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ABSTRACT 

 

Purpose. To explore oxidative stress and the radical scavenger α1-microglobulin (A1M) in 

the vitreous body of human eyes with primary rhegmatogenous retinal detachment (RRD). 

Methods. Levels of carbonyl groups, a marker of oxidative stress, and A1M were 

measured by ELISA and RIA in 14 vitreous samples derived from patients suffering from 

RRD and compared with 14 samples from macula hole (MH) patients. Carbonyl group and 

A1M levels in RRD samples were statistically related to detachment characteristics. 

Analysis of total protein level, SDS-PAGE, and Western blotting of A1M was also 

performed. In a separate experiment, mRNA expression of A1M was measured by RT-

PCR in rat retina explants. 

Results. Levels of carbonyl groups and A1M varied widely in RRD vitreous samples but 

was significantly higher in samples derived from eyes with large detachment area and 

macula-off status while the presence of vitreous hemorrhage did not show any significant 

correlation. Compared with MH samples, RRD samples displayed significantly higher 

levels of A1M, whereas changes in total protein levels and carbonyl groups were not 

significant. Novel forms of A1M, not previously seen in plasma, were found in the vitreous 

body by Western blotting. Furthermore, A1M expression was seen in rat retina explants 

and was upregulated after 24h of culturing.  

Conclusion. Oxidative stress is a prominent feature of human eyes with primary RRD, and 

is directly related to detachment severity. Affected eyes can launch a protective response in 

the form of the radical scavenger A1M possibly derived from the retina. The results thus 

indicate potential therapeutic cell loss prevention in RRD by employing the endogeneous 

radical scavenger A1M. 
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INTRODUCTION 

 

The term "oxidative stress" is used to describe conditions with an abnormally high 

production of redox active compounds and/or impaired antioxidative tissue defence 

systems [1]. Major mediators of oxidative stress are reactive oxygen species (ROS) 

including free radicals, which are extremely reactive compounds due to the presence of 

unpaired electrons. ROS include hydrogen peroxide (H2O2) and the hydroxyl and 

superoxide radicals, which induce oxidative stress by oxidative reactions with cellular and 

extracellular molecular components. One of the most important generators of ROS is free 

hemoglobin (Hb), released from red blood cells during haemorrhage and hemolytic 

conditions [2].  

 

Normally, ROS and other oxidants are counteracted by antioxidants including the high-

molecular weight enzymes superoxide dismutase (SOD), catalase, and glutathione 

peroxidases and the low-molecular weight non-enzymatic compounds glutathione, vitamin 

C and E. These compounds have previously been well characterized, but novel 

antioxidants are continuously being discovered. One such molecule is the radical scavenger 

A1M (1-microglobulin) which was recently shown to have protective properties against 

oxidative stress in cell cultures, skin and placenta [3-5] (reviewed in [6]). A1M is a 

ubiquitous low molecular weight (26 kDa) plasma and tissue protein [7, 8] mainly 

synthesized in the liver [9, 10]
 
but also, in less amounts, in peripheral organs such as blood 

cells, pancreas and kidney. From the liver cells, A1M is secreted to the blood stream where 

it is found in a free form (1 M) and as high-molecular weight complexes with IgA, 

albumin and prothrombin ( 1 M) [11, 12]. It is rapidly distributed to several tissues 

where it is transported from the blood vessels to the extravascular compartments [13]. 

A1M is a reductase, [14] a multispecific scavenger of small organic radicals [15]
 
and has 
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antioxidant properties [3]. In addition, an increased synthesis in liver, blood cells, placenta 

and skin keratinocytes is induced by cell-free Hb and ROS [4, 5, 16].  

 

The eye is continuously subjected to oxidative stress from both exogenous and endogenous 

sources, and impaired redox balance has been implicated in a number of ophthalmologic 

disorders, e.g. cataract of the lens [17-19], diabetic retinopathy [20-22], and age-related 

macular degeneration (AMD) [23-25]. Recent findings indicate that oxidative stress may 

also play a role in experimental retinal detachment (RD), and that ROS scavenger 

treatment can attenuate RD-related photoreceptor death [26, 27, 28]. Given the potential 

clinical importance, in this paper we have explored the presence of biomarkers of oxidative 

stress, as well as properties of the protective molecule A1M in human eyes with primary 

RRD. 



5 
 

MATERIALS AND METHODS 

 

Patients 

Vitreous samples were obtained from 14 phakic eyes of 14 patients during vitrectomy for 

primary RRD at the University Hospital of Lund. RRD after previous vitreoretinal surgery 

and secondary to trauma was not considered primary, and such samples were thus not 

included as well as samples from eyes with concomitant eye disease including cataract. 

