lo
yin

g G
U

I

Install

Figure 6.3: Architecture of GPE. An interpreter (left) is used to render the canvas after
each change to the intermediate representation (IR). The application model is read to keep
the network pane synchronized. Descriptions can be installed remotely on target devices.

6.2 The Graphical PML Editor 63

processed as described in Chapter 5. In short, the front end parses the content of
the file and outputs an (initial) intermediate representation (IR) of the description.
The IR is used in the back end to render the PML parts of the description as
graphical components on the canvas of the editor. Furthermore, the IR is read
to populate the other sections of the editor with component from the description.
With a description fully loaded, the user can make changes to the represented GUI
through the various features of the editor. Changes are automatically propagated
to the IR, which is instantly re-rendered to refresh the content of the canvas. To
keep the content of the network pane up-to-date, the editor directly accesses the
application model (read only). When the user saves her progress, the IR is exported
to a destination file. This file can be installed remotely on a target device from the
toolbar of the editor. Once installed, the interpreter of the remote device can use
the description to produce a GUI connected to the application model.

6.2.3 Example Development Walkthrough

To convey how the inverted GUI development approach affects the development
process in GPE, we present a walkthrough of the steps needed to create the GUI of
the echo example that was introduced in Chapter 5. The walkthrough focuses on
workflow, and highlights the primary features of GPE.

The functionality and data flow of the GUI resulting from this walkthrough is
depicted in Figure 6.4. The GUI connects to EchoService, a “Hello, world!” service
with two commands: Voice→© and Echo←©. The user can enter a message (1) that
is used as value for the message parameter of Voice→© (2). Clicking a button (3)
invokes the command (4), thus sending it to EchoService (5). When EchoService
receives Voice→©, it echoes the specified message (parameter) by sending Echo←©

back to the sender (6). The content of Echo::message is displayed in a text label (7).
To clear previous messages, a second button can be clicked (8). This invokes a
constant (9), the empty value of which is displayed in the text label (10), thus
clearing any previously echoed messages.

We start building the echo GUI from a blank description, i.e. an empty canvas.
The inverted GUI development approach, as implemented in GPE, is illustrated
in Figure 6.5. The message parameter of Voice→© is located in the network pane
and dragged to the main window tile on the canvas (Figure 6.5a). Upon dropping
Voice::message a dialog appears (Figure 6.5b), presenting suggestions for suitable
graphical components to select from. These suggestions are based on the metadata
in PalCom, i.e. service descriptions. Since we want to enter a message to be
echoed, a text box (TextField) is selected. Based on the selection, the editor
suggests suitable links (roles) between the chosen functionality and the selected
graphical component. The selected link can be customized by selecting from a
list of link qualifiers. In the echo example, the entered text should be provided as
value for Voice::message, hence we select the provider link and the “text” qualifier
(Figure 6.5b). The purpose of the link is presented in a human readable form: “The

64 TOOL SUPPORT

c “ ”)

Figure 6.4: Screenshot of the finished GUI for the echo example, depicting functionality
and data flow. The user sends messages (1–5) that are echoed by a PalCom service (6) and
displayed in the GUI (7). Previous messages can be cleared (8–10).

new text box will provide its text to the message parameter”. Upon confirming the
selection of graphical component and link, a second dialog appears. This dialog
allows properties to be set for the new graphical component, e.g. font and size.

The newly created text box is now visible on the canvas, in the tile of the
main window (Figure 6.5c). It is at this stage in development customary to test
the GUI on a physical devices. With e.g. a mobile phone connected to the
development computer, the user can press “Run on Android” in the toolbar to
install the GUI description that is being developed on the phone and automatically
start the interpretation process. We verify that the text box for Voice::message
appears as expected by running our description on a Huawei Nexus 6P where
the interpreter tool AndroidPUIDI is installed; the resulting GUI is shown in
Figure 6.6. With these few steps, we have created a fully functioning GUI that
runs on a physical device and connects to a remote service. The GUI allows a text
to be entered into the text box (1–2, Figure 6.4). We note the text is aligned to
the left, where we would rather want it to be centered. To rectify this, we select
the text box on the canvas and press “Properties” in the toolbar. This opens the
same properties dialog that was presented when we first created the component.
We adjust text alignment accordingly, and confirm the changes.

The above workflow is repeated in order to actually send the message in the
text box to EchoService. We locate the voice command in the network pane, drag

6.2 The Graphical PML Editor 65

Drop
Drag

(a) Functionality is dragged from the network pane and dropped on the canvas.

(b) Suitable graphical components and possible links (here: one) are presented.

(c) The selected graphical component (“TextField”) is added to the canvas.

Figure 6.5: Workflow for the inverted development approach, as implemented in GPE.

66 TOOL SUPPORT

Figure 6.6: Screenshot of the current description, as rendered by AndroidPUIDI on a
Huawei Nexus 6P; the corresponding editor canvas is Figure 6.5c. Text (“Hello, world!”)
can be entered into the text box (1–2, Figure 6.4).

it to the canvas, and position it in relation to the text box we added previously.
Figure 6.7 illustrates component positioning in GPE. We drop Voice→© in the slot
below the text box (Figure 6.7a). The editor again presents suitable graphical
components and links. We select a button to act as invoker for the command, and
change its text property to “Send” (Figure 6.7b). Again, we save our progress
and run the description on the Android phone, verifying the work progress thus
far: we can enter a text to echo, and send it using the button (1–6, Figure 6.4).

(a) Components can be dropped in slots marked by a
green border – current selection (hover) is filled.

(b) Components are added to the
canvas in the specified slot.

Figure 6.7: Positioning new components in relation to previously added components.

6.2 The Graphical PML Editor 67

However, the echo reply is not yet handled by the GUI. We repeat the process
one more time: we identify the desired functionality in the network pane, i.e. the
message parameter of Echo←©, drag it to the canvas, and drop it in the slot under
the send button. A text label is selected as viewer for Echo::message. We run the
description on the phone, and confirm that the message that is typed in the text box
is echoed to the text label when the send button is clicked (1–7, Figure 6.4).

For the final piece of GUI functionality, i.e. clearing echoed messages, the
workflow is the same with a small addition: we start by creating the empty constant
whose value will overwrite the latest received message. In the application bar,
we press “+ Facts”, select the constant type, and leave the value property as an
empty string (“”) in the properties dialog. The empty constant is what is referred
to as an unplugged component, i.e. a component that has no links and therefore
has no behavioral effect on the GUI. With the constant in place, the workflow is
as before: we drag it from the application bar, and drop it in the bottom slot of
the main window tile. A button is selected to invoke the constant once clicked,
thus propagating its empty value to all viewers (none yet). The button is labeled
with the text “Clear”. By testing on the phone, we verify that the clear button –
which currently appears to do nothing – has been properly added to the GUI (8–9,
Figure 6.4). The workflow of GPE is flexible: the same effect as above could have
been achieved by first creating an unplugged button in the main window, dragging
that to the application bar, and selecting to create and link a new constant.

Next, we must link the empty constant to the text label, in order for its invoca-
tion (by the clear button) to take effect in the GUI. We drag the text label onto the
empty constant (Figure 6.8) – or vice versa – and select a viewer link for the text
property of the label. This development step exemplifies creating links between
existing components. In general, the user can choose any component from the
network pane, canvas or application bar, and drag it over any other component. If a
link is possible, the border of the target component is colored green, otherwise red.
Dropping the source component on a valid target opens a dialog with suggestions
for suitable links between the two chosen components. This dialog is identical to
Figure 6.5b, except no new component needs to be selected.

Figure 6.8: Additional links can be create between existing components. Dragging one
component over another reveals if a link is possible (green border).

68 TOOL SUPPORT

With this mechanism for linking existing components, it is possible to create
advanced designs where components have multiple links, and can be part of long
chains of events. To increase developer productivity in such designs, GPE has
helpful features to visualize and review links, as illustrated in Figure 6.9. In our
example, if we click on the text label in the canvas, it will be highlighted in bright
green (1). All other components that are linked to the selected component will
be highlighted in green as well: the empty constant (2) and Echo::message (3).
Moreover, all parent components of the linked components will be highlighted in
light green (4), thus making it easier to locate linked components that might be
“buried” in collapsed trees. Additionally, the links button in the toolbar displays
the total number of links for the selected component, e.g. “Links (2)” (5). Pressing
the links button brings up a dialog (6) with a detailed listing of the links to and
from the component. In this dialog the user can edit and remove existing links.
Furthermore, clicking on a component (7) will reveal it in the editor – even if
buried – with a red flashing effect (3).

With the empty constant and its links in place, the described GUI has all
specified functionality, as outlined in Figure 6.4 (1–10). What remains to be
done is a number of graphical changes. For this, we will need to add unplugged
components, i.e. components without any initial links. Unplugged components
are typically used for layout work, for marking up GUIs with helpful labels, and
for designs where intermediate steps are needed (as with the empty constant).
They can be added by pressing “Component” in the toolbar. This brings up a
palette, from which components can be dragged onto the canvas or application bar
(Figure 6.10). After being added, unplugged components can be linked like any
other component, as discussed.

2

1

3

4

5

6

7

Figure 6.9: Reviewing links in GPE. Selected components are highlighted (1), as are linked
components (2–3) and their parents (4). Features for a detailed link count (5), listing (6),
and review (7) are also available.

6.2 The Graphical PML Editor 69

Figure 6.10: Components with no initial links can be added from the toolbar; unplugged
components are created by dragging from a palette to the canvas or application bar.

For the echo example, the current graphical design of Figure 6.11a needs to
be changed to match Figure 6.11b. Two unplugged containers are added to the
main window; the text box and send button are moved into the top container, and
the text label and clear button into the bottom container. Containers are layout
components that can contain other graphical components, and the primary means of
controlling the layout of GUIs. In GPE, graphical components can be re-arranged
at any moment by dragging them to another valid slot on the canvas. We edit
the properties of the containers to match our goals: white container style, and
vertical (linear) orientation of sub-components. Furthermore, we change sizing
and padding properties for a number of components, and set the title of the main
window to “Echo app”. At this stage, the content of the canvas and application bar
matches Figure 6.2. We save our progress and run on the Android phone one last
time. The result, both graphical and functionally, matches Figure 6.4.

(a) All graphical components directly in
the layout of the main window.

(b) Graphical components in separate lay-
out components (white areas).

Figure 6.11: Screenshot of the current description as interpreted before (a) and after (b) the
final graphical design changes.

70 TOOL SUPPORT

6.2.4 Discussion
As we have shown, the development process in GPE can be highly accessible,
particularly in that no program code needs to be written – all interactions are
graphical. Even though we have hinted that advanced designs are possible, the
functional expressiveness of GPE is restricted when compared to conventional edi-
tors, where any type of functionality can be created with program code. In terms of
graphical expressiveness, more component classes and properties can be added to
the current suite of PML in order to meet additional recurring needs. Furthermore,
custom components can be created by developers for specialized needs. However,
what makes the codeless functionality specification of GPE possible is the core
mechanism of PML links and the metadata in PalCom, which the editor uses to
“understand” the application model. These cornerstones are unlikely to change
drastically in future revisions. Hence, the functional expressiveness of GPE will
remain at levels similar to now. Although conventional editors are more func-
tionally expressive, this expressiveness comes at the expense of accessibility: the
user must have programming skills. There is thus a conflict between accessibility
and expressive power. With the goals of the work presented in this dissertation,
accessibility was prioritized for GPE and PML, with efforts to ensure practical
scalability for created GUIs.

We have used the development of a simple GUI to illustrate the workflow and
primary features of the Graphical PML Editor. Although the development process
of GPE has its limitations, we conclude that the editor can be accessible, flexible,
and accommodating to advanced designs.

Chapter 7

Applications in E-Health

The contributions presented as part of this dissertation have been applied in a
number of research projects and scenarios, mostly in the domain of e-health. In
the itACiH project, PML has been evaluated in a real-world context, and improved
based on real-world requirements. Furthermore, in a number of related research
projects, other members of our research group have successfully and independently
applied the contributions to create professional grade applications.

7.1 Language Scalability Evaluation
In order to determine the practical viability and scalability of PML and the cor-
responding tools, these where applied to create the mobile application for the
advanced home care scenario in the itACiH project.

7.1.1 Introduction
The scalability evaluation of PML was performed empirically in the context of the
itACiH project. A PML described GUI was developed, and deployed on Android
tablets at the unit for advanced home care (ASIH) in Lund. The tablets were
targeted towards the mobile ASIH teams that consist primarily of nurses, but to
some degree also of other healthcare professionals, e.g. physiotherapists. The
purpose is for the teams to treat the patients in their homes; to check up on them,
follow up on previous issues, deliver medication and other consumables, take
measurements, etc. The aim of the developed GUI was to streamline the workflow
of the ASIH teams, which was previously mostly paper-based. In return, the
scenario provided a natural test bed for the solution we present in this dissertation.

The ASIH application, i.e. the ASIH GUI and its components in the itACiH
system, was developed using participatory design [32], i.e. prospective users such
as nurses actively participated in the design process. Furthermore, the development
process was iterative: the application was built and delivered in increments to the
users, where it was tested by professionals in a real-world, practical environment.
From using our solution in such an environment, PML could evolve beyond the

72 APPLICATIONS IN E-HEALTH

early prototype stage. When new features – user requested or otherwise – were
added to the application, new requirements for PML followed as well. This resulted
in a mutually beneficial loop of test-feedback-improve-repeat, where PML was
improved based on real requirements and tested in a real setting.

The formal goal of developing the ASIH GUI was to analyze PML for the
purpose of evaluation, with respect to language scalability in the context of a real-
world development project. Informally, we wanted to investigate whether PML
would scale beyond small prototype GUIs such as the echo example (Chapters 5
and 6), and whether the language could be used to describe professional grade
GUIs. Note that development on the ASIH GUI was started before the work on the
Graphical PML Editor (GPE) had been finalized. Hence, the GUI has only been
partially developed in GPE, and as such, this evaluation pertains to the scalability
of PML only – not the editor.

7.1.2 System Architecture
From the perspective of the mobile ASIH teams, the itACiH system is divided into
two primary parts: the Android tablets that the nurses bring when visiting patients
in their homes, and the servers that provide functionality e.g. storing patient data.
Figure 7.1 illustrates this simplified view of the system. The ASIH GUI is deployed
in a system with locally augmented distributed models, i.e. the application model
is distributed across multiple servers, with augmentation by a local model. On
the tablets, two Android applications are installed. AndroidPUIDI reads the PML
description of the ASIH GUI and interprets it as such. This application is started
by the nurses when they want to interact with the system. The second application
is TheAndroidThing, which is started automatically when the tablet boots up, and
thereafter runs silently in the background with no need for user interaction. Both
applications are represented as individual PalCom devices, even though they are
technically running on the same physical device (tablet). As the two devices run

Figure 7.1: Architecture of the itACiH system, from the perspective of the ASIH tablets.
Local services augment the functionality on the servers, making both offline and real-time
support possible. Tablets connect over encrypted TCP tunnels and 3G/4G.

7.1 Language Scalability Evaluation 73

on the same tablet, AndroidPUIDI has uninterrupted access to the services of
TheAndroidThing. The services on the server (TheThing) are accessed through
encrypted TCP tunnels, and are thus only accessible when the tablet has an active
Internet connection.

