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Macroscopic Effects in Noncollinear High-Order Harmonic Generation
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We study two-color high-order harmonic generation using an intense driving field and its weak second
harmonic, crossed under a small angle in the focus. Employing sum- and difference-frequency generation
processes, such a noncollinear scheme can be used to measure and control macroscopic phase matching
effects by utilizing a geometrical phase mismatch component, which depends on the noncollinear angle.
We further show how spatial phase effects in the generation volume are mapped out into the far field
allowing a direct analogy with temporal carrier envelope effects in attosecond pulse generation.

DOI: 10.1103/PhysRevLett.112.143902 PACS numbers: 42.65.Ky, 42.65.Re

High-order harmonic generation (HHG) in gases using
multicolor optical fields is becoming a common tool in
attosecond science. Multicolor HHG has been implemented
by mixing the fundamental field with waves at low harm-
onic [1–3] and at incommensurate [4,5] frequencies. Other
schemes employ attosecond pulse trains mixed with the
fundamental field [6] as well as synthesized light transients
[7] for driving the HHG process. The control and flexibility
brought about by using two or more driving fields is used,
for example, to improve the efficiency of the generation
process [3,8], to monitor the single atom response [9,10],
and to implement gating techniques [11]. High-order wave
mixing can further be beneficial for achieving phase
matching [1,12–15].
Using multiple optical driving fields also allows for

noncollinear geometries. This concept, used extensively in
low-order frequency conversion processes such as optical
parametric amplification, has barely been applied to atto-
second science. In an early work, Birulin and co-workers
[16] addressed theoretically the general concept of HHG
in a noncollinear geometry. By mixing the fundamental
and a weak second harmonic at an angle, Bertrand and
co-workers [17] demonstrated the spatial separation of
multiple extreme ultraviolet (XUV) beams corresponding
to different sets of absorbed photon numbers from the two
fields. A similar scheme was recently used [18] for recon-
structing the spatiotemporal characteristics of the generated
attosecond pulses. Other authors [19–21] concentrated on
noncollinear sum-frequency generation (SFG) processes
driven by two identical laser fields. Such a scheme allows
for separation of the harmonics from the fundamental but
suffers from phase matching problems.

In this Letter, we theoretically and experimentally
examine the influence of noncollinear geometries in
HHG, analyzing in detail the macroscopic aspects. We
show for the first time, to our knowledge, how a weak
noncollinear field can be used as a probe to monitor and
control phase matching. We show that difference-frequency
generation (DFG), where a photon (or several photons)
is emitted in the conversion process, is in general more
favorable than SFG [22], which becomes very inefficient
with increasing noncollinear angle. This leads to the
counterintuitive result that the XUV radiation is dominantly
emitted outside the angle sector defined by the two driving

FIG. 1 (color online). (a) Wave vector representation of non-
collinear wave mixing. (b) Schematic setup: a red (800 nm) and a
blue (400 nm) laser beam are focused in a noncollinear geometry,
resulting in the emission of spatially separated high-order
harmonic beams. The depicted spectrum is a measured exper-
imental microchannel plate image recorded at γ ≈ 2 mrad and
resampled for a linear energy scale. The noncollinear angle (γ) is
exaggerated in this illustration.
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fields. Our analysis is illustrated in an experiment where
high-order harmonics are generated in argon using a
high-energy 800 nm laser and its weak second harmonic,
crossed under a noncollinear angle of a few mrad (Fig. 1).
We identify two important regimes for noncollinear HHG:
(i) the generation at noncollinear angles large enough to
allow a direct spatial separation of all photon pathways
leading to the same final energy [17] and (ii) the generation
at smaller noncollinear angles leading to spatially resolved
interferences between adjacent photon pathways. At large
angles, our noncollinear generation scheme provides the
functionality of an all-optical beam splitter, delivering
multiple, angularly separated XUV beams. At small angles,
the observed spatial interferences directly reflect the
harmonic phase variation across the focal plane.
Noncollinear high-order harmonic generation illustrates