Fourteen cases of macular hole (MH) were included for comparison resulting in a total of 

28 samples. Written consent was obtained from each patient, and all procedures complied 

with the Declaration of Helsinki. 

 

Approximately 1.0 ml of undiluted vitreous was obtained from each eye under air infusion 

at the initial stage of each procedure. Vitreous samples were immediately refrigerated at -

20° C, and after 1 hour frozen at -80° C. Before analysis, the samples were thawed, 

weighed, and Complete Mini Protease inhibitor (Roche Diagnostics, Germany) was added 

to 5% (w/w). 

 

Background data for a number of preoperative variables for RRD patients were obtained, 

as well as characterization of the detachments including presence of vitreous hemorrhage, 

extent of detachment and macular status (Table 1).
  
Detachment characteristics were 

grouped and statistically analyzed in relation to vitreous concentrations of carbonyl groups 

and A1M using two-tailed Student's t-test (see below, Fig. 2). GraphPad InStat, GraphPad 

Software, San Diego California USA, was used for all calculations. Statistical significance 

was defined as p<0.05 using the above-mentioned tests. 
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Total protein analysis and SDS-PAGE 

Total protein in the vitreous samples was measured in a Bradford assay as described by 

Bradford [29]. To investigate the protein contents of the vitreous samples, sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed as described by 

Laemmli [30], using gels bought from Thermo Scientific containing 12% or 4-20% 

polyacrylamide. Reduced conditions were achieved by mixing the samples with sample 

buffer containing 2% (v/v) mercaptoethanol and then boiling for 1 minute before applying 

them to the gel. Samples were centrifuged prior to analysis. Electrophoresis was performed 

at 150 V for about 45 minutes. Gels were then stained with Coomassie Brilliant Blue R-

250 (BDH Chemicals, Ltd. Poole, UK) and dried. 

 

Measurement of A1M concentrations 

Radioimmunoassay (RIA) was performed as described previously [31] to measure the 

concentration of A1M in the vitreous body samples. Briefly, polyclonal goat anti-A1M 

(HALVAN, prepared at our laboratory as described [32]), diluted 6000 x, was mixed with  

125
I-human urine A1M, approximately 50 ng/ml, and standard A1M or unknown samples, 

and incubated over-night at RT. Bovine serum and polyethylene glycol 6000 were then 

added to 20% and 10%, respectively, the samples centrifuged and the pellets analyzed in a 

Wallac Wizard 1470 gamma counter (Perkin–Elmer Life Sciences). 
125

I-labeling of A1M 

was done using the chloramine T method [33]. Protein-bound iodine was separated from 

free iodide by gel-chromatography on a Sephadex G-25 column (PD10, Amersham-

Pharmacia Biotech). A specific activity of around 0.1 MBq/µg protein was obtained.  

 

Western blotting of A1M  

The different forms of A1M in the vitreous samples were analyzed by Western blotting, 

performed as described previously [34]. Electrophoresis was performed as described 
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above. Instead of staining, the proteins were transferred to polyvinylidenefluoride (PVDF) 

membranes (Immobilon, Millipore, Bedford, MA) as described [35]. Polyclonal rabbit 

anti-human A1M (K:107, prepared at our laboratory as described [36]), diluted 2000 x, 

was used as primary antibody, incubated over-night at 4°C. As secondary antibody 
125

I-

goat anti-rabbit IgG [32], incubated 1 h at RT, was used.  

 

Carbonyl group ELISA 

Measurement of oxidative stress was performed using a carbonyl group ELISA essentially 

as described [37]. Vitreous body sample was diluted to 0.17 mg total protein/ml and 12.5 

μl were then derivatized with DNP-hydrazine (Sigma Cat nr. D-2630). Anti-DNP 

(Invitrogen), diluted 2000x, was used as primary antibody, incubated 3h at RT. Swine-anti-

rabbit IgG (Dako A/S), diluted 2000x, was used as secondary antibody, incubated 1h at 

RT. O-phenylenediamine (Sigma Cat nr. P5412), diluted in 60mM Tris-HCl, pH 8.5, was 

used as substrate solution and absorbance was measured at 450nm.  