It is not uncommon for patients to live in rural parts of the country, where
3G/4G coverage is spotty at best. Hence, the augmented architecture, which
enables the ASIH GUI to operate locally when the servers are unavailable (offline
mode) and with real-time updates and commits otherwise. For features that do not
have to be available to the user in offline mode, the ASIH GUI connects directly to
the corresponding services on the servers. In offline mode, the services deployed
locally in TheAndroidThing mirror select application critical functionality from
the servers. This applies in both directions, i.e. for communication to and from
servers. For example, the local services can buffer patient data collected during
an offline period. When the connection is re-established, the data can be sent to
its final destination. Reversely, the local services can cache server data to make
it available when offline. To keep synchronized, local services are connected to
distributed services via assemblies, creating an indirect connection between the
GUI and the distributed services. Even when in online mode, data to/from these
services is transferred via the indirect connections. This ensures that in the case of
sudden loss-of-contact, data will not be lost or become unavailable. When online,
the difference between direct and indirect connections is insignificant; in practice,
the system operates in real-time in both cases.

As a final reflection on architecture, please note that the overview in Figure 7.1
is a coarse-grained simplification of the reality. The servers appear to work in
isolation, when there are in fact multiple inter-server connections. Furthermore,
Figure 7.1 only shows the architecture from the perspective of the ASIH tablets;
other applications that push/pull data to/from the server are not presented.

7.1.3 Application Overview

The features of the ASIH application have been allocated on 17 separate screens in
the GUI. Some of these screens have been divided into multiple views in order to
improve accessibility, e.g. using tabs. In Figure 7.2, all of the in total 25 unique
views of the ASIH GUI are depicted as miniatures. The purpose is to illustrate the
scope and the flow of the GUI; individual views are not intended to be legible. The
patient selected screen (B8) and the pain analysis screen (B1) will be discussed in
greater detail.

In the upper half (yellow, A) of Figure 7.2, the views for basic and non-patient-
specific features are outlined. When the user starts the ASIH GUI for the first
time, the login screen (A1) is presented: user credentials are entered and sent to
the server for verification. Based on the response of the server, either a dialog box
appears to explain why the login attempt failed, or the main screen (A4) is opened.
From the main screen, staff-oriented features can be accessed. For example, the

74 APPLICATIONS IN E-HEALTH

3

4

5

6

1 2

1 2

3 4 5

7 8 9

10 11 12

B

A

Figure 7.2: The ASIH GUI is composed of 25 unique views on 17 different screens. Most
features are patient-oriented and accessed from the patient selected screen (B8). Some
screens, e.g. the pain analysis screen (B1), are divided into views for ease-of-access.

7.1 Language Scalability Evaluation 75

user can view their personal work schedule (A5), including which patients to visit
and what tasks to perform. The planning is based on live updates while online,
and buffered content otherwise. From the main screen, the user may also choose
to navigate to the patient selected screen (B8): from a list of active patients that
can be filtered based on groups, the user selects a specific patient, thus opening
the screen for that patient. Patient listings are managed by a local service which is
synchronizes with the server while online.

At any time during operation, the user may choose to log out, thus returning
to the login screen. Furthermore, she may also choose to lock the GUI in order
to prevent unauthorized access of e.g. patient data. This opens the locked screen
(A2), from which there are only two transitional options: either log out, or unlock
the GUI with the session-specific PIN code that was chosen at login. While
login credentials are verified remotely, the state of the GUI is managed by a local
service. This means that even when the login server is unavailable, the GUI can still
transition between some states, e.g. the lock and unlocked states. This allows for
previous sessions to be resumed e.g. after a tablet reboot, even when offline. Due
to security and battery life considerations, the ASIH tablets have been configured
to turn off the display after two minutes of user inactivity. When this happens,
the GUI is automatically locked. A local service monitors the display state of the
devices to make this possible.

In the lower half (green, B) of Figure 7.2, the views for patient-related features
are outlined. This half is significantly more populous than the upper, as most
features of the ASIH GUI are currently patient-centric. The features are centered
around and accessed from the patient selected screen (B8). For the fictive patient
Olle Nilsson, this screen is illustrated in Figure 7.3. At the top of every screen in
the ASIH GUI there is a blue strip referred to as the toolbar. The toolbar shows
the title of the current screen to help with orientation in the GUI, and navigation
options to transition between screens. On the patient selected screen, the name of
the selected patient is shown, with the option to return to the main screen (Meny).
The options to lock (Lås) and log out (Logga ut) are present in the toolbar of all
screens.

The features that can be accessed from the patient selected screen are presented
as colorful icons. Pressing one such icon transitions the GUI to the screen for
the corresponding feature. Some icons are “stitched” (dashed border) and reveal
additional options once pressed. For example, in Figure 7.2 the assessment icon
(Symptomskattning) has been pressed to reveal several methods for patient symptom
assessment. The currently available features are briefly described below, in order
of appearance on the patient selected screen from top to bottom.

Information On the patient information screen (B2), information about the cur-
rently selected patient is presented: name and Swedish civic number, address
and phone number, physician in charge, etc. The number of entries are dy-
namic, and can be customized for each patient. Patient information is

76 APPLICATIONS IN E-HEALTH

Figure 7.3: Patient selected screen for Olle Nilsson, with options (top) to return to the main
menu, lock the GUI, and log out. Available features are presented as icons; “stitched” icons,
e.g. Symptomskattning, can be pressed to reveal additional features.

7.1 Language Scalability Evaluation 77

presented as text, with one entry per line, and is pulled from a local service
that caches information from the server. For user convenience, there is an
option to show the address of the patient on a map. This opens Google Maps,
where driving directions can be obtained. The GUI uses a local service to
initiate the application switch.

Assessment Three methods for patient symptom assessment are available: the
Edmonton Symptom Assessment System (ESAS) [20], the Hospital Anxiety
and Depression Scale (HAD) [91], and a method for pain assessment and
analysis that is to be discussed in Section 7.1.4. On the screens of the
two former methods (B10, B7), there are two views: one for viewing the
latest assessment, and one for submitting new ones. Assessments are fetched
directly for the server, with no offline support – the view is blank when offline
to avoid accidental usage of outdated assessments. It is, however, possible
to submit new assessments for all three methods in offline mode. Such
assessments are buffered on the stable storage of the tablet until uploaded
and acknowledged by the server.

Checklists Checklists are provided for tracking the progress of multi-step activ-
ities. These list all the tasks that must be carried out e.g. when initiating
new patients or during weekly visits; each task can be marked as completed
(checked) individually. In total there are four checklists available, each one
on a separate screen (B3–B6). Checklists are an online-only feature, with
real-time updates to facilitate cooperation: changes are automatically sub-
mitted to the server, and are instantly propagated to other users. The content
of the checklists are statically defined in the GUI description. A screen for
material stocktaking (B12) also falls under this feature category. It allows
the user to track and update the materials that are currently available in the
home of the selected patient. Stocktaking is only available when online.

Photography The photos feature is primarily used to document the physical
disorders of patients. When online it can be used in real-time, e.g. by
sending a photo while on the phone with the doctor to get instructions on
how to proceed with a patient. Its screen (B9) is divided into two views:
one for viewing photos and one for taking new ones. Previous photos are
not cached for offline viewing. Furthermore, to save on bandwidth photos
are not automatically pushed to tablets; the user needs to explicitly request
them in the GUI. To take new photos, the native camera application of the
device is opened. After taking the photo, it is presented for the user to
review and attach a comment. Committed photos are buffered locally. Due
to the relatively long transfer times of photos (typically a few seconds), the
input controls are disable during transmission to prevent multiple, accidental
commits.

78 APPLICATIONS IN E-HEALTH

Notes On the patient notes screen (B11), the user can author patient-specific
notes. These notes are not part of the medical record of the patient, and their
nature should thus be more casual, e.g. “Patient has bad hearing – knock
loudly!”. The feature was designed for asynchronous coordination among
users, although real-time chatting is also possible. The notes are presented
in a list, stacked on top of each other in reverse chronological order; date,
time and author is shown for each note. Offline support is provided for both
viewing and authoring notes, with local caching and buffering.

A thorough walkthrough of every feature is outside the scope of this dissertation;
the above gives a quick overview of most features. Next, the pain analysis feature
will be presented in greater detail as an example.

7.1.4 Sample Feature
In Figure 7.2, the pain analysis screen (B1) can be seen to be divided into five sep-
arate views. These have been designed based on the Handbook of Healthcare [18],
a Swedish national resource for caregivers and healthcare personnel. The first
and simplest of the views deals with pain assessments. Assessments pertain to
one specific pain that the patient is currently experiencing. Since a patient may
experience multiple – but separate – pains simultaneously, all pains are registered
with a working title (name), e.g. “back pain”, in order to distinguish between them.
The user input for an assessment is trivial: a value of 0–10 indicating the intensity
of the pain, as experienced at the moment of the assessment. Due to this simplicity,
pain assessments can be performed frequently, e.g. once per visit. Pain analyses,
however, are more involved. They are typically performed once when registering a
new pain, and are thereafter updated sporadically as the pain changes character.

The views of the four steps in the pain analysis process are shown in Figures 7.4
to 7.7. Each view is presented as a separate tab on the pain analysis screen: “1”,
“2”, “3”, and “4” respectively. The topmost layout section on the screen is present
in all four steps. In this section, a drop-down list (top left, Figure 7.4) can be
activated to reveal the names of all registered pains. From this list, the user selects
which pain to analyze. To register a new pain, the user presses the button (right).
This brings up a dialog box where the name of the pain can be entered, with options
to confirm or cancel. Pain names are buffered and cached locally on the ASIH
tablets, and can hence be added and listed, respectively, even when offline. When
a new pain is added, it is automatically selected in the drop-down list. In offline
mode, a dialog box appears to inform the user that the new addition has been
buffered. The user must actively confirm this dialog to dismiss it. When online,
feedback is delivered in a more subtle form: a quick-note, i.e. a self-dismissing
message strip (Android toast). Different feedback methods (attention levels) are
used to make the user aware of the effects of working offline, i.e. that the new
addition is not yet available to other users in the system.

The first step of the pain analysis is shown in Figure 7.4. In this step, the

7.1 Language Scalability Evaluation 79

Figure 7.4: Step 1 of pain analysis. The user slides the green knobs horizontally across the
two bars to indicate the intensity extremities of the selected pain (top left, Ryggsmärta).

80 APPLICATIONS IN E-HEALTH

intensity of the selected pain is analyzed. Unlike assessments, which are snapshots
of individual intensities, the analysis focuses on the extremities, i.e. the highest
and lowest intensities experienced since the pain was first perceived. The user
describes these extremities on a scale from 0 to 10, where the former is interpreted
as “no pain” and the latter is interpreted as the “worst pain imaginable”. Numeric
sliders are used to enable intuitive input of the two values: the user slides the knob
horizontally across the bar, gradually coloring it green from left to right. At the
bottom of the view for Step 1, two buttons are laid out side-by-side. The left button
is used to clear the content of an analysis: all input component for Steps 1–4 are
reset to their respective default values. The right button is used to retrieve the
content of the most recent analysis for the given pain. If no previous analysis
exists, the user is notified in a quick-note. Analyses are not cached locally, and
must hence be pulled directly from the server. In offline mode, the right button is
disabled and cannot be pressed.

In the second step of the pain analysis (Figure 7.5), the user must describe
the position on the body where the selected pain is experienced. To do this in
an intuitive manner, a sketch is shown of a person both from the front and from
behind. The user draws on this image to illustrate the pain; the annotation can be
cleared by pressing a button above the image. Figure 7.6 shows the third step of
the analysis. The user simply checks the boxes next to the characteristics that best
describe the pain: dullness, burning, numbness, etc.

The fourth and final step of the pain analysis sees the user further explain the
details regarding the selected pain. The view is shown in Figure 7.7. Questions
such as “What triggers the pain?” and “What medications do you take?” are
answered as free-form text in text boxes. In total there are six such questions. The
7th and final question of Step 4 is of a different type: multiple choice. The user
selects one out of the three possible answers by clicking on the corresponding
radio button. Unlike the check boxes in Step 3, at most one option can be marked
at any time. The button to save the content of the analysis is located at the bottom
of the view. When it is pressed, a local service checks the input from the user.
In the case of errors, e.g. unanswered questions, a dialog box informs the user.
Otherwise, the analysis is buffered locally on the tablet, before being sent to the
server. Feedback is presented following the same pattern as when registering new
pain names: self-dismissing quick-note while online, dialog box otherwise.

7.1.5 Discussion

In PML, advanced users can develop custom parts (graphical components) to
complement the standard suite of PML parts. For the ASIH GUI, no such custom
parts were developed; the standard parts covered all basic component needs. There
are, however, a number of noteworthy borderline cases. The ASIH scenario was
used to improve PML beyond the prototype stage. When development on the
ASIH GUI started, custom parts had not yet been introduced to the language. As

7.1 Language Scalability Evaluation 81

Figure 7.5: Step 2 of pain analysis. The user draws on the sketch of a person to describe
the position on the body where the selected pain (top left, Ryggsmärta) is experienced.

82 APPLICATIONS IN E-HEALTH

Figure 7.6: Step 3 of pain analysis. The user checks the boxes next to the characteristics
that best describe the selected pain (top left, Ryggsmärta), e.g. numbness (Domning).

7.1 Language Scalability Evaluation 83

Figure 7.7: Step 4 of pain analysis. The users explains the selected pain (top left, Ryg-
gsmärta) by answering questions as free-form text and by selecting from multiple choices.

84 APPLICATIONS IN E-HEALTH

such, some standard PML parts are more specialized than what would otherwise
be expected. One example of this can be found in Step 2 of the pain analysis
feature (Figure 7.5). The component that is used to display images also provides
functionality for drawing. Such specialized behavior could be argued to better
match the purpose of a custom part, rather than a standard part.

Besides graphical components, the other aspect to consider when building
PML GUIs is the model, i.e. the PalCom services that are accessed. In the ASIH
application, some service are highly specialized, e.g. the service that calculates
HAD assessment scores, while others are more generic, e.g. the services for buffer-
ing and caching data. For advanced applications, the development of specialized
services might be unavoidable. However, for the vast majority of applications
it is entirely possible to avoid having to write program code. Conventionally,
PalCom services are offered by physical devices, e.g. household appliances. To
complement these, we envision a community library or “app store” that could
provide commonly applicable services. For most applications, such services could
bridge the functionality gaps that would otherwise require programming.

The benefits of working iteratively and in close contact with the users have
been apparent in the itACiH project. One example is the photos feature, which was
requested by the ASIH staff. Due to the staff’s participation in the design process,
they could independently identify desirable features that would fit well in the
application. With the iterative work process, such features could be implemented
and released to the users within a short time frame. Furthermore, the work on
the ASIH GUI has allowed PML to evolve as a language. Screen transitions is
one example of how PML has improved. Prior to ASIH, most GUIs had been
simpler, one screen prototypes. As the ASIH GUI grew, multiple screens became a
necessity for ensuring high accessibility. After revising PML, the iterative work
process enabled the new capabilities to be applied in the ASIH GUI, and the
updated product to be released shortly thereafter.

7.1.6 Conclusions
From evaluating PML in the real-world context of the itACiH project and ASIH
Lund, and based on the discussion above, we conclude the following:

– As a language for describing GUIs, PML is scalable; building professional
grade GUIs is practically viable.