beautifully the two fundamentally different but equivalent
concepts of light, waves or photons. Both concepts are very
useful for understanding the underlying principles and will
therefore be used alternately in the discussion throughout
this Letter. We begin by explaining the main features of
noncollinear HHG resulting from the field distribution in
the focal plane, followed by a more quantitative description
including propagation effects.
In the photon picture, the combination of two laser

fields with central frequencies ω1 and ω2 leads to radiation
with frequency ωq ¼ m1ω1 þm2ω2, where m1 and m2 are
integers. Without loss of generality m1 can be chosen to be
positive andm2 positive or negative, accounting for sum- and
difference-frequency generation processes, respectively. The
emission angle β of the generated radiation, measured from
the propagation axis of the ω1 field, can be deduced through
k-vector addition and defined by the unit vector of the
generated field [23] k̂q¼ðm1k1þm2k2Þ= jjm1k1þm2k2jj
[Fig. 1(a)]. Throughout the Letter we use small angle
approximations.
We consider the case of a fundamental beam and its

second harmonic, i.e., ω1 ¼ ω and ω2 ¼ 2ω. The generated
frequencies are ωq ¼ qω with q ¼ m1 þ 2m2, where the
net number of photons absorbed m ¼ m1 þm2 has to be
odd in order to satisfy parity conservation. Denoting by γ
the angle between k1 and k2, β can be approximated as

βðq;m2Þ ≈
2m2

q
γ; m2 ¼

� �1; 3; � � � if q is even
�0; 2; � � � if q is odd

.

(1)

For sufficiently large γ, the number of ω2 photons
defines a unique emission angle so that all driving photon
combinations that lead to the same final energy are
spatially separated in the far field. A pattern of harmonic
beams can then be detected for each harmonic order, as
illustrated in Fig. 2(a). For small noncollinear angles such
that Δβq ¼ βðq;m2 þ 2Þ − βðq;m2Þ < Θq, where Θq is
the divergence angle of a single harmonic beam, the

harmonic beams with different m2 orders can partly
overlap spatially and interfere [Fig. 2(b)], as discussed
in more detail later. The intensities of the two driving
fields determine the probability for up-converting photons
from one or the other driving field and define there-
fore the envelope position and width of the pattern in the
far field. For the case of a weak ω2 field, harmonic
emission occurs at small angles around k1 and only low
m2 orders can be expected. For a given harmonic order q,
an m2 order will be separated from the ω beam if
γ ≥ q=4f#m2, where f# ¼ f=D is the f number of the ω
beam focused with a focal length f and with an initial
beam diameter D.
From a wave perspective, the generated far-field

pattern can be understood as the interference of multiple
harmonic sources. These sources are created by the
interference of the two driving fields, as illustrated in
Fig. 2. The modulation of amplitude and phase of the
ω-2ω-driving field across the focal plane leads to an
amplitude and phase modulation of the dipole oscillating
at a given harmonic frequency. Note that the harmonic
grating persists over the pulse duration while the intensity
modulation at the fundamental frequencies is smeared out
in time. All features of the far-field pattern mentioned
above can be explained with this concept: the nonlinearity
of the process determines the harmonic intensity

FIG. 2 (color online). Illustration of the interference concept:
spatially resolved harmonic spectra as well as near- and far-field
intensity distributions for a given harmonic order. (a) Δβq > Θq
and (b) Δβq < Θq. The spatial distribution of the high-order
harmonic emission in the far field is defined by the interference
grating in the focus representing multiple harmonic sources,
determining intensity and phase of the emitted harmonics. The
displayed far-field spectra were calculated using the strong field
approximation, considering γ ¼ 5 mrad (a) and γ ¼ 1.5 mrad (b)
with I2ω=Iω ¼ 0.05 and Iω ¼ 2 × 1014 W=cm2, where Iν denotes
the focus intensity at central frequency ν.