 

Expression of A1M-gene in retina explants 

To quantify expression of the A1M-gene in retinal cells, rat retinas were removed from 

five-month old Sprague-Dawley rats (18 eyes). The rats were killed with CO and then 

decapitated. The eyes were removed and the neuroretinas carefully dissected free from the 

retinal pigment epithelium (RPE) with fine forceps. The optic nerve was thereafter cut with 

microscissors, and the neuroretina washed twice in phosphate buffered saline (PBS, 10 

mM Na-phosphate pH 7.4, 125 mM NaCl) and incubated at 37°C for 3h in PBS, 200 µl for 

each eye. The medium was aspirated, the tissue solubilized in 1 ml Trizol (Invitrogen, cat 

nr. 15596-018), and then stored in -80°C until used for real time-PCR analysis. Messenger 

RNA was isolated from the Trizol-solubilized retina tissue, prepared as described above. 

Reverse Transcription PCR reagents (Fermenta) were used to transcribe mRNA to cDNA. 
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Real time-PCR was then performed using the following primers, for A1M: 

TTCTTGTTGCTGACTGCCTGCC (forward), TTCTTAATCCGCCTCAGCCACG 

(reverse) and for the housekeeping gene glyceraldehyde-3-phosphate-dehydrogenase 

(GAPDH) TGAACGGGAAGCTCACT (forward), TCCACCACCCTGTTGCTG 

(reverse). The primers were obtained from Eurofins MWG Operon. The expression was 

analyzed using iQ SYBR Green Supermix (Bio-Rad). Raw data were obtained as cycle 

threshold values (Ct-values) and were normalized to the Ct-values of human GAPDH. 

Alternatively, rat full-thickness neuroretinas (n=10) were explanted on culture plate inserts 

(Millicell-HA 0.45-μm; Millipore, Billerica, ME) with the photoreceptor layer toward the 

membrane. The explants were cultured in 2 mL Dulbecco’s modified Eagle’s medium 

(DMEM)/F12 medium–L-glutamine (Gibco) supplemented with 10% fetal calf serum. A 

cocktail containing 2 mM L-glutamine, 100 U/mL penicillin, and 100 ng/mL streptomycin 

(Sigma-Aldrich, St Louis, MO) was added, and the retinas were maintained at 37°C with 

95% humidity and 5% CO2. Specimens were kept under culture conditions for 24 hours, 

and A1M was thereafter analysed by real time-PCR as described above.  

All proceedings and animal treatment were in accordance with the guidelines and 

requirements of the Government Committee on Animal Experimentation at Lund 

University and the “Principles of laboratory animal care” (NIH publication No. 85–23, 

revised 1985), the OPRR Public Health Service Policy on the Humane Care and Use of 

Laboratory Animals (revised 1986) and the U.S. Animal Welfare Act, as amended, were 

followed. 
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RESULTS 

 

Total protein analysis 

Total protein was measured in a Bradford assay (Table 2). The mean amount of total 

vitreous protein in RRD samples was 0.78 mg/ml ±0.18 SEM and in the MH samples 0.52 

mg/ml±0.18 SEM. This difference was not significant (p=0.32 two-tailed Student´s t-test). 

The SDS-PAGE (Fig. 1) showed that the 66kDa albumin band was present in all samples. 

IgG light chain could be seen as a band at approximately 25kDa in sample R3, R5, R6 and 

R12. A band at 17kDa was also seen in some samples, corresponding to single hemoglobin 

chains by comparing their migration to exogenously added hemoglobin chains (not 

shown). The amount of hemoglobin in the different samples was estimated by visual 

analysis of the SDS-PAGE and the results are presented in Table 2.  

 

Carbonyl groups 

Oxidative stress was measured by the presence of protein carbonyl groups, which are 

produced as a result of oxidation reactions in the vitreous. The concentrations of carbonyl 

groups in each sample, expressed as absorbance units/μl sample, are shown in Table 2.  

Since the total volume of all samples was approximately the same (around 1 ml, see 

Materials and Methods), these values are thus proportional to the total amount of oxidative 

stress exerted in the vitreous. In the RRD group, the mean values of carbonyl groups 

measured 0.087 (abs units/µl) ± 0.021 SEM, the macular hole samples 0.062 ± 0.014 SEM. 

The increased amount of carbonyl groups in the RD samples was not statistically 

significant (p<0.34; see Fig 2). 

 

 

 



10 
 

Concentrations of A1M  

The mean concentration of A1M in retinal detachment samples was 0.50 μg/ml ± 0.12 

SEM, in the macular hole samples 0.21 μg/ml± 0.061 SEM (Table 2). The A1M 

concentration in the RRD samples was significally higher compared to the MH control 

group (p=0.041; see Fig. 2). To account for a possible leakage of plasma as a source of 

A1M in the vitreous samples, the A1M-concentrations were divided by the total protein 

concentrations and compared to a plasma sample (not shown). In patients with RRD, the 

levels of A1M in the vitreous body relative to the total protein content varied widely 

between the samples, and no apparent correlation between RRD samples and plasma was 

found. 