– The standard suite of PML parts is comprehensive; intricate GUI designs
are possible without writing program code.

7.2 Related Projects
In addition to the itACiH project and the ASIH application, the contributions
presented as part of this dissertation have successfully been applied by other

7.2 Related Projects 85

members of our research group in a number of related projects in the domain of
e-health.

7.2.1 Home-Based Peritoneal Dialysis

Renal failure is a medical condition where the function of the kidneys is impaired,
resulting in inadequate filtering of metabolic wastes from the blood stream. The
condition also causes patients to retain fluids that, if left untreated, can lead to
further complications. As an alternative to traditional dialysis, peritoneal dialysis
can be performed by the patients themselves in their homes. In short, a liquid
solution is introduced to the abdominal cavity through a permanent tube in the
lower abdomen. The solution is then drained, along with any excess fluid and
the toxins it has extracted. The weight of the drainage is measured to evaluate
the effectiveness of the solution. Depending on the outcome, a solution with a
higher of lower level of concentration can be prescribed for the patient. Dialysis is
typically needed a few times per day.

Previously, peritoneal dialysis patients from Lund and Malmö kept paper
records of drainage results, their weight, and their blood pressure. Once every
few months, the patients would schedule a visit with the doctor to review the
measurements. For the patients, this meant that corrections to the treatment would
be delayed until the next visit. For the doctors, interpreting several month worth
of handwritten notes with no visual aid was tiresome. To alleviate both these
problems, a digital support system was implemented as part of a special track in
the itACiH project. The system continues to build on the PalCom framework, and
consists of two applications: one web-based, and one for Android. In the former,
the doctor can review graphically structured measurements that are updated in
real-time, and communicate with the patient. The GUI of the latter was built with
GPE, and is interpreted by AndroidPUIDI on Android tablets deployed to the
patients. The system has been evaluated by some 10 patients in Lund and Malmö
during 2015–2016, and is currently being expanded in Lund to include more users.

The architecture of the patient application is similar to that of the ASIH appli-
cation, with both local and distributed models, and has been implemented with the
architectural tools presented in this dissertation. In addition to the tablet itself, the
patient is also issued a blood pressure monitor and a scale. These communicate
wirelessly via Bluetooth with local services on the tablets. Whenever the patient
uses any of the equipment, the results are handled by these services and automati-
cally propagated throughout the system. Measurements are sent in real-time when
possible, and are buffered locally otherwise. The patient GUI gives an audible
queue when a new measurement has been successfully transmitted. Hence, when
operating the equipment, the patient needs not interact with the actual tablet.

The main screen of the GUI consists of three views: send measurements, view
measurements, and photos/chat. These views are presented as tabs in respective
order from left to right, as shown in Figure 7.8, where the first view is on display.

86 APPLICATIONS IN E-HEALTH

Figure
7.8:

The
patientG

U
Iforthe

peritonealdialysis
scenario.O

n
the

first(ofthree)view
s

(tabs)on
the

m
ain

screen,dialysis
results

are
reported

as
solution

type/color(left),solution
volum

e
(m

iddle),and
drainage

w
eight(right).The

states
ofconnected

devices
are

displayed
(V

åg,top
right).

7.2 Related Projects 87

As feedback to the patient, this view shows all connected equipment and their
status (Våg, top right) as reported by the local Bluetooth services. After each
dialysis session, the patient reports the results in terms of solution type (color i.e.
concentration), solution volume, and drainage weight. Like the other measure-
ments, these are uploaded in real-time when possible. If the doctor, who reviews
these measurements remotely, prescribes another type of solution, the patient is
notified in the GUI and the prescription is shown on the first view (Ordination, top
left). For more elaborate discussions, both the patient and the doctor can initiate a
chatting session; from the third view, the patient selects from a list of doctors to
start chatting. When further involvement is needed, the doctor can initiate a video
conference with the patient. In such cases, the patient GUI will ring, and present
options to either answer or decline the call. To document physical disorders, e.g.
swelling around the dialysis tube, the patient can access a separate screen (from
View 3) for taking and uploading photos. On the second view, the patient can
review previous measurements, with options to filter by measurement type and
time period.

7.2.2 Pre-Hospital Care

People call for an ambulance for all kinds of more or less motivated reasons. One
task for paramedics in Skåne County is hence to establish the proper level of
treatment. This may range from cases where the patient must be rushed to the
emergency room, to complete prank calls where no action by the staff is necessary.
In many cases, however, the level of treatment is not obvious. The paramedics may
be considering less acute options than the emergency room, such as referring the
patients to her doctor or treatment team. When in doubt, they can call “Regionalt
Läkarstöd” (RLS), a regional team of on-call doctors assigned to provide support
in medical cases. After getting in contact with a doctor, the paramedics verbally
describe the situation and the vital parameters of the patient. The doctor takes
manual notes, based on which the final decision for level of treatment is made.

This method of communication and decision making has its deficiencies. First,
visual queues can have a deciding impact on how to proceed with a patient. How-
ever, the on-call doctor cannot see the patient. Because of this, the doctor must
decide on the more acute options when unsure in order to not endanger the patient.
This can be an inconvenience to the patient, and possibly wastes medical resources
that could otherwise have been better allocated. Furthermore, the number of vi-
tal parameters that need to be negotiated between paramedic and doctor can be
substantial – see Figure 7.9. Performing this synchronization task over the phone
under time constraints is prone to human error. In a research project funded by
Vinnova [80], a support system for ambulance consultations that addresses these
problems has been developed. It was developed collaboratively with a small group
of RLS doctors and paramedics, and is currently entering the beta testing stage,
where all RLS doctors and several ambulance stations will be included.

88 APPLICATIONS IN E-HEALTH

Figure
7.9:

T
he

doctorG
U

Iforthe
pre-hospitalcare

scenario
during

an
ongoing

consultation.T
he

doctorand
param

edics
cooperate

in
real-tim

e
to

enterpatientdata
and

vitalparam
eters

(left).T
he

patientis
show

n
on

video
(right)to

com
plem

entthe
audio

ofthe
policy-m

andated
phone

call.

7.2 Related Projects 89

The system, which is built on the PalCom framework, consists of two appli-
cations: one for the doctors and one for the paramedics. Both applications are
dispatched on Android tablets, and are built on an architecture of locally augmented
distributed models, using the architectural tools presented in this dissertation. Due
to the immediate nature of the consultations, no offline functionality is provided
in this scenario. Local services are used for calculations and transformations of
data, while distributed services are used for pushing and fetching data. The GUIs
of both applications were created in GPE, and the resulting PML descriptions are
interpreted by AndroidPUIDI on the tablets. In terms of content, both GUIs are
nearly identical. The layout of the main screen is different, however, to best suit
the roles of each party. Furthermore, the doctor GUI is more powerful in that it
allows for the doctors to edit prescription-related content, whereas the paramedics
can only view this part. Figure 7.9 shows the main screen of the RLS doctor GUI.

The developed applications serve as a complement to the current phone-based
support system: the doctors and paramedics communicate verbally on their phones,
and use the tablets to enter patient information and vital parameters, and for video
conferencing. At the start of their shifts, the paramedics identify their ambulance
in a list in the GUI. From the main screen, new patient cases can be started (and
terminated) for the selected ambulance. Such cases instantly become visible in
the doctor GUI, where each new case is represented as an icon that indicates
its priority (color, value 1–3). Once a consultation has been made, cases can
remain open for additional consultations. The doctors select cases to start new
consultations, which opens the main screen (Figure 7.9). In their respective GUIs,
both paramedics and doctors can cooperate in real-time to fill out the various fields
for patient information and vital parameters; paramedics can start entering values
before calling the doctor. The user decides when changes are propagated to the
opposite party; possible merge conflicts are handled in local services. Edited fields
are clearly marked in the GUI (yellow underlining). Some parameters are used to
calculate the priority of the case. The fields of such parameters are marked with
circular icons that are colored based on the input. If the doctor sees the need, a
video conference can be initiated. As a complement to the ongoing phone call, the
paramedics can thus show the patient on video.

7.2.3 Home-Based Neonatal Care

Long hospital stays are universally undesirable, and would ideally be avoided
whenever possible. One possibility for this is hospital-based home care (HBHC),
where patients are enrolled at a hospital but are treated in their homes. From the
perspective of the healthcare provider, this frees up beds earlier. For the patient, the
discomfort of spending time away from home is avoided. These benefits become
even more pronounced when the patient is a child. In such cases, the consequences
of a hospital stay are significantly worse: not only does the patient have to be in the
hospital, but so does at least one parent. In practice, the families must coordinate

90 APPLICATIONS IN E-HEALTH

Figure
7.10:

The
patientG

U
Iforthe

hom
e-based

neonatalcare
scenario.O

n
the

first(oftw
o)view

s
(tabs)on

the
m

ain
screen,new

m
easurem

ents
are

entered:3
fields,top

left(Vikt,etc.).E
ntered

values
are

show
n

as
diagram

s
(center)forobserving

trends,w
ith

options
forfiltering

(bottom
).

7.2 Related Projects 91

two lives: one at the hospital and one at home. When introduced to families with a
hospitalized child, HBHC becomes a necessity rather than a commodity.

One example of a group that would benefit from HBHC is parents with prema-
turely born babies. Initially, these babies may require advanced neonatal care at
the hospital. After that, however, the babies typically stay at the hospital for an ex-
tended period of time for routine observation. At this stage, it might be possible to
take the child home, given a sufficiently advanced support and monitoring system.
Such a system puts high demands on technical reassurances: the doctor must be
comfortable with discharging the patient, and the parents must be certain that their
baby will receive proper care even at home. As part of a the research project LUC3
(Lund University Child Centered Care), a prototype for a system that supports this
case was developed. The system builds on the results from the itACiH project and
uses PalCom for infrastructure. A web-based application is used by the doctors,
and families are issued Android tablets with an application for communication and
delivery of measurements. The project was funded by Forte [28].

The architecture of the patient application uses both local and distributed
models, as supported by the architectural tools presented in this dissertation. It
implements one-way offline support, i.e. outbound data is buffered locally and sent
when the server is available, however data is not cached locally for offline viewing.
The GUI was built in GPE, and is interpreted on the tablets in AndroidPUIDI. The
main screen is divided into two views, represented as tabs; Figure 7.10 shows the
first of these views. Here, measurements for the newborn can be entered: weight,
oxygenation, and portion sizes (food). Due to technically limited (no Bluetooth)
measuring devices, manual input of measurements is currently required. Previously
measured values are presented as diagrams to allow for trends to be observed, with
options to filter by measurement type and time period. In the second view, the user
can send chat messages to the doctors. The photography screen is also accessed
from View 2, allowing users to take and upload photos for the doctors to review.
In cases where more direct communication is necessary, either party can initiate
a video conferencing session. There is also an option to automatically respond
to incoming video calls in the patient GUI. With a properly mounted tablet, this
enables the doctors to observe the child sporadically, e.g. during periods where
frequent observations are particularly important.

The patient application was developed in collaboration with the neonatal care
unit in Lund. It has been alpha tested by a small group of patients in a “simulated
home” at the hospital, in order to evaluate the system without endangering the
patients. Currently, additional treatment forms are being considered.

7.2.4 Discussion

There is a common thought in all of the introduced projects: the ambition of
avoiding costly face-to-face meetings between patient and doctor when these
may ultimately prove unnecessary. Such meetings are a waste of scarce medical

92 APPLICATIONS IN E-HEALTH

resources (doctors) and an inconvenience to the patients – travel time and expenses,
waiting time, etc. To accomplish this goal, all three projects have focused on
providing more patient data to the doctors, so that informed decisions can be
made. In developing the various applications to support this, other members of
our research group have successfully managed to apply the contributions that we
present as part of this dissertation. The practical viability of the contributions
have hence been further evaluated in real-world scenarios, and in the context of
real-world developers.

In all four of the Android-based applications, GPE was used to build the
application GUIs. The resulting PML descriptions are interpreted in AndroidPUIDI
on the tablets used by patients and doctors. Locally, the architectures of the
applications have been implemented using TheAndroidThing, as a complement to
TheThing on the servers. Many of the graphical components in the GUIs are highly
specialized, and were developed using the API for custom PML parts. There is
a certain degree of overlap in functionality between the four applications. For
example, the video conferencing feature has been included in some form in all four
applications. Such universal features were duplicated between applications with
little effort, thus illustrating the flexibility of PalCom services and PML custom
parts as reusable modules.

Regarding scalability, Table 7.1 summarizes the sizes of the four GUIs, in
terms of the number of PML components and links in their descriptions. On
both counts, all four GUIs are of the same order of magnitude: two (102). When
compared to a simpler GUI such as the echo example from Chapters 5 and 6, one
order of magnitude greater is observed. For the ASIH GUI, however, the order of
magnitude is three (103). The four presented GUIs are hence not trivial in size,
although bigger GUIs are possible. Note that the metrics in Table 7.1 are not
necessarily representative of GUI complexity and refinement. As mentioned above,
custom parts have been used extensively for advanced features. Such components
can add much in terms of functionality, but add little towards the component count.
As such, the metrics are only interpreted as indicate of relative size.

In the four presented projects, other researches in our group have been in-
troduced to the contributions presented in this dissertation. The results of this

Table 7.1: Sizes of the GUIs from the related projects, in contrast to previous GUIs.

Application Components Links
Peritoneal dialysis 279 153
Pre-hospital care (paramedic) 342 320
Pre-hospital care (doctor) 329 350
Neonatal care 196 157
Echo example 16 6
ASIH 1575 1002

7.2 Related Projects 93

strengthen the conclusion drawn from the scalability evaluation, i.e. that PML is
scalable and practically viable for building professional grade GUIs.

Chapter 8

A Controlled Experiment

As part of the evaluation efforts for the contributions presented in this dissertation,
a controlled experiment was planned and executed. In the context of PalCom
systems, the experiment directly compared the efficiency of the Graphical PML
Editor to Android Studio. Analysis shows that the inverted GUI development
approach is easy to use and effective in terms of user productivity.

8.1 Introduction
One ambition with the PalCom framework is to simplify the implementation of
Internet of Things systems, thus allowing end-users with little or no programming
experience to assemble systems of their own. With the contributions of this
dissertation, we are making efforts towards also enabling these users to build GUIs
for the systems they assemble. However, from what we have seen for PalCom, it
is still mostly software developers that create these types of systems. Until the
concept of end-user composition reaches mainstream adoption, we expect this
to remain the case. Hence, the ambition with this experiment is to investigate
whether it is possible for trained developers to effectively operate the Graphical
PML Editor. We see this as a first step: in future research we want to test our
solution on, and adapt it for, less capable subjects. The goal of this experiment
is to investigate if the inverted GUI development approach – as implemented by
the Graphical PML Editor – is more efficient than an alternative tool that uses the
conventional approach. In many of the projects where PalCom has been applied,
we have observed a need for system interaction from mobile devices, in particular
Android tablets. Hence, Android Studio – a market leading product for developing
Android applications – was selected as the tool to compare against.

8.2 Planning
In order to ensure proper execution and secure the validity of the experiment results,
the execution stage of the experiment was preceded by the planning stage.