PRL 112, 143902 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

143902-2



distribution in the focal plane and therefore the width of the
envelope over the spatial distribution in the far field.
The relative intensity of the two driving fields influences
the phase of the source grid, which determines the position
of the envelope in the far field.
Phase matching in HHG can be analyzed by adding the

relevant wave vectors, as illustrated in Figs. 3(a) and 3(b).
The total k-vector mismatch [24] for noncollinear HHG can
be expressed as

Δk ¼ Δkjj þ Δk<;

with Δk< ¼ m2γ
2

�
2m2

q
− 1

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

<0

ω

c
k̂q; (2)

where Δkjj is the k-vector mismatch corresponding to the
collinear generation geometry [Fig. 3(a)] while Δk< is the
geometrical offset added by the noncollinear geometry.
Considering a certain m2, phase matching (Δk ¼ 0) can be
achieved by choosing the right angle γ. Δk< is positive or
negative depending on the sign of m2, i.e., on whether we
consider DFG or SFG [Fig. 3(b)]. Δkjj can be written as a
sum of four components [25]: the wave vector mismatch
due to the geometrical Gouy phase, two components that
arise from dispersion in the partially ionized medium, and a
contribution due to the intensity-dependent dipole phase. A
limiting factor is ionization, which is intrinsically required
for HHG but strongly reduces the efficiency due to the
negative phase mismatch induced by plasma dispersion.
Additionally, the Gouy phase can lead to a significant
negative phase mismatch especially in the case of a tight
focus or high harmonic orders. In both cases, the resulting
negative Δkjj can be compensated by a positive Δk<.
In these conditions high harmonic emission driven by
noncollinear DFG can dominate over noncollinear SFG.
In the absence of propagation effects and for a weak
perturbing 2ω field, the harmonic spatial profile is strongest
at β ¼ 0 (m2 ¼ 0) [17]. If the far-field pattern is predomi-
nantly emitted outside the angle sector defined by the two
driving fields (as in Fig. 1), DFG dominates, indicating that
Δkjj is negative. If the emission maximum is located inside
this angle sector, SFG dominates and Δkjj is positive.
Not only the sign, but also the magnitude of Δkjj can be
estimated as shown by the analysis of our experimental
results presented below.
We performed experiments using a high-energy 40 fs Ti:

sapphire laser system operating at a 10 Hz repetition rate
[26]. The second harmonic field, with a pulse energy
corresponding to 5% of the fundamental, was generated
in one arm of a phase-stable Michelson-like interferometer
and loosely focused together with the fundamental field
into an argon gas cell (f# ≃ 200). The interferometer
allowed us to spatially displace the two beams so they
could be focused with a small angle relative to each other.
The generated harmonics were analyzed by an XUV
spectrometer with an entrance slit and recorded by a
microchannel plate detector. Our experimental conditions
are chosen to strongly favor HHG emission from the short
trajectory [26]. Due to the small angle, the beams corre-
sponding to differentm2 orders interfere [case (b) in Fig. 2],
and the spatial distribution in the far field depends on ϕ, the
relative phase between the ω and the 2ω fields. Figure 4(a)
shows a single shot harmonic spectrum recorded with
γ ≈ 1.5 mrad. Figure 3(c) presents the corresponding
spatial intensity distributions for four harmonic orders,
averaged over ϕ. The solid blue line in Fig. 3(c) shows
that the center of the far-field distribution, obtained by
fitting Gaussian envelopes to the experimental data,
varies with harmonic order. In order to deduce the effect
of phase matching from the spatial distribution, the ω-beam

FIG. 3 (color online). (a),(b) Schematic phase matching
scheme for noncollinear ω-2ω HHG. In conditions where a
phase mismatch is present for a collinear generation geometry
(here illustrated for a negative Δkjj on the optical axis), it is
possible to find a corresponding noncollinear geometry at which
the total phase mismatch is zero (e.g., considering DFG in the
displayed scheme). The shaded areas indicate a negative (green)
and positive (blue) Δk. (c) Measured harmonic spatial profile
averaged over the relative phase between the ω and 2ω fields for
γ ≈ 1.5 mrad: the solid blue line indicates the approximate center
of the spatial profiles; the dotted blue line marks the calculated
center of the harmonic beams in the absence of propagation
effects. The two arrows mark the propagation directions of the ω
and the 2ω beams. (d) Extracted wave vector mismatch Δkjj.