 

Correlations with clinical parameters  

Since the concentrations of carbonyl groups and A1M in the vitreous may be employed as 

markers of total oxidative stress and antioxidant capacity, respectively, we separately 

analysed the correlation of these values with extent of detachment and macula status (Fig. 

2). The vitreous concentrations of A1M and carbonyl groups were found to be significantly 

higher in eyes with extensive detachment and with macula off (Fig. 2). To explore the 

blood-derived contribution of A1M and carbonyl groups, a separate analysis of samples 

derived from eyes with or without visible vitreous hemorrhage. The presence of vitreous 

hemorrhage did not correlate with carbonyl group or A1M concentrations. 

 

Western blotting of A1M  

In agreement with previous reports [12], samples of normal human blood plasma displayed 

an A1M-band at 33kDa representing free 26kDa A1M, a band at 90kDa representing the 

IgA-A1M complex, a band at 100kDa and 135kDa representing two forms of A1M-

albumin, a band at 110kDa representing A1M-prothrombin, and a band at >225 kDa 
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representing a multimeric form of IgA-A1M. In addition, a band was seen at 20 kDa, 

representing an A1M-fragment (unpublished data).  

 

In the vitreous from patients with RRD, bands at corresponding molecular weights were 

found (Fig. 3). However, the intensity of the anti A1M-stained bands varied among 

samples, which was also the case for the distribution of the various forms. The sample 

from the patient with macula hole displayed weak bands. In addition, several unique bands 

in most samples of vitreous body, not seen in plasma, were found. The two most prominent 

were seen at 66 and 76 kDa.  

 

A1M mRNA expression in rat retina  

A1M expression was investigated in non-cultured and cultured rat retinas. To explore A1M 

expression in the non-cultured normal retina tissue, neuroretinas were kept for 3h in PBS 

prior to mRNA analysis. We also wanted to investigate the capacity of the retina to 

upregulate A1M under stress-induced conditions by culturing neuroretinas for 24h. The 

expression of selected genes were analyzed by real time PCR. A1M mRNA was found 

both in non-cultured and cultured tissue (Table 3). To compare levels under the different 

conditions, A1M mRNA levels were normalized to the levels of a house-keeping gene, 

GAPDH. Relative to GAPDH, the A1M mRNA was more abundant in cultured than non-

cultured retina (ΔΔCt = 2.27, Table 3), a statistically significant upregulation  

(p<0.02*10
-5

).   
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DISCUSSION 

 

In this paper we have shown that oxidative stress as well as antioxidation are prominent 

features of human eyes with primary RRD. Macular-off status as well as large detachment 

extension correlated significantly with the magnitude of carbonyl group manifestation, but 

also with A1M upregulation. This indicates that oxidative stress is pronounced and 

proportional to detachment severity, but also that the retina is able to launch a protective 

response to the injury. Oxidative stress has recently been implicated in experimental RD 

related cell-death in rodents [26, 27, 28], and we can now confirm that it is relevant also in 

the clinical situation. 

 

A correlation between A1M-concentrations and oxidative stress markers (carbonyl groups) 

in vivo has been shown previously in pregnant women with preeclampsia [38]. Oxidative 

stress-induced A1M upregulation has also been shown in several tissues including liver, 

blood cell lines [16], keratinocyte primary cultures, and skin explants [4]. In the eye, A1M 

upregulation could theoretically be derived from a disturbed blood-ocular barrier function 

and/or local upregulation in eye tissues. Previously, substantial A1M production has been 

reported in the liver from which distribution takes place via the circulation throughout the 

body [13]. Retinal detachment is associated with blood-ocular barrier breakdown, and it is 

therefore plausible that A1M in the eye may also be derived from this source. However, we 

found no apparent correlation between the A1M/total protein quotient in vitreous and 

plasma samples. Similarly, RRD eyes with vitreous hemorrhage did not show a higher 

A1M or carbonyl group level. Interestingly, rat retina in vitro showed a capacity to 

upregulate A1M mRNA expression in vitro. Put together, the results suggest that at least 

part of the A1M found in the vitreous is indeed produced by the retina in response to RRD 

induced oxidative stress. 
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Further support for the concept of local A1M production can be gained when vitreous 

isoforms of A1M are examined. High molecular weight (>100 kDa) forms of A1M (i.e. 