96 A CONTROLLED EXPERIMENT

8.2.1 Goals
The object of study for the experiment is the inverted approach to GUI development
provided by PML through the Graphical PML Editor (GPE). The purpose is to
evaluate the performance of the new development approach in relation to the
traditional one provided by Android Studio (AS), i.e. the industry standard for
developing Android applications. During the evaluation, the quality focus is on
the efficiency – in terms of subject productivity – of the tested tools (development
approaches). Productivity is measured as the mean number of time units per task
completed during the experiment. We perform the evaluation from the perspective
of the researchers, to determine if the subjectively experienced performance gains
of the new approach are statistically significant. The subjects of the experiment are
software developers; they solve GUI development tasks in the context of a problem
created specifically for this experiment. The goal of the experiment is summarized
as follows:

Analyze the inverted GUI development approach as implemented by
the Graphical PML Editor

for the purpose of evaluation
with respect to efficiency in terms of subject productivity
from the point of view of the researchers
in the context of software developers solving GUI development tasks

for a designed problem.

Based on this goal, we consider the following research questions:

RQ 8.1 Which tool (development approach) is most efficient?

RQ 8.2 Is the quality of produced solutions the same for both tools?

RQ 8.3 Do subject impressions from using one tool differ from the other?

8.2.2 Participants
The goal of the experiment was to investigate the effect of the two development
approaches (treatments) on the productivity of software developers. Subjects were
therefore selected from the population of engineering students at Lund University
that had gotten good grades in programming courses. Even though interest in
the experiment was high, it proved difficult to find a single date that matched the
schedules of all applicants. Because of this, the number of considered sessions
was increased. Furthermore, the type of students that were invited was broadened
in order to increase the population size. Students registered their interest for partic-
ipating in the experiment through an online form. All members of Code@LTH – a
student driven recreational programming community – were invited. Invitations
were also sent by e-mail in three waves to:

8.2 Planning 97

1. typical 3rd year Computer Science and Engineering (CSE) students with
good grades.

2. typical 2nd year CSE students with good grades.

3. engineering students, typically 2nd year, with an interest for Computer
Science courses, good grades, and experience with Android Studio.

As a last measure in response to the lack of registered applicants with Android
development experience, the staff at the Department of Computer Science, Lund
University, was invited to participate; two volunteered and were assigned to the
AS treatment. Because of how invitations recipients were selected, all subjects had
a common base of general programming knowledge. All applicants that registered
were included in the experiment, to a total of 24 subjects. Any applicant that
reported previous experience with Android Studio (12 in total) was selected for
that treatment. The remaining 12 were assigned to the GPE treatment.

The applicants committed to a half-day of experimentation time by filling
out the registration form. In doing so, they gave consent for the experiment
administrators to handle their data in a confidential manner. The subjects were
paid to participate in the experiment. To avoid non-serious applicants, no concrete
figure was specified in the invitation, only the mention of a “symbolic” monetary
compensation.

8.2.3 Experimental Material
To register interest for participating in the experiment, subjects filled out an online
form. The form included questions to collect name and contact information, which
of several dates the subject could attend, and whether the subject would consider
using their own computer during the experiment. Furthermore, two questions
covered general programming experience and Android programming experience.
These questions were posed as multiple choice, both with the same four possible
answers:

a. No or little prior experience.

b. Casually tested development tool(s), or novice amateur developer.

c. Educated, or advanced amateur developer.

d. Professional.

To capture impressions of the experimental material and the applied treatments, a
second online form was filled out after completing the experiment. The questions
of primary interest for the experiment analysis were answered on scales from 1 to
5, and in translation read as follows:

98 A CONTROLLED EXPERIMENT

1. “Would you consider using [tool] to develop Android apps in the context of
PalCom systems?”

Absolutely not (1) (2) (3) (4) (5) Definitely

2. “How confident are you that your submitted task solutions are compliant
with the specification?”

Not at all confident (1) (2) (3) (4) (5) Fully confident

Further questions included whether sufficient information was provided to complete
the tasks, general comments and comments on individual tasks, and whether the
subject would like to take part of the results of the experiment, i.e. the paper that
was eventually published as [43].

The application logic (functionality) needed to complete the tasks of the exper-
iment was provided to the subjects on a server. The server was represented as a
PalCom device (TheThing) hosting four services:

PatientService Handles patients. Has commands for getting the list of all admitted
patients, and patient information for individual patients. Patients are uniquely
identifiable through an integer assigned by the service.

LoginService Handles login attempts and staff members. Has commands for
verifying login credentials. Staff members are identified through a unique
username and a personal password.

AssessmentService Handles assessments regarding the well-being of patients.
Has commands for submitting new assessments of various types. Assess-
ments are marked with the identifier of the patient to which they belong, and
the username of the staff member that created them.

ChecklistService Handles a ten-item checklist. Has commands for getting and
setting the checklist. The checklist is managed separately for each patient,
and is marked the username of the staff member that edited it last.

The architecture of the experiment system is illustrated in Figure 8.1. Both treat-
ment groups worked on laptop computers to produce solutions – in the form of
GUIs – to the same set of tasks. The solutions were tested on Android tablets
from Sony, model Xperia Tablet Z2 (SGP521). These ran Android version 6.0.1,
which was at the time the most up-to-date major release. Subjects in the AS group
used Android Studio version 2.1.x when solving the tasks, producing a custom
Android application that could be directly installed and tested on the tablets. In
the GPE group, the Graphical PML Editor was used instead. The resulting PML
descriptions were interpreted in AndroidPUIDI, thus producing the solution GUIs.
All solutions connected to the same server, and used the same set of services.

The subjects started working from a zero feature release (ZFR) [82, Michael
Hill, p. 59] specific to their respective treatments, in order to avoid having them

8.2 Planning 99

GUI

...

Tunnel
(TCP)

Services

Tablet

AndroidPUIDI
 / Custom App

TheThing

Server

Figure 8.1: Architecture of the experiment system. GUIs built by subjects were deployed
on Android tablets, and connected to services on a server over TCP tunnels and WiFi.

waste experimentation time on activities related to initial project startup. A ZFR
does nothing in terms of features, but establishes the solution architecture and
provides a basis to start working from. Since the subjects in the AS group should
not have to bother with the intricacies regarding how their application commu-
nicates via PalCom, an “adapter” was included as part of the ZFR of that group.
This adapter included methods for connecting to PalCom services, sending and
receiving command, etc. Due to the PalCom integration of PML, no such measure
was necessary for the GPE group.

The complete specification of the four PalCom services was listed as part of
the experiment compendium [41]. Each participants was handed a printed copy
of this document, which also included general experiment instructions and the
description for a warm-up task. Digital experimental material was handed out on
USB flash drives containing:

– Copy of compendium.

– Source file(s) for ZFR.

– PalcomBrowser for exploring the server.

– Tool for tracking development time.

For the GPE group, the flash drives also contained the executable file for GPE, and
its manual [84].

8.2.4 Tasks
One warm-up task and eight proper tasks were prepared for the experiment. The
purpose of the warm-up task was to allow the participants to get acquainted with
their tool; development time was not recorded. The subjects started working from
the zero feature release and performed tasks in order, with each task adding or
changing functionality and/or design from the previous tasks. The tasks were

100 A CONTROLLED EXPERIMENT

Table 8.1: Behavioral requirements of Task 3; builds on requirements from Tasks 1 and 2.

Req. Description
Application
A1 Login screen is opened upon application startup.
Login Screen
L1 Text box for password entry masks its content, e.g. asterisks.
L2 Text boxes for username and password entry are cleared upon

successful login.
L3 Main screen is opened upon successful login.
L4 List of patients is requested from server upon successful login.
Main Screen
M1 No patient is selected when opened (successful login).
M2 Patient selection list shows patient names only (no IDs).
M3 Selecting a patient causes its information to be display.
M4 Selecting no patient clears the patient information section.
M5 Full name of logged in staff member is displayed.
M6 Logout button opens the login screen.

designed to mimic the evolution of software in real-world development projects.
For the experiment problem, we drew inspiration from the results of the itACiH
project, and the application that was developed to support the mobile nurses at
ASIH in Lund (Chapter 7). No natural order of increasing difficulty was planned
for the tasks. Instead, the tasks were allowed to organically evolve the application.
However, the ambition was to have the tasks cover a wide range of typical GUI
development duties (e.g. adding new screens) and graphical components (drop-
down lists, popup dialogs, etc.). Furthermore, the ambition was to prepare unbiased
development challenges; all tasks were solvable in both development tools.

Task descriptions were presented both in text and as images, the former pri-
marily describing behavioral requirements and the latter describing graphical
requirements in the form of screen mock-ups. The descriptions have been pub-
lished in full as [41]. Table 8.1 lists the behavioral requirements of Task 3, which
build upon the those of Tasks 1 and 2. The descriptions of the warm-up task and
the first three tasks are presented in translation below.

Warm-up “Basic patient selection”

Mock-up. Figure 8.2.

Description. The main screen is opened when the GUI is loaded. In the
text box (1), the user can type freely to select patients based on their
internal ID, e.g. “1”. The button (2) sends this ID to PatientService via
GetPatientInfo→©. If the requested patient exists, the service responds
by sending PatientInfo←©. The parameter of this command is shown

8.2 Planning 101

Fi
gu

re
8.

2:
M

ai
n

sc
re

en
af

te
rc

om
pl

et
in

g
th

e
w

ar
m

-u
p

ta
sk

.
Fi

gu
re

8.
3:

M
ai

n
sc

re
en

af
te

rc
om

pl
et

in
g

Ta
sk

1.

102 A CONTROLLED EXPERIMENT

in the text area (3) – pipe (‘|’) is used as line separator. If no patient
exists for the given ID, the service response is NoPatientInfo←© which
clears the patient information area (3).

Requirements. M4

Task 1 “Improved patient selection”

Mock-up. Figure 8.3.
Description. The drop-down list (1) shows a list of all admitted patients. The

list is populated from the content of the list parameter of PatientList←©.
This command is sent in response to GetPatientList→©, which the GUI
sends to PatientService when it is loaded. PatientList::list contains
both the internal ID of patients and their full name; the drop-down list
should only show the latter. When a new patient is selected in the list,
its information is requested and display as before.

Requirements. M2, M3

Task 2 “Basic login”

Mock-up. Figure 8.4.
Description. When the GUI is loaded, the new login screen is opened in-

stead of the main screen. In the upper text box (1), the user enters her
username, e.g. “nightingale”. In the lower text box (2) the password
is entered – the content is masked. The button (3) sends the input to
LoginService via LogIn→©. The service responds with Success←© if
the credentials are valid, in which case the main screen is opened –
no patient is selected. A parameter of the response contains the full
name of the user. Invalid credentials are handled in a later task. On
successfully logging in, the two text boxes (1, 2) are cleared, and
GetPatientList→© is sent to PatientService – loading the GUI no longer
sends this command.

Requirements. A1, L1, L2, L3, L4, M1

Task 3 “Clearer user identity”

Mock-up. Figure 8.5.
Description. The greeting message (1) on the main screen is more complete

and personal than before: it states the name of the product, and the
name of the current user, e.g. “Florence Nightingale”. The message is
updated upon successfully logging in. The button (2) enables the user
to log out, thus re-opening the login screen; no command needs to be
sent. The image box (3) decorates the main screen with the logotype
of owlCARE’s fictive company: Code4CARE.

Requirements. M5, M6

8.2 Planning 103

Fi
gu

re
8.

4:
L

og
in

sc
re

en
af

te
rc

om
pl

et
in

g
Ta

sk
2.

Fi
gu

re
8.

5:
M

ai
n

sc
re

en
af

te
rc

om
pl

et
in

g
Ta

sk
3.

104 A CONTROLLED EXPERIMENT

8.2.5 Parameters and Hypotheses
The experiment has a single independent variable: GUI Development Approach
(Dev.Appr.). The variable is measured on a nominal scale by categorization based
on tool as either ‘GPE’ for the Graphical PML Editor or ‘AS’ for Android Studio.
Additionally, the following variables are identified:

– Experience of Android development (An.Exp.) is measured on an ordinal
scale (1–4) through a four level classification system. The levels correspond
to the possible answers to the pre-experiment survey questions regarding
programming experience (Section 8.2.3).

– General programming experience (Gen.Exp.) is measured on a scale that is
analogous to that of An.Exp.

The experiment factor is Dev.Appr., which has two treatments. Gen.Exp. is used to
verify subject selection, and An.Exp. is used to determine treatment assignment.
The dependent variables for the experiment are:

– Tool efficiency (Tool.Ef.), measured on a ratio scale as mean development
time per task, in minutes.

– Quality of produced solutions (So.Qual.), measured on a ratio scale as the
mean number of specification deviations for a set of tasks. The deviations
are unweighted, i.e. all deviations are considered equal in terms of severity.
Two types of deviations are considered: behavioral and graphical.

– Experiment impressions (Ex.Impr.), measured on an ordinal scale (1–5) as
the mean value of the answers to the two post-experiment survey questions
considered for analysis.

The primary dependent variable is Tool.Ef., with So.Qual. and Ex.Impr. serving as
variables to strengthen conclusions drawn from Tool.Ef.

Three hypotheses are formulated based on the research questions. Informally,
we hypothesize that the mean development time of the GPE group will be less
than that of the AS group (RQ 8.1). Regarding solution quality we do not expect
that any treatment will outperform the other (RQ 8.2). Likewise, we expect both
groups to consider using their tool, and for the confidence in solution quality to
be comparable (RQ 8.3). Formally, the set of all experiment tasks is defined as
A = {1, 2, . . . , 8}. For all a ∈ A′ for some A′ ⊂ A

H01 : time(‘GPE’, a) ≥ time(‘AS’, a)
Ha1 : time(‘GPE’, a) < time(‘AS’, a)

(8.1)

where time(t, a) refers to the mean development time of task a for treatment t ∈ T
with T = {‘AS’, ‘GPE’}. Furthermore, the elements of D = {‘B’, ‘G’} refer to

8.3 Execution 105

behavioral and graphical deviations respectively; for all d ∈ D and some a ∈ A

H02 : bugs(‘GPE’, d, a) = bugs(‘AS’, d, a)
Ha2 : bugs(‘GPE’, d, a) 6= bugs(‘AS’, d, a)

(8.2)

where bugs(t, d, a) refers to the mean number of specification deviations of type d
for task a and treatment t ∈ T . Finally, for all q ∈ {1, 2}

H03 : answer(‘GPE’, q) = answer(‘AS’, q)
Ha3 : answer(‘GPE’, q) 6= answer(‘AS’, q)

(8.3)

where answer(t, q) refers to the mean value of the answer to question q for the
group with treatment t ∈ T .

8.2.6 Design
The experiment design for the stated hypotheses is of the standard type “one factor
with two treatments” [90]. The experiment factor is Dev.Appr. and its treatments
are GPE and AS. The main hypothesis (Hypothesis 8.1) states that development
time will be lower for treatment GPE than AS, i.e. that GPE will be more efficient
to use than AS. Hypotheses 8.2 and 8.3 (auxiliary) are used to strengthen the
validity of the main hypothesis. The dependent variables Tool.Ef. and So.Qual.
are measured on ratio scales and are tested with (non-parametric) Mann-Whitney-
Wilcoxon (MWW) tests in R. We favor MWW tests over t-tests since we cannot
assume that the measured data will follow the normal distribution. The Ex.Impr.
variable is measured on an ordinal scale and is also tested with MWW tests.

8.3 Execution
Data was collected throughout six distinct experiment sessions, over a period of six
weeks. Four sessions included participants for both treatments, and two covered
only the AS treatment. Each session was preceded by a registration phase, and
succeeded by a follow-up phase.