PRL 112, 143902 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

143902-3



direction cannot be used as a reference, since the 2ω-field
intensity is not negligible in our experimental conditions.
Instead we calculate this reference [dotted blue line in
Fig. 3(c)] using numerical simulations based on the
strong field approximation (SFA), accounting for the non-
collinear overlap of the two driving fields but neglecting
propagation effects (see the Supplemental Material [27]).
Experimentally, we clearly observe a dominant contribu-
tion on the left side from the reference direction, for most
harmonic orders, whichwe relate to a dominant DFG contri-
bution in our experimental conditions. The offset between
the experimental beam centers and the SFA results allows
us to deduce an approximate value for the effective Δkjj as
shown in Fig. 3(d) (see the Supplemental Material [27]).
Finally, we examine in more detail noncollinear HHG

at small crossing angles and analyze the influence of
interference effects on the harmonic spatial profile.
Figures 4(b)–4(d) show the far-field profiles for harmonics
16, 19, and 22 as a function of ϕ. The position of the spatial

fringes varies periodically with ϕ and this variation
becomes more pronounced as the harmonic order increases.
This can be understood within the wave model: the
harmonics generated at different source locations in the
focal plane [e.g., A and B in Fig. 2(b)] interfere in the far
field, and the interference pattern depends on their relative
phase. The main contribution to this phase difference is
due to the single atom response and can be expressed as
Δφs ¼ αqðIA − IBÞ, where αqI denotes the harmonic
dipole phase [28] at a corresponding driving field intensity
I. When the phase ϕ is varied, the harmonic intensity
grating in the focus moves across the focal plane and the
difference between IA and IB changes. Consequently, the
interference fringes in the far-field shift as clearly visible
in Figs. 4(c) and 4(d). The slope reveals the dipole
phase dependence on the intensity, which is small for
low harmonic orders and increases with order, as expected
for the short trajectory contribution [29]. Results from our
SFA simulations, shown in Figs. 4(e)–4(g), reproduce fairly
well the main features of the experimental interference
patterns. The differences in width and shape of the spatial
profiles (and consequently in the slope of the fringe pattern)
can be explained by deviation from Gaussian optics
including possible asymmetries of the fundamental beam
shape in the focus as well as ionization effects leading to
additional spatial broadening.
There is a clear analogy between the presented spatial

phase effects and carrier envelope phase (CEP) dependent
spectral fringes in HHG. Attosecond pulses are generated
by a short fundamental pulse at a few instants in time, e.g.,
ta and tb at the corresponding driving field intensities Ia, Ib.
The harmonic spectrum is a consequence of the interfer-
ence between these pulses. Similarly to the spatial inter-
ference effect discussed above, the spectral interference
pattern depends on the relative phase Δφt ¼ αqðIa − IbÞ,
which changes with CEP [30,31].
In summary, we have theoretically and experimentally

investigated noncollinear HHG, focusing on the macro-
scopic aspects of the generation process. We have shown
how a noncollinear second harmonic field can be used to
probe phase matching by utilizing a geometrical phase
mismatch component, introduced by the noncollinear
geometry. Using difference-frequency generation proc-
esses, this component can be advantageous for phase-
matched generation in a partly ionized medium. We further
identify different noncollinear angle regimes leading either
to well separated harmonic beams or to spatial interference
structures in the far-field spectrum. These interferences are
the spatial analog of temporal interference structures in
attosecond pulse generation with few cycle pulses.

This research was supported by the Marie Curie program
ATTOFEL (ITN), the European Research Council
(ALMA), the Swedish Research Council, the Swedish
Foundation for Strategic Research, and the Knut and
Alice Wallenberg Foundation.
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FIG. 4 (color online). (a) Single shot experimental harmonic
spectrum generated in the same conditions as shown in Fig. 3(c).
The dashed white lines indicate the region displayed spectrally
integrated and normalized as a function of ϕ in (b)–(d).
Corresponding SFA results are shown in (e)–(g). Note that
the center of the spatial distribution is shifted compared to the
experimentally measured patterns since propagation effects are
not included in the simulations.
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