8.3.1 Registration
Before attending an experiment session, the subjects had to register. The link to
the registration form was distributed together with the various invitations that were
sent out via e-mail. By filling out the form, the applicants expressed their interest to
participate in the experiment. The registration form served a double purpose: it was
used to collect data regarding programming experience, i.e. independent variables
An.Exp. and Gen.Exp. The data was automatically recorded in spreadsheets.
Experiment subjects were selected based on these variables and other relevant data,

106 A CONTROLLED EXPERIMENT

e.g. possible experiment dates. The selected applicants were formally invited to a
specific experiment session via e-mail.

8.3.2 Experiment Session

All experiment sessions were scheduled for an afternoon. After an initial hour of
introduction and training, the participants worked independently on solving tasks
for the remaining three hours. This time restriction was not strictly enforced; the
subjects were granted additional time to complete tasks that were started before
the deadline. The sessions were monitored by one or more experiment instructors,
and were held in seminar rooms at the Department of Computer Science, Lund
University. Upon arrival, subjects were assigned a desk where equipment and
documents had been laid out. Most subjects brought their personal laptops, while
a minority borrowed laptops from the department.

The introductory part of the sessions included an overview of the experiment
(goals, procedure, etc.), an introduction to the various technologies (PalCom,
PML, etc.), training, and information about practical matters. Since the subjects
of the GPE group had never used the Graphical PML Editor before, they were
introduced to the tool in an approximately 20 minutes long practical training
seminar. Additionally, the warm-up task was considered part of the training; the
subjects were given the answers to any questions asked during the process of
solving this task. The subjects of the AS group were expected to have an adequate
amount of experience with Android Studio; no training was provided. While the
GPE group was receiving training, the AS group was given an introduction to
the Android Studio project of the zero feature release. Intricacies regarding the
adapter that connects the project to the PalCom world were discussed. They were
encouraged to ask questions about this during the warm-up task.

Figure 8.6 shows a photograph of four participants during the active phase
of one of the experiment sessions. During this phase, participants worked inde-
pendently on solving the provided tasks. Development was carried out on laptop
computers, and testing was performed on physical Android devices (tablets). Par-
ticipants were responsible for recording development times for individual tasks, i.e.
data for Tool.Ef. A custom-built time tracker tool was provided for this purpose. In
addition to tracking development time, the tool also ensured task ordering by mak-
ing task descriptions available only after the preceding tasks had been completed;
before proceeding to a new task, the time tracker forced the subjects to upload the
file(s) for their current solution, i.e. data for So.Qual. The subjects could pause
the time tracking in the GUI of the tracker, e.g. when going to the bathroom. The
severity of forgetting to unpause was emphasized, and features of the tool were
implemented to minimize this risk. The development time data and solution files
were collected on USB flash drives at the end of each session.

No restrictions on material was made during the experiment sessions; subjects
had free access to the Internet. When uncertain, the subjects of the AS group

8.3 Execution 107

Fi
gu

re
8.

6:
Fo

ur
pa

rt
ic

ip
an

ts
du

ri
ng

th
e

ac
tiv

e
ph

as
e

of
th

e
ex

pe
ri

m
en

t,
in

de
pe

nd
en

tly
so

lv
in

g
ta

sk
s

w
ith

te
st

in
g

on
ph

ys
ic

al
de

vi
ce

s
(t

ab
le

ts
).

108 A CONTROLLED EXPERIMENT

would typically resort to online search engines for answers to technical questions.
This was, however, not a possibility for the GPE subjects since no online resources
existed for their tool. Instead, they could consult the GPE manual or ask an
experiment instructor. When asked, a judgment call by the instructor was done on
whether to answer the question, or refer to the manual. In general, only questions
resulting from technical problems with the tool were answered.

8.3.3 Follow-up
After the conclusion of the active phase of each session, experiment impressions
were collected in an online form. The answers to the questions in the form
were automatically recorded in a spreadsheet; some answers were used as data
for Ex.Impr. The participants were encouraged to fill out the form immediately
following the experiment session, in order for the experience to still be fresh in
their minds. They were allowed to be anonymous.

8.4 Analysis
The data that was collected before, during, and after the six experiment sessions
was processed using a combination of custom Java programs and R, and was
analyzed using both one-sided and two-sided Mann-Whitney-Wilcoxon tests.

8.4.1 Procedure
During the experiment sessions, development time data was collected by the time
tracker tool, and stored on USB flash drives (one per subject) in JSON format.
To analyze tool efficiency (Tool.Ef.), this data was extracted and loaded into an
custom Java program. The output from this program was a comma-separated
values (CSV) file, containing for each subject: subject identifier, and start, stop
and total times for individual tasks. Any paused periods were excluded from the
total time. The output file was processed in R. Data for the AS group was divided
into tiers based on subject performance in Task 1. Hypothesis 8.1 was tested with
Mann-Whitney-Wilcoxon (MWW) tests for the different treatment groups and
tiers, and for individual tasks depending on data availability.

The time tracker also collected intermediate solutions for each completed task.
Quality of submitted solutions (So.Qual.) was analyzed by extracting this data. For
the AS group, the extracted files were compressed Android Studio projects that
could be imported in Android Studio to allow for installation and review on an
Android tablet. For the GPE group, the files were PML descriptions that could be
installed, interpreted and reviewed on an Android tablet. Solutions from all subjects
in the GPE group were reviewed, while only the solutions of the top performing
AS tier were reviewed. Furthermore, only the solutions for the highest numbered

8.4 Analysis 109

task that all subjects in this selection had completed was reviewed. Review results,
per subject, were manually recorded in a spreadsheet. Behavioral requirements
(Table 8.1) were scored as either passed or failed. Deviations from the graphical
design (Figures 8.2 to 8.5) were counted by visual comparison. While several
standard graphical deviations were identified, the comparison was ultimately made
on case-by-case basis, relying on the judgment of the reviewer (the same person
reviewed all solutions). The data from the spreadsheet was downloaded as a CSV
file and processed in R. Hypothesis 8.2 was tested with MWW tests for the different
groups and the identified highest numbered task.

The results from the post-experiment survey were automatically recorded in a
spreadsheet when that subjects submitted their answers. These results were used to
analyze participant experiment impressions (Ex.Impr.). The data was downloaded
as a CSV file and processed in R. As for So.Qual., data for all subjects in the GPE
group was included in the analysis, while only data from the top performing AS
tier was considered. Hypothesis 8.3 was tested with MWW tests for the different
groups and the two questions related to Ex.Impr.

8.4.2 Data Set Preparation
At the end of the experiment sessions, some participants mistakenly submitted
the solution for the task they were working on. As these solution were at best
partially complete, their end times are invalid. Before processing the JSON files
of these subjects, the erroneous end times were manually removed. Furthermore,
to avoid clutter in the graphics, unfinished tasks that the subjects had worked on
for less than 15 minutes were also removed. In the form of the post-experiment
survey, subjects were allowed to identify themselves; some subjects wrote their
names, while others entered their assigned subject identifier. Before downloading
the data from the spreadsheet where the survey results were recorded, all entries
were mapped to subject identifier in order to enable proper analysis.

8.4.3 Results
Figure 8.7 gives an overview of active (pauses excluded) development time per
task for all subjects, from all experiment sessions. Tasks are ordered from left to
right in ascending order based on task number. Subjects are grouped based on
treatment and ordered based on the development time for Task 1. The GPE group
and AS group consist of Subjects 1–12 and Subjects 13–24, respectively. Subjects
from the AS group are divided into three tiers based on performance:

Top tier Completed the first task in less than 60 minutes (Subjects 13–16).

Middle tier Completed the first task in more than 60 minutes (Subjects 17–20).

Bottom tier Failed to complete the first task (Subjects 21–24).

110 A CONTROLLED EXPERIMENT

Graphical	PML	EditorAndroid	Studio

0
	h

1
	h

2
	h

3
	h

1
1:

	8m
2:

	10m
3:

	11m
4:

	21m
5:

	30m
6:

	19m

2
1:

	13m
2:

	13m
3:

	20m
4:

	17m
5:

	41m
6:

	18m

3
1:

	16m
2:

	23m
3:

	25m
4:

	18m
5:

	30m
6:

	>42m

4
1:

	18m
2:

	18m
3:

	30m
4:

	38m
5:

	43m

5
1:

	22m
2:

	21m
3:

	25m
4:

	27m
5:

	29m
6:

	34m

6
1:

	23m
2:

	25m
3:

	27m
4:

	22m
5:

	47m

7
1:

	27m
2:

	24m
3:

	25m
4:

	21m
5:

	27m

8
1:

	28m
2:

	30m
3:

	22m
4:

	>15m

9
1:

	30m
2:

	18m
3:

	14m
4:

	31m
5:

	18m
6:

	25m

10
1:

	30m
2:

	40m
3:

	35m
4:

	>26m

11
1:

	36m
2:

	45m
3:

	26m
4:

	29m
5:

	25m

12
1:

	61m
2:

	26m
3:

	17m
4:

	27m
5:

	31m

13
1:

	36m
2:

	36m
3:

	14m
4:

	13m
5:

	36m

14
1:

	39m
2:

	34m
3:

	26m
4:

	17m
5:

	35m

15
1:

	43m
2:

	47m
3:

	13m

16
1:

	54m
2:

	77m
3:

	46m

17
1:

	106m
2:

	>49m

18
1:

	108m

19
1:

	111m
2:

	32m

20
1:

	149m

21
1:

	>51m

22
1:

	>110m

23
1:

	>138m

24
1:

	>146m

Figure
8.7:

Tim
e

pertask,in
ascending

order.Subjects
grouped

by
treatm

entand
ordered

by
tim

e
forTask

1.Incom
plete

tasks
cropped

(angle).

8.4 Analysis 111

The results from the bottom tier cannot be analyzed, and are discarded. We
proceed to analyze GPE vs. AS for the middle tier, and GPE vs. AS for the top tier
separately.

For the middle AS tier and GPE, only development time (Tool.Ef.) is analyzed.
Furthermore, only Task 1 is analyzed since too few data points are available for
the other tasks and the middle tier AS group. The results for the two groups are
time(‘AS’, 1) = 118.5 minutes and time(‘GPE’, 1) = 26.0 minutes, respectively.
Comparing the groups using a one-sided Mann-Whitney-Wilcoxon (MWW) test,
a p-value of 0.0021 is acquired assuming time(‘GPE’, a) < time(‘AS’, a). The
null hypothesis H01 is rejected for the middle tier with A′ = {1}, i.e. for Task 1.

Development time, task solution quality, and the values of the answered survey
questions are analyzed for the top AS tier and GPE. Only Tasks 1–3 are considered
for the development time analysis; the results for Tasks 4–6 cannot be analyzed due
to a lack of data points in the top tier AS group. The box plot in Figure 8.8 shows
the data being analyzed. The results of comparing the groups using a one-sided
MWW test, assuming time(‘GPE’, a) < time(‘AS’, a), are reported in Table 8.2.
The null hypothesis H01 is rejected for the top tier and A′ = {1, 2}, but not for
A′ = {3}.

Task solution quality (So.Qual.) is analyzed from the data produced by man-
ually reviewing submitted task solutions. Task 3 was selected for review, since

Task 1 Task 2 Task 3

●

●

20

40

60

80

GPETop AS GPETop AS GPETop AS

D
ev

el
op

m
en

t t
im

e
(m

in
ut

es
)

Figure 8.8: Top AS tier vs. GPE: comparison of development times for Tasks 1, 2, and 3.

Table 8.2: Top AS tier vs. GPE, one-sided MWW test (GPE<AS) for development times.

a time(‘AS’, a) time(‘GPE’, a) p-value
1 43.0 26.0 0.0105
2 48.5 24.4 0.0090
3 24.8 23.1 0.5725

112 A CONTROLLED EXPERIMENT

Table 8.3: Top AS tier vs. GPE: two-sided MWW test for behavioral (B) deviations.

Requirements bugs(‘AS’, ‘B’, 3) bugs(‘GPE’, ‘B’, 3) p-value
R = 〈Table 8.1〉 0.250 1.08 0.0201
R′ = R\{M1} 0.250 0.166 0.7883

Table 8.4: Top AS tier vs. GPE: two-sided MWW test for answers to survey questions.

q Description answer(‘AS’, q) answer(‘GPE’, q) p-value
1 Would use tool 4.8 4.2 0.163
2 Confident in quality 4.2 3.8 0.140

this was the highest numbered task solved by all subjects in both the GPE group
and the top tier AS group. The results of comparing the counts of behavioral (B)
specification deviations using a two-sided MWW test are reported in Table 8.3.
R refers to all requirements listed in Table 8.1. For the top tier AS group, 4/4
submitted solutions satisfied requirement M1, while only 1/12 solutions from the
GPE group did the same. We refer to Section 8.5.1 for a discussion, and analyze
for behavioral deviations again with R′ defined as all requirements of R except
for M1. For the number of graphical (G) specification deviations, analysis shows
that bugs(‘AS’, ‘G’, 3) = 1.75 and bugs(‘GPE’, ‘G’, 3) = 2.08. Comparing the
groups using a two-sided MWW test, a p-value of 0.8521 acquired. In conclusion,
the null hypothesis H02 cannot be rejected for the top tier for either d = ‘B’ or
d = ‘G’ when a = 3 and when considering R′ rather than R.

Lastly, experiment impressions (Ex.Impr.) are analyzed from the data collected
as part of the survey at the end of each experiment session. 100% of the participants
answered the survey. Table 8.4 compares the answers of the top tier AS group
and the GPE group using a two-sided MWW test. Both of the analyzed survey
questions were answered on an ordinal scale of 1–5, with 1 and 5 referring to
the lowest and highest levels of agreement, respectively. The mean value of the
answers is calculated to provide a sense of how the subjects answered. The null
hypothesis H03 cannot be rejected for the top tier for either Question 1 or 2.

8.5 Discussion
Based on the results from analyzing the data that was collected throughout the ex-
periment, a discussion from a perspective of implications and threats is warranted.

8.5.1 Result Implications
Based on informal interviews with the participants of the AS group, it was con-
cluded that the scale in the registration form for classifying An.Exp. had been

8.5 Discussion 113

unsuccessful. Some subjects were too modest, registering in a lower category
than appropriate, while others misinterpreted the classification and mistakenly put
themselves in a higher category than appropriate. Because of this, the subjects
in the AS group were divided into tiers based on their performance during the
experiment. The data of the bottom tier was discarded, as we consider the level of
Android experience for these subject to be too low to be relevant for the analysis.

We perceive the middle tier subjects as good software developers with limited
Android experience. Their results are hence indicative of what happens if good
non-Android developers are to create Android applications. This has relevance
in practice: after a PalCom system has been created, typically some form of
GUI has to be built to interact with it, not uncommonly on Android devices. As
hypothesized, the mean development time for the middle AS tier was longer than
for the GPE group: 118.5 vs. 26.0 minutes for Task 1. Hence, we reject H01 for
the middle tier and Task 1. In the choice between GPE and AS, the results tell us
that non-Android developers should use GPE rather than AS when creating GUIs
for PalCom systems.

The subjects of the top AS tier are perceived as good developers with a fair
amount of Android experience – some even had professional experience. Their
results are interpreted as the expected outcome of using Android developers to
create Android applications. The mean development time for the top AS tier was,
for Tasks 1 and 2, longer than for the GPE group: 43.0 vs. 26.0 minutes and
48.5 vs. 24.4 minutes, respectively. Hence, H01 is rejected for the top tier and
Tasks 1 and 2. For Task 3, however, the null hypothesis cannot be reject. From
the description of Task 3, we observe that the task had a clear focus on graphical
design: changing screen title, adding a logo, etc. As opposed to Tasks 1 and 2,
few behavioral matters were covered. The novelty of GPE is in changing how
behavior is specified, thus eliminating the need for glue code. Hence, we argue
that it is reasonable for a task where little glue code would have to be written in
AS to not be significantly faster to develop in GPE. It appears that even Android
developers can benefit from using GPE rather than AS when creating GUIs for
PalCom systems.

From analyzing the quality of the solutions for Task 3, no difference between
the top tier AS group and the GPE group was found in terms of graphical speci-
fication deviations: H02 cannot be rejected for graphical deviations and Task 3.
However, it appears that the GPE group deviated more from the behavioral spec-
ification. Looking at the data, we found that almost all GPE subjects failed to
satisfy requirement M1 (Table 8.1). This cannot be a coincidence, and we do not
believe that so many subjects would deliberately submit faulty solutions, hoping
the infraction would go unnoticed. Instead, we believe that the subjects simply
missed the requirement since it is intricate to test and hence easy to miss. The
reason that no AS subject failed to satisfy the same requirement is that no additional
technical effort (development time) was needed on their part; AS guarantees by
default that requirement M1 is satisfied. We therefore argue that it is relevant to

114 A CONTROLLED EXPERIMENT

test for behavioral deviations again, excluding M1. In doing so, H02 cannot be
rejected for behavioral deviations and Task 3. In practice, it could be argued that
the GPE group has produced solutions with no difference in quality compared to
the top tier AS group, in less time.

For experiment impressions, no differences between the groups was found, as
hypothesized: H03 cannot be rejected for either question. The results tell us that
both groups would consider using their tool and that the subject have confidence in
their submitted solutions. The latter fits well with our analysis of solution quality.
The former is interesting, as the subjects of the GPE group had an agreeable
experience, on average a 4.2 on a 1–5 scale.

8.5.2 Threats to Validity
Threats to the validity [90] of the results are considered in no particular order.

Instrumentation. As mentioned earlier, the scale in the registration form for classi-
fying An.Exp. was unsuccessful due to bad instrumentation. Clearer categories to
choose from should have been presented. This was solved in analysis by dividing
the subject of the AS group into three tiers. Since the tasks were created specifi-
cally for the experiment, low quality in descriptions could have affected results for
one or both treatments. However, in the post-experiment survey, subjects in both
treatment groups reported that they had adequate information to solve the tasks.

History. Originally, the experiment was planned for just two sessions on consecu-
tive days to minimize the effect of external factors such as environment and student
schedule. To attract enough subjects, we opted for more sessions over a longer
period of time. Although not formally analyzed, no single session stands out in
terms of inferior results as a consequence of experiment date. Varying times of day
were considered as a possible threat, and hence all the sessions were scheduled in
the afternoon.

Compensatory Rivalry. In all communication with subjects (invitations, experiment
introduction, etc.) we deliberately expressed ourselves in the most neutral way
possible about both treatments, while at the same time not hiding the purpose of
the experiment. The aim was to avoid having either group feel like the underdog,
which could have affected the results.

Group Stress. A possible threat was identified in that faster subjects could have a
stressful effect on slower subjects, causing more error to be made and obstructing
progress. To minimize this effect, tasks were distributed digitally, one-by-one.
Handing out all tasks in the beginning of the experiment was considered, but that
could have compromised task ordering, e.g. by subjects accidentally skipping a
task.

Mortality. Ideally, a full day of experimentation would have been preferable. This
would have provided more data points, i.e. more finished tasks per participants.

8.5 Discussion 115

However, to promote a high experiment completion rate and avoid subject fatigue,
we decided on a half-day instead. More elaborate experiment designs than what
was used were also considered, e.g. assigning both treatments to all participant in
random order. This would have provided higher statistical significance, also at the
risk of mortality.

Interaction of Selection and Treatment. Having experiment subjects that are not
representative of the population that is being generalized for is a threat to external
validity. The context of this experiment are software developers. While our
subjects – students – are not yet fully trained industrial developers, we believe that
our subject selection process has ensured enough programming experience for a
valid generalization. Furthermore, in the multi-platform context of the Internet of
Things, developers cannot be expected to be experts for specific platforms such as
Android. Since some subjects had professional Android experience, we argue that
the selection for the AS treatment is representative, and even generous in favour of
the AS treatment in this regard.

Professional Developers. We cannot claim that the best possible Android devel-
opers were drafted for the experiment, not even in the top tier. If trained Android
consultants had been hired, the mean development time of the AS group would
probably have been shorter. However, similar logic can be applied to the GPE
group: if the subject had gotten more than 20 minutes of training, mean develop-
ment time would have been shorter. Even more so if experienced GPE developers
had been drafted. Therefore, we believe that our comparative analysis is valid. It is
however a challenge to identify representative subjects in an experiment like this.

Interaction of Setting and Treatment. A threat when using designed problems is
that the experimental material might not be representative of industrial standard.
This threat was handled by designing the experiment tasks to mimic a typical
industry development scenario. The idea was to represent the most general use
cases in order to not favor one treatment over the other. Valid setting was ensured
by comparing GPE to the most up-to-date version of the market leading tool for
Android development, i.e. Android Studio.

Reliability of Measurements. Since subjects self-monitored development time,
there is a certain level of unreliability in the collected data. One possible threat was
that the subjects would forget to “unpause” the time tracker tool, thus corrupting
the data. Features in the software were developed to prevent this, and more than
once per session the severity of forgetting to unpause was emphasized. Experiment
instructors also checked in with participants periodically during the sessions.
No incidents were reported or observed. Another threat was if subjects would
deliberately pause the time tracker to improve their recorded time. However, we do
not see what their motivation for doing so would be as the results are anonymous.
Furthermore, an observant instructor would have caught such behavior.

116 A CONTROLLED EXPERIMENT

8.6 Conclusions
Our analysis shows that for good software developers with limited experience of
using AS, the gains in terms of developer productivity are significant when using
GPE instead of AS. For developers with a fair amount of experience of using AS
the gains are not as pronounced, but still present. The size of the gain also depends
on the type of task being solved – GPE is more effective when performing certain
tasks, but analysis is inconclusive for others. We found no statistical difference
between the treatments in terms of the quality of the solutions produced during
the experiment. Furthermore, we found that the GPE subjects could get started
with little training, and that they would consider using our tool in the given context.
We conclude that in the choice between GPE and AS, developers – even those
with substantial AS experience – should consider using GPE rather than AS when
creating Android GUIs for PalCom systems. In practice, this is relevant because
when a PalCom system is created, typically a GUI has to be built as well, not
uncommonly for Android.

Chapter 9

Future Work

We present possible future directions for this research, in no particular order.

– The presented solution has been used to create GUIs in a number research
projects. From this we have found that in practice, certain sections of PML
code can be reusable. One examples of this is the video conference screen
that appears in several of the presented GUIs. Currently, such code sections
are manually copied between description, which has resulted in difficulties
relating to double maintenance [9]. In future research, we want to address
this problem by introducing modularization techniques for PML descriptions.
This could include more than simply creating code modules, e.g. enabling
PML descriptions to be attached to services so that they can be reused – in
part or completely – in other GUIs that use the services.

– As part of the presented research, we have implemented two PML inter-
preters: one for the widget toolkit Swing (Java) and one for Android. One
possible continuation of this work would be to implement interpreters for
additional platforms. In particular, we are interested in researching whether
our solution can be used to simplify the development of web applications.
The goal would be to eliminate the need to write complex program code
manually, e.g. JavaScript.

– The Graphical PML Editor uses metadata in PalCom to make qualified
suggestions of graphical components that can represent the functionality
components (commands, parameters, etc.) selected by the user. Future
research on improving the component suggestion algorithm could results in
further improved accessibility for the editor. A starting point for this research
could be to work on adding language support for PalCom Object Notation
(PON) [56]. The notation allows parameters to have complex structures,
and is similar to JSON in this regard. The additional metadata of PON can
possibly be used for more accurate suggestions.

– With the presented research, we have made efforts towards the goal of
enabling users with little or no programming experience to build GUIs

118 FUTURE WORK

for PalCom systems. As a first step, the need to write program code was
eliminated from the development process in our solution. In future work,
we want to research whether this allows non-programmers to adopt our
solution, or whether further efforts are needed. Furthermore, the ambition is
for the non-programmers to not only adopt the solution, but to master it, thus
performing on the level of software developers. To achieve this goal, we
expect additional challenges in the future, e.g. in adapting the development
environment to support users with other backgrounds than programming.

– In the current architecture, PML descriptions are interpreted locally on a
device, by a separate interpreter application. In order to allow for more
flexible system architectures, we want to do research regarding how to make
the contributions of this research more deeply integrated with PalCom. Such
integration could for example enable descriptions to be installed on a single
central device, which could then be accessed remotely by multiple client
devices that render the GUI locally. Furthermore, the current ad hoc GUIs of
pre-existing PalCom tools could be replaced by PML GUIs, thus providing
remote access to currently local features such as device configuration.

– The mobile manager/launcher TheAndroidThing was needed for the appli-
cations of all research projects where the contributions of this dissertation
have been applied. Without it, many system architectures would not be pos-
sible. Although the tool was created as part of this research, it has not been
evaluated since the focus has been on the process of developing GUIs. Some
efforts have been made to evaluate aspects such as bandwidth usage [45],
however more research is needed in this area.

– A current limitation of PML is the lack of native support for dynamic sets
of graphical components (PML parts). A check list, for example, can only
be described during development as a static number of check boxes. This
limitation can be circumvented by creating custom parts. For the non-
programmer, however, this is not an option. We have seen a recurring need
for dynamic sets during the development of the presented applications. As
such, one possible area of future research could be to investigate how to add
native language support for this feature in a way that makes it both efficient
and accessible to all users.

Chapter 10

Conclusions

In this dissertation we have presented research concerning the development of
applications through which end-users interact with systems and devices in the
context of Internet of Things. We have built the presented solution on the PalCom
framework to handle the network-oriented problems of such development, and have
focused our research on producing a more efficient approach for GUI development.
Since we expect that more end-users will want to connect their devices in new
interesting ways, we wanted to increase the number of possible GUI developers by
including the end-user in the development process. Hence, we expanded the scope
of PalCom to cover the construction of GUIs, a task that is generally complicated,
time consuming, and requires programming.

In order to enable end-users with little or no programming experience to build
GUIs, programming needed to be eliminated from the development process. To
that end, we defined an “inverted” approach to GUI development. With this
approach, the development focus is on presenting functionality from an application
model as graphical components in a GUI, rather than on retroactively attaching
functionality to manually added graphical components. The first step in supporting
the new approach was to design a language for describing GUIs, and implement
interpreters that communicate with PalCom services and render GUI descriptions as
fully functional GUIs. In the domain of e-health, the presented language has been
used in a number of research projects to build the GUIs of multiple applications;
we conclude that it is practically viable for building full-blown, professional grade
GUIs. In order to make the language more accessible and efficient to use we
implemented a graphical editor. This tool was evaluated by direct comparison to
a market leading product in a controlled experiment. We found that the editor
is accessible to new users, and can be more efficient to use than the commercial
alternative.

With the presented research, we have produced an efficient approach for de-
veloping GUIs for PalCom systems (RQ 1.1). Furthermore, we have made efforts
towards the goal of increasing the number of possible GUI developers by elimi-
nating the need to write program code (RQ 1.2). Although our solution does not
require program code to be written, further research is needed to evaluate whether

120 CONCLUSIONS

our positive results can be generalized for non-programmers, and truly enable
end-users to build GUIs for the systems they assemble.

Appendix A

Specifics of PML

The concrete syntax of PML is XML-based, as presented through examples in
Chapter 5. The language is further specified by presenting the grammar of its
abstract syntax and providing a specification for available PML components.

A.1 Abstract Syntax

The grammar for the abstract syntax of PML is presented in Listing A.1; it is
expressed in a BNF [10] notation as summarized in Table A.1. As indicated in the
grammar, PML descriptions are structured as six distinct blocks: three component
blocks – universe, structure, logic – and three property blocks – style, discovery,
behavior.

Universe This block specifies the PalCom devices and services that the resulting
GUI needs to communicate with. For each service, the description is precise
enough so that the interpreting application can send commands to specific
services, act on incoming commands, and manage individual parameters.

Discovery This block specifies configuration information for the PalCom com-
ponents that were specified in the universe block. For each component, the
relevant discovery properties are specified, e.g. the PalCom IDs of devices.

Table A.1: Notation for the grammar in Listing A.1.

Definition ::=
Construction &
Alternative |
Repetition (zero or more) *
Repetition (one or more) +
Optional (zero or one) ?
Terminal name:type

122 SPECIFICS OF PML

1 description ::= universe & discovery? & structure & style? & logic
2 & behavior?
3

4 universe ::= device*
5 device ::= unit & service*
6 service ::= unit & command*
7 command ::= unit & parameter*
8 parameter ::= unit
9 unit ::= [unit-id:String] & local-discovery? & local-behavior?

10 local-discovery ::= property*
11

12 discovery ::= unit-property *
13 unit-property ::= [unit-id:String] & property
14

15 structure ::= application
16 application ::= part & window* & notification* & dialog* & note*
17 & sound*
18 notification ::= part
19 dialog ::= part
20 note ::= part
21 sound ::= part
22 window ::= part & container
23 container ::= any-part*
24 any-part ::= area | radiogroup | radiobutton | tabbed | label | button
25 | checkbox | textbox | image | textarea | numberslider | dropdownlist
26 | custompart
27 area ::= part & container
28 tabbed ::= part & container
29 custompart ::= part & container?
30 radiogroup ::= part & radiobutton*
31 radiobutton ::= part
32 label ::= part
33 button ::= part
34 checkbox ::= part
35 textbox ::= part
36 image ::= part
37 textarea ::= part
38 numberslider ::= part
39 dropdownlist ::= part
40 part ::= [part-id:String] & local-style? & local-behavior?
41 local-style ::= property*
42

43 style ::= part-property*
44 part-property ::= [part-id:String] & property
45

46 logic ::= constant* & variable*
47 constant ::= fact
48 variable ::= fact
49 fact ::= [fact-id:String] & local-behavior?
50

51 fact-property ::= [fact-id:String] & property
52

53 behavior ::= (any-property & link?)*
54 any-property ::= unit-property | part-property | fact-property
55

56 local-behavior ::= (property & link?)*
57 link ::= [qualifier:String]? & [order:Integer]?
58 property ::= [key:String] & [value:String]

Listing A.1: Grammar for the abstract syntax of PML.

A.2 Component Specification 123

Structure This block specifies the graphical components to be presented in the
resulting GUI. The structure of the GUI is specified in terms of how compo-
nents are nested, e.g. a button within a tab within a window. The grammar
includes a number of common parts and the possibility to include custom-
made parts, and specifies how components can be nested.

Style This block specifies properties that influence the appearance of the graphical
components that were specified in the structure block, e.g. the size of an
image box or the text on a button.

Logic This block specifies internal components, i.e. constants and variables.
These can be used as default texts in GUIs, or for advanced GUI designs
where intermediate states are needed.

Behavior This block primarily specifies the actions to be performed by the in-
terpreting application as a result of the user interacting with the GUI and
incoming commands from the connected services.

The essence of PML, i.e. what makes the inverted GUI development approach
possible, is that the grammar of the language contains both an abstraction of the
application model (universe block) and an abstraction of the GUI (structure block).
This makes it possible to link components from both abstractions to define GUI
behavior (behavior block), thus eliminating the need to write program code.

A.2 Component Specification
Each PML components in the universe, structure, and logic blocks can be further
specified by their properties. For example, a graphical component such as a button
has properties (style block) to control its appearance: text, font, size, etc. Each
component class has a set of valid properties, the keys of which are listed, but not
explained in detail, in Table A.2.

Behavior properties (behaviour block) apply to all types of PML components,
and control how they interact with other components. These properties are used to
specify links between source components and target components. For example, a
link between a button and a PalCom command could cause the command to be sent
to its service when the button is clicked. In this example, the button is the source,
the command is the target and the role of the link is to invoke the command, i.e.
send it to its service. “Clicked” is an example of a qualifier; qualifiers are used to
specialize links, in this case to specify when the command should be invoked.

Properties that define links are only valid for the property keys of the four link
roles: “p:invoker”, “p:reactor”, “p:viewer”, and “p:provider”. The set of available
qualifiers depends on the role of the link and the class of the source component; in
Table A.2, the available qualifiers are listed in parentheses for the property keys
of links. Furthermore, only certain component classes are valid targets for links

124 SPECIFICS OF PML

of specific roles; for each class and valid link role, target behavior is presented in
Table A.2 as:

– the action to be taken when invoked.

– the event that other components react to.

– the property that other components view.

– the property that is set to provided values.

The row is omitted in the table for classes with no link target behavior.

A.2 Component Specification 125

Table A.2: Specification for all available PML component classes.

Class Description, property keys, link target behavior

UNITS

P:Device PalCom device.
Discovery: p:id.

P:Service PalCom service.
Discovery: p:required, p:alias, p:instance, p:cdid, p:cn,
p:udid, p:un, p:pdid, p:pn, p:mdid, p:mn. Behavior:
p:invoker (available, unavailable).

P:Command PalCom command.
Discovery: p:id, p:direction. Behavior: p:invoker (re-
ceived).
When invoked send, react to received.

P:Param PalCom parameter.
Discovery: p:id, p:data-type.
React to updated/received, viewed for data, provided sets
data.

PARTS

G:Application Logical component that represents the interpreting appli-
cation internally.
Behavior: p:invoker (loaded, unloaded).

G:Window Top-level, self-contained, structural component. May con-
tain other components.
Style: g:layout, g:layout-gap, g:layout-columns, g:layout-
weights, g:layout-orientation, g:title, g:resizable, g:size.
Behavior: p:invoker (opened, closed).
When invoked open.

G:Area Structural component. Primary purpose is to contain and
layout other components.
Style: g:layout, g:layout-gap, g:layout-columns, g:layout-
weights, g:layout-orientation, g:title, g:scrollable-v, g:
..scrollable-h, g:border, g:tab-text, g:size. Behavior: p:
..viewer (present), p:present.

G:Tabbed Structural component. Contained components are repre-
sented as tabs, and displayed after selection.
Style: g:tab-text, g:size. Behavior: p:viewer (selected-
index, enabled).

↪→

126 SPECIFICS OF PML

Table A.2: (continued)

G:RadioGroup Logical component that groups radio buttons.
Style: g:layout-gap, g:layout-orientation, g:scrollable-
v, g:scrollable-h, g:border, g:tab-text, g:size. Behavior:
p:viewer (selected-value, present), p:provider (selected-
value), p:present.

G:RadioButton Clickable, two-state component. One instance per group
can be checked.
Style: g:tab-text, g:size, g:font, g:font-bold, g:font-italic,
g:font-size, g:font-color, g:text. Behavior: p:value.

G:Label Component for displaying simple text.
Style: g:tab-text, g:size, g:font, g:font-bold, g:font-italic,
g:font-size, g:font-color, g:align-h, g:align-v, g:text. Be-
havior: p:viewer (text, present, font-color).

G:Button Clickable component.
Style: g:tab-text, g:size, g:font, g:font-bold, g:font-italic,
g:font-size, g:font-color, g:text, g:alternate-text, g:image-
src. Behavior: p:invoker (clicked), p:provider (browse,
camera), p:viewer (enabled), p:enabled.

G:CheckBox Clickable, two-state component. Multiple instances can
be checked.
Style: g:tab-text, g:size, g:font, g:font-bold, g:font-italic,
g:font-size, g:font-color, g:text, g:alternate-text. Behavior:
p:invoker (checked-changed), p:provider (checked-value),
p:viewer.

G:TextField Component for text input.
Style: g:tab-text, g:size, g:text, g:alternate-text, g:align-h,
g:sensitive, g:single-line. Behavior: p:editable, p:provider
(text), p:viewer (text, enabled).

G:Image Component for displaying images.
Style: g:tab-text, g:size, g:image-src. Behavior: p:
..provider (image), p:viewer (image, mask), p:editable.

G:TextArea Component for displaying text (advanced).
Style: g:tab-text, g:size, g:font, g:font-bold, g:font-italic,
g:font-size, g:font-color, g:text. Behavior: p:viewer (text,
present, font-color), p:delimiter.

G:NumberSlider Component with horizontally slidable handle. Selects
numeric value in given range.
Style: g:tab-text, g:size. Behavior: p:invoker (released),
p:provider (value), p:viewer (value), p:editable, p:min-
value, p:max-value.

↪→

Table A.2: (continued)

G:DropDownList Compact (expandable) component for item selection from
a list.
Style: g:tab-text, g:size, g:content. Behavior: p:invoker
(selected), p:provider (selected-value), p:viewer (content,
selected-index, selected-value), p:delimiter, p:row-length,
p:option-index, p:value-index, p:editable.

G:SystemNotifica
..tion

System wide notification. Visible even when the applica-
tion is not.
Style: g:title, g:text. Behavior: p:reactor (post), p:viewer
(enabled), p:priority, p:enabled.

G:YesNoDialog Dialog box that may block the rest of the application until
confirmed/dismissed.
Style: g:title, g:text, g:text-positive, g:text-negative,
g:cancelable. Behavior: p:reactor (show, dismiss), p:in
..voker (positive, negative), p:viewer (enabled), p:provider
(input-text), p:enabled.
When invoked show.

G:QuickNote Temporarily visible text message.
Style: g:title, g:text. Behavior: p:reactor (show), p:
..enabled, p:viewer (enabled).
When invoked show.

G:Sound Plays a notification sound.
Behavior: p:sound-src, p:reactor (toggle-play, play, stop),
p:enabled, p:viewer (enabled).
When invoked play.

FACTS

G:Constant Holds a constant value.
Behavior: p:provider (data), p:reactor (announce), p:value,
p:init-invoke.
When invoked announce, react to announcement, viewed
for value.

G:Variable Holds a value that can be changed.
Behavior: p:provider (value), p:reactor (announce), p:
..value, p:init-invoke, p:auto-invoke, p:viewer (value).
When invoked announce, react to announcement, viewed
for value, provided sets value.

Bibliography

[1] Peter Abrahamsson. “Medical Accelerometor Smartphone Application for
PalCom Based Systems”. LU-CS-EX:2013-02. ISSN: 1650-2884. MA thesis.
Department of Computer Science, Lund University, 2013.

[2] Marc Abrams et al. “UIML: an appliance-independent XML user interface
language”. In: Computer Networks 31 (11–16), 1999, pp. 1695–1708. ISSN:
1389-1286. DOI: 10.1016/S1389-1286(99)00044-4.

[3] André Ahlfors Dahl and Martin Larsson. “Punkt-till-punkt-autentisering
för Sakernas Internet”. LU-CS-EX:2014-38. ISSN: 1650-2884. MA thesis.
Department of Computer Science, Lund University, 2014.

[4] Peter Andersen et al. “Open architecture for palpable computing: Some
thoughts on object technology, palpable computing, and architectures for
ambient computing”. In: In Proceedings of the Workshop on Object Tech-
nology for Ambient Intelligence (OT4AmI) at the European Conference
on Object-Oriented Programming (ECOOP 2005), 2005. 238 Troels L.
Andersen, Sune Kristensen, Bjørn. ACM, 2004, pp. 137–138.

[5] Apache Isis. Domain Driven Applications, Quickly. The Apache Software
Foundation. URL: http://isis.apache.org (visited on Apr. 3,
2017).

[6] AppMaker. Low-code application development for G Suite. Google Inc.
URL: https://developers.google.com/appmaker/ (visited
on Apr. 3, 2017).

[7] Kevin Ashton. “That ‘Internet of Things’ Thing”. In: RFiD Journal 22 (7),
2009, pp. 97–114.

[8] Pedro Azevedo, Roland Merrick, and Dave Roberts. “OVID to AUIML -
User-Oriented Interface Modelling”. In: Proceedings of 1st International
Workshop – Towards a UML Profile for Interactive Systems Development.
TUPIS ’00. York, UK, Oct. 2000.

[9] Wayne A. Babich. Software Configuration Management: Coordination for
Team Productivity. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 1986. ISBN: 0-201-10161-0.

[10] J. W. Backus et al. “Report on the algorithmic language ALGOL 60”. In:
Numerische Mathematik 2 (1), 1960, pp. 106–136. ISSN: 0945-3245. DOI:
10.1007/BF01386216.

130 BIBLIOGRAPHY

[11] Roberto Baldoni, Carlo Marchetti, and Alessandro Termini. “Active Soft-
ware Replication through a Three-tier Approach”. In: 21st IEEE Symposium
on Reliable Distributed Systems, 2002. Proceedings. 2002, pp. 109–118.
DOI: 10.1109/RELDIS.2002.1180179.

[12] Guruduth Banavar et al. “Challenges: An Application Model for Pervasive
Computing”. In: Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking. MobiCom ’00. Boston, Massachusetts,
USA: ACM, 2000, pp. 266–274. ISBN: 1-58113-197-6. DOI: 10.1145/
345910.345957.

[13] Soma Bandyopadhyay et al. “A Survey of Middleware for Internet of
Things”. In: Proceedings of Recent Trends in Wireless and Mobile Networks:
Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara,
Turkey, June 26-28, 2011. Ed. by Abdulkadir Özcan, Jan Zizka, and Dhi-
naharan Nagamalai. Springer Berlin Heidelberg, 2011, pp. 288–296. ISBN:
978-3-642-21937-5. DOI: 10.1007/978-3-642-21937-5_27.

[14] David J. Barnes and Michael Kölling. Objects First with Java: A Practical
Introduction Using BlueJ. 6th ed. Pearson, 2016. ISBN: 978-1-292-15904-1.

[15] Olle Bergman, Micke Jaresand, and Elizabeth Johansson. Cancerfondsrap-
porten 2010. Ed. by Micke Jaresand. 2010. ISBN: 978-91-978853-0-0.

[16] Olle Bergman et al. Cancerfondsrapporten 2016. Ed. by Lisa Jacobson.
2016. ISBN: 978-91-88161-03-1.

[17] Tim Boudreau et al. NetBeans: The Definitive Guide. O’Reilly Media, 2002.
ISBN: 978-0-596-00280-0.

[18] Anna Lena Brantberg and Renée Allvin. Smärtskattningsinstrument: Smärt-
skattning av akut och postoperativ smärta. Aug. 23, 2016. URL: http:
//www.vardhandboken.se/Texter/Smartskattning-av-
akut-och-postoperativ-smarta/Smartskattningsinstr
ument/ (visited on Apr. 3, 2017).

[19] F. P. J. Brooks. “No Silver Bullet Essence and Accidents of Software En-
gineering”. In: Computer 20 (4), 1987, pp. 10–19. ISSN: 0018-9162. DOI:
10.1109/MC.1987.1663532.

[20] E Bruera et al. “The Edmonton Symptom Assessment System (ESAS): a
simple method for the assessment of palliative care patients.” In: Journal of
Palliative Care 2 (7), 1991, pp. 6–9.

[21] A. T. Campbell, G. Coulson, and M. E. Kounavis. “Managing Complexity:
Middleware Explained”. In: IT Professional 1 (5), Sept. 1999, pp. 22–28.
ISSN: 1520-9202. DOI: 10.1109/6294.793667.

131

[22] M. A. Chaqfeh and N. Mohamed. “Challenges in Middleware Solutions for
the Internet of Things”. In: 2012 International Conference on Collaboration
Technologies and Systems (CTS). May 2012, pp. 21–26. DOI: 10.1109/
CTS.2012.6261022.

[23] Community Research and Development Information Service (CORDIS).
Palpable computing - A new perspective on ambient computing. Research
project. Grant 002057. 2004–2007. URL: http://cordis.europa.
eu.

[24] George F Coulouris et al. Distributed Systems: Concepts and Design. 5th ed.
Pearson, 2012. ISBN: 978-0-13-214301-1.

[25] Robert Englander. Developing JAVA Beans. O’Reilly Media, 1997. ISBN:
978-1-565-92289-1.

[26] Davic Everlöf and Thomas Lidén. “Integrated video solution for teleme-
dicine in home care”. LU-CS-EX:2013-41. ISSN: 1650-2884. MA thesis.
Department of Computer Science, Lund University, 2013.

[27] Niklas Fors. “The Design and Implementation of Bloqqi – A Feature-Based
Diagram Programming Language”. LU-CS-DISS:2016-5. ISSN: 1404-1219.
PhD thesis. Department of Computer Science, Lund University, 2016. ISBN:
978-91-7623-999-5.

[28] Forte. Programme Grant Care: Family support and Child Centered Care
for vulnerable children – knowledge development and translation to care
service. Research project. Grant 2013-2101. 2013–2015. URL: http://
forte.se/en/.

[29] Fabiano Freitas and Paulo Henrique M. Maia. “JustBusiness: A Framework
for Developing Android Applications Using Naked Objects”. In: 2015 IX
Brazilian Symposium on Components, Architectures and Reuse Software.
Sept. 2015, pp. 11–20. DOI: 10.1109/SBCARS.2015.12.

[30] Tony Gaddis and Rebecca Halsey. Starting Out with App Inventor for
Android. Pearson Education, 2015. ISBN: 978-1-292-08032-1.

[31] Daniel Giusto et al. The Internet of Things: 20th Tyrrhenian Workshop
on Digital Communications. Springer New York, 2010. ISBN: 978-1-4419-
1674-7. DOI: 10.1007/978-1-4419-1674-7.

[32] Joan Greenbaum and Morten Kyng. Design at Work: Cooperative Design of
Computer Systems. L. Erlbaum Associates Inc., 1992. ISBN: 0-8058-0612-1.

[33] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural
elements, and future directions”. In: Future Generation Computer Systems
29 (7), 2013, pp. 1645–1660. ISSN: 0167-739X. DOI: 10.1016/j.futu
re.2013.01.010.

132 BIBLIOGRAPHY

[34] J. Guerrero-Garcia et al. “A Theoretical Survey of User Interface Description
Languages: Preliminary Results”. In: 2009 Latin American Web Congress.
Nov. 2009, pp. 36–43. DOI: 10.1109/LA-WEB.2009.40.

[35] Jens Gustafsson and Alfred Åkesson. “System for Activity Tracking of
Patients with Chronic Kidney Disease”. LU-CS-EX:2015-35. ISSN: 1650-
2884. MA thesis. Department of Computer Science, Lund University, 2015.

[36] Michi Henning. “The Rise and Fall of CORBA”. In: Queue 4 (5), June 2006,
pp. 28–34. ISSN: 1542-7730. DOI: 10.1145/1142031.1142044.

[37] itACiH AB. Vi utvecklar lösningar för att fler skall kunna vårdas hemma.
URL: http://itacih.se (visited on Apr. 3, 2017).

[38] Paul Johannesson and Erik Perjons. An Introduction to Design Science.
Springer International Publishing, 2014. ISBN: 978-3-319-10631-1. DOI:
10.1007/978-3-319-10632-8.

[39] Bruce Johnson. Professional Visual Studio 2015. Wrox, 2015. ISBN: 978-1-
119-06805-1.

[40] Björn A. Johnsson. “PalCom Meets the End-User: Enabling Interaction with
PalCom-based Systems”. LU-CS-DISS:2014-2. ISSN: 1652-4691. Licentiate
thesis. Department of Computer Science, Lund University, 2014.

[41] Björn A. Johnsson. Tasks and Instructions for a Controlled Experiment on
IoT GUI Development. Dec. 2016. DOI: 10.5281/zenodo.163512.

[42] Björn A. Johnsson. “Towards End-User Composition of Graphical User In-
terfaces for Internet of Things”. In: "Future Generation Computer Systems",
2016. Submitted.

[43] Björn A. Johnsson, Martin Höst, and Boris Magnusson. “Evaluating a GUI
Development Tool for Internet of Things and Android”. In: Product-Focused
Software Process Improvement: 17th International Conference, PROFES
2016, Trondheim, Norway, November 22-24, 2016, Proceedings. Ed. by
Pekka Abrahamsson et al. Cham: Springer International Publishing, 2016,
pp. 181–197. ISBN: 978-3-319-49094-6. DOI: 10.1007/978-3-319-
49094-6_12.

[44] Björn A. Johnsson and Boris Magnusson. “Supporting Collaborative Health-
care using PalCom – The itACiH System”. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (Per-
Com Workshops). Sydney, Australia: IEEE, Mar. 2016, pp. 1–6. DOI: 10.
1109/PERCOMW.2016.7457141.

[45] Björn A. Johnsson, Mattias Nordahl, and Boris Magnusson. “Evaluating a
Dynamic Keep-Alive Messaging Strategy for Mobile Pervasive Systems”.
In: Procedia Computer Science, 2017. The 8th International Conference
on Ambient Systems, Networks and Technologies (ANT 2017), Madeira,
Portugal. In press.

133

[46] Björn A. Johnsson and Gunnar Weibull. “End-User Composition of Graphi-
cal User Interfaces for PalCom Systems”. In: Procedia Computer Science
94, 2016. The 11th International Conference on Future Networks and Com-
munications (FNC 2016), Montreal, Quebec, Canada, pp. 224–231. ISSN:
1877-0509. DOI: 10.1016/j.procs.2016.08.035.

[47] Caitlin Kelleher and Randy Pausch. “Lowering the Barriers to Programming:
A Taxonomy of Programming Environments and Languages for Novice
Programmers”. In: ACM Computing Surveys 37 (2), June 2005, pp. 83–137.
ISSN: 0360-0300. DOI: 10.1145/1089733.1089734.

[48] Boris Magnusson and Björn A. Johnsson. “Some Like It Hot: Automat-
ing an Electric Kettle Using PalCom”. In: Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing Adjunct Publication.
UbiComp ’13 Adjunct. Zurich, Switzerland: ACM, 2013, pp. 63–66. ISBN:
978-1-4503-2215-7. DOI: 10.1145/2494091.2494110.

[49] Rob van der Meulen. Gartner Says 6.4 Billion Connected “Things” Will Be
in Use in 2016, Up 30 Percent From 2015. Press release. Nov. 10, 2015. URL:
http://www.gartner.com/newsroom/id/3165317 (visited on
Apr. 3, 2017).

[50] Daniele Miorandi et al. “Internet of things: Vision, applications and research
challenges”. In: Ad Hoc Networks 10 (7), 2012, pp. 1497–1516. ISSN: 1570-
8705. DOI: 10.1016/j.adhoc.2012.02.016.

[51] Elissa Murphy. Customize your G Suite experience with App Maker and
Recommended apps. Blog post. Nov. 30, 2016. URL: https://www.
blog.google/products/g- suite/customize- your- g-
suite-experience-app-maker-and-recommended-apps/
(visited on Apr. 3, 2017).

[52] Brad A. Myers. “Taxonomies of Visual Programming and Program Visual-
ization”. In: Journal of Visual Languages & Computing 1 (1), 1990, pp. 97–
123. ISSN: 1045-926X. DOI: 10.1016/S1045-926X(05)80036-9.

[53] Brad A. Myers. Why are human-computer interfaces difficult to design and
implement. Tech. rep. CMU-CS-93-183. Computer Science Department,
Carnegie Mellon University, July 1993.

[54] Matt Neuburg. iOS 10 Programming Fundamentals with Swift: Swift, Xcode,
and Cocoa Basics. O’Reilly Media, 2016. ISBN: 978-1-4919-7007-2.

[55] Daniel Nilsson and Mattias Nordahl. “Minimal Implementation av Pal-
Com för Små Enheter”. LU-CS-EX:2013-07. ISSN: 1650-2884. MA thesis.
Department of Computer Science, Lund University, 2013.

134 BIBLIOGRAPHY

[56] Mattias Nordahl and Boris Magnusson. “A lightweight data interchange
format for internet of things with applications in the PalCom middleware
framework”. In: Journal of Ambient Intelligence and Humanized Computing
7 (4), 2016, pp. 523–532. ISSN: 1868-5145. DOI: 10.1007/s12652-
016-0382-3.

[57] Richard Pawson. “Naked objects”. PhD thesis. Department of Computer
Science, Trinity College, University of Dublin, June 2004.

[58] Esmond Pitt and Kathy McNiff. Java.Rmi: The Remote Method Invocation
Guide. Addison-Wesley, 2001. ISBN: 978-0-201-70043-5.

[59] Angel Puerta and Jacob Eisenstein. “XIML: A Common Representation
for Interaction Data”. In: Proceedings of the 7th International Conference
on Intelligent User Interfaces. IUI ’02. San Francisco, California, USA:
ACM, 2002, pp. 214–215. ISBN: 1-58113-459-2. DOI: 10.1145/502716.
502763.

[60] Aruna Raja and Devika Lakshmanan. “Naked Objects Framework”. In:
International Journal of Computer Applications 1 (20), 2010.

[61] Mitchel Resnick et al. “Scratch: Programming for All”. In: Communications
of the ACM 52 (11), Nov. 2009, pp. 60–67. ISSN: 0001-0782. DOI: 10.
1145/1592761.1592779.

[62] Giovanni Rimassa, Dominic Greenwood, and Monique Calisti. “Palpable
Computing and the Role of Agent Technology”. In: Multi-Agent Systems and
Applications IV: 4th International Central and Eastern European Confer-
ence on Multi-Agent Systems, CEEMAS 2005, Budapest, Hungary, Septem-
ber 15 – 17, 2005. Proceedings. Ed. by Michael Pěchouček, Paolo Petta,
and László Zsolt Varga. Springer Berlin Heidelberg, 2005, pp. 1–10. ISBN:
978-3-540-31731-9. DOI: 10.1007/11559221_1.

[63] Ray Rischpater. Application Development with Qt Creator. Packt Publishing
Limited, 2013. ISBN: 978-1-7832-8231-9.

[64] Luis Roalter, Matthias Kranz, and Andreas Möller. “A Middleware for
Intelligent Environments and the Internet of Things”. In: Ubiquitous Intel-
ligence and Computing: 7th International Conference, UIC 2010, Xi’an,
China, October 26-29, 2010. Proceedings. Ed. by Zhiwen Yu et al. Springer
Berlin Heidelberg, 2010, pp. 267–281. ISBN: 978-3-642-16355-5. DOI:
10.1007/978-3-642-16355-5_23.

[65] Yvonne Rogers. “Moving on from Weiser’s Vision of Calm Computing: En-
gaging UbiComp Experiences”. In: UbiComp 2006: Ubiquitous Computing:
8th International Conference, UbiComp 2006 Orange County, CA, USA,
September 17-21, 2006 Proceedings. Ed. by Paul Dourish and Adrian Friday.
Springer Berlin Heidelberg, 2006, pp. 404–421. ISBN: 978-3-540-39635-2.
DOI: 10.1007/11853565_24.

135

[66] S. M. Sadjadi, P. K. McKinley, and E. P. Kasten. “Architecture and Op-
eration of an Adaptable Communication Substrate”. In: The Ninth IEEE
Workshop on Future Trends of Distributed Computing Systems, 2003. FT-
DCS 2003. Proceedings. May 2003, pp. 46–55. DOI: 10.1109/FTDCS.
2003.1204293.

[67] Seyed Masoud Sadjadi and Philip K McKinley. A Survey of Adaptive Mid-
dleware. Tech. rep. MSU-CSE-03-35. Michigan State University, 2003.

[68] D. Saha and A. Mukherjee. “Pervasive Computing: a Paradigm for the 21st
Century”. In: Computer 36 (3), Mar. 2003, pp. 25–31. ISSN: 0018-9162.
DOI: 10.1109/MC.2003.1185214.

[69] Thomas Sandholm, Boris Magnusson, and Björn A. Johnsson. “An On-
Demand WebRTC and IoT Device Tunneling Service for Hospitals”. In:
2014 International Conference on Future Internet of Things and Cloud.
Barcelona, Spain, Aug. 2014, pp. 53–60. DOI: 10.1109/FiCloud.
2014.19.

[70] M. Satyanarayanan. “Fundamental Challenges in Mobile Computing”. In:
Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing. PODC ’96. Philadelphia, Pennsylvania, USA: ACM,
1996, pp. 1–7. ISBN: 0-89791-800-2. DOI: 10.1145/248052.248053.

[71] M. Satyanarayanan. “Pervasive Computing: Vision and Challenges”. In:
IEEE Personal Communications 8 (4), Aug. 2001, pp. 10–17. ISSN: 1070-
9916. DOI: 10.1109/98.943998.

[72] Douglas C. Schmidt. “Middleware for Real-time and Embedded Systems”.
In: Communications of the ACM 45 (6), June 2002, pp. 43–48. ISSN: 0001-
0782. DOI: 10.1145/508448.508472.

[73] D. C. Sharp. “Reducing Avionics Software Cost through Component Based
Product Line Development”. In: 17th DASC. AIAA/IEEE/SAE. Digital Avion-
ics Systems Conference. Proceedings (Cat. No.98CH36267). Vol. 2. Oct.
1998, G32/1–G32/8. DOI: 10.1109/DASC.1998.739846.

[74] Neil Smyth. Android Studio Development Essentials - Android 6 Edition.
CreateSpace Independent Publishing Platform, 2015. ISBN: 978-1-5197-
2208-9.

[75] Nathalie Souchon and Jean Vanderdonckt. “A Review of XML-compliant
User Interface Description Languages”. In: Interactive Systems. Design,
Specification, and Verification: 10th International Workshop, DSV-IS 2003,
Funchal, Madeira Island, Portugal, June 11-13, 2003. Revised Papers.
Ed. by Joaquim A. Jorge, Nuno Jardim Nunes, and João Falcão e Cunha.
Springer Berlin Heidelberg, 2003, pp. 377–391. ISBN: 978-3-540-39929-2.
DOI: 10.1007/978-3-540-39929-2_26.

136 BIBLIOGRAPHY

[76] Bernard W. Stewart and Christopher P. Wild. World Cancer Report 2014.
International Agency for Research on Cancer. IARC Press, 2014. ISBN:
978-92-832-0429-9.

[77] Swedish Foundation for Strategic Research (SSF). ENGROSS: ENabling
GROwing Software Systems. Research project. Grant RIT08-0075. 2009–
2013. URL: http://stratresearch.se/en/.

[78] Harald Sundmaeker et al. Vision and Challenges for Realising the Internet
of Things. Publications Office of the European Union, 2010. ISBN: 978-92-
79-15088-3. DOI: 10.2759/26127.

[79] David Svensson Fors. “Assemblies of Pervasive Services”. LU-CS-DISS:
2009-1. ISSN: 1404-1219. PhD thesis. Department of Computer Science,
Lund University, 2009. ISBN: 978-91-976939-1-2.

[80] Vinnova. Innovative Technology for the Future’s Emergency Medical Care.
Research project. Grant 2015-00382. 2015–2017. URL: http://www.
vinnova.se/en/.

[81] Vinnova. IT-stöd för avancerad cancervård i hemmet. Research project.
Grants 2011-02796 and 2013-04876. 2011–2016. URL: http://www.
vinnova.se/en/.

[82] William C. Wake. Extreme Programming Explored. The XP Series. Addison-
Wesley, 2002. ISBN: 0-201-73397-8.

[83] Gunnar Weibull. “Graphical Editor for Graphical User Interfaces for an
“Internet of Things” System”. LU-CS-EX:2015-32. ISSN: 1650-2884. MA
thesis. Department of Computer Science, Lund University, 2015.

[84] Gunnar Weibull, Boris Magnusson, and Björn A. Johnsson. The PML Editor:
User’s Manual. Tech. rep. 102. LU-CS-TR:2017-253. ISSN: 1404-1200.
Department of Computer Science, Lund University, 2017, p. 77.

[85] Mark Weiser. “Hot Topics: Ubiquitous computing”. In: Computer 26 (10),
Oct. 1993, pp. 71–72. ISSN: 0018-9162. DOI: 10.1109/2.237456.

[86] Mark Weiser. “Some Computer Science Issues in Ubiquitous Computing”.
In: Communications of the ACM 36 (7), July 1993, pp. 75–84. ISSN: 0001-
0782. DOI: 10.1145/159544.159617.

[87] Mark Weiser. “The Computer for the 21st Century”. In: Scientific American
265 (3), 1991, pp. 94–104.

[88] Mark Weiser and John Seely Brown. “The Coming Age of Calm Technol-
ogy”. In: Beyond Calculation: The Next Fifty Years of Computing. Springer
New York, 1997, pp. 75–85. ISBN: 978-1-4612-0685-9. DOI: 10.1007/
978-1-4612-0685-9_6.

[89] WindowBuilder. WindowBuilder - is a powerful and easy to use bi-di-
rectional Java GUI designer. The Eclipse Foundation. URL: https://
eclipse.org/windowbuilder/ (visited on Apr. 3, 2017).

137

[90] Claes Wohlin et al. Experimentation in Software Engineering. Springer-
Verlag Berlin Heidelberg, 2012. ISBN: 978-3-642-43226-2. DOI: 10.1007/
978-3-642-29044-2.

[91] Anthony S. Zigmond and R. Philip Snaith. “The Hospital Anxiety and De-
pression Scale”. In: Acta Psychiatrica Scandinavica 67 (6), 1983, pp. 361–
370. ISSN: 1600-0447. DOI: 10.1111/j.1600-0447.1983.tb0971
6.x.