complexes with IgA, albumin and prothrombin) have been isolated and characterized in 

human plasma [12]. These forms were absent in most of our vitreous samples, again 

indicating a discrepancy between plasma and vitreous. We found that the anti-A1M 

antibodies consistently stained three novel bands in the vitreous samples, but not in 

plasma. These bands migrated as 75, 66 and 55 kDa and may represent new, vitreous-

specific forms of A1M. An alternative explanation is that these three bands are plasma 

proteins present in the vitreous recognized by anti-A1M antibodies. The antibodies were 

produced by immunizing with urinary A1M and are therefore expected to bind to the 

brown chromophores found on urinary A1M [39, 40]. It was suggested that these represent 

degradation products of small organic radicals covalently linked to side-chains on A1M, 

for example the tryptophan metabolite kynurenine [41], heme [42], and ABTS [15]. It is 

thus possible that anti-A1M antibodies that recognize degraded radicals bound to urinary 

A1M, can detect the same epitopes on the 75, 66 and 55 kDa bands seen in Fig. 3. 

Interestingly, protein-linked kynurenine has been found in the eye [43]
 
supporting this 

hypothesis. 

 

Anti-oxidants are not yet part of the armamentarium in clinical RRD treatment, but ROS 

scavengers have been found to be of significant value in patients with acute ischemic 

stroke [44]. Oxidative stress-related cell death associated with reperfusion after ischemia 

has been well described in the retina [45]. Similarly, re-attachment of the detached retina is 

associated with several pathological events, although the underlying molecular 

mechanisms have not yet been fully understood [46]. Since oxidative stress-related injury 
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in experimental RD can be significantly attenuated with ROS scavenger treatment [26, 27], 

this avenue may also be applicable to the clinical situation. 

 

A1M has previously been found to have protective effects against heme- and ROS-induced 

damage on cells and matrix (reviewed in [6]). Thus, A1M prevented intracellular 

oxidation, cell-death and up-regulation of cell cycle regulatory and antioxidation genes 

induced by ROS in the erythroid cell line K562 [3], and silencing of the endogenous A1M 

expression by addition of siRNA led to an increased cytosol oxidation [3]. Similar results 

were obtained in primary keratinocytes and using ex vivo skin explant cultures [4]. In the 

skin explants, protection and repair of collagen fibers in extracellular matrix by A1M was 

also shown, using biochemical methods and electron microscopy [4]. The documented 

protective antioxidation properties together with the apparent involvement in the response 

against RRD-related oxidative stress present here makes A1M an intriguing candidate for 

local or systemic use as adjuvantic treatment in conjunction with surgery. 
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 FIGURE LEGENDS 

 

Figure 1. SDS-PAGE of vitreous samples under reducing conditions. All samples were 

centrifuged 20 minutes at 14,000 g prior to SDS-PAGE. Lane 1, marked "P", was loaded 

with 5µl human plasma diluted 100 x and lanes 2-7 were loaded with 5 µl vitreous body 

from human patients. Sample loading buffer contained mercaptoethanol. The numbering 

(No. R3, R4, R5, R6, R12,) refers to the sample numbers in Table 2. MH8 refers to MH 

sample no. 8. 

 

Figure 2. Comparison of detachment characteristics and vitreous concentrations of  

A1M and carbonyl groups. The 14 RD samples were subgrouped according to 

detachment characteristics (vitreous hemorrhage, extent of detachment, macular status) and 

correlated to A1M and carbonyl groups as described in Materials and Methods. The whole 

RD sample group (n=14) was also compared to the whole MH control group (n= 14) 

(right).  

 

Figure 3. Western blotting with anti-A1M. Sample loading buffer contained 

mercaptoethanol. Lane marked "P" is loaded with 4 µl human plasma diluted 50 x. 3 µl 

vitreous body sample was added to lane 2-7. A polyclonal antibody (K:107) directed 

against A1M, diluted 2000 x, was used as primary antibody, and 
125

I-labelled goat anti-

rabbit IgG (0.5 x 10
6
 cpm/ml) as secondary antibody. Sample numbers refer to sample IDs 

in Table 2. MH8 refers to MH sample no. 8. The identification of the A1M-forms as 

indicated was done according to ref. no [12].  
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TABLES 

 

Table 1. Preoperative background data for RRD patients (n=14). Items are presented 

as categorical data with absolute frequencies or as numerical data with mean ± SEM. 

 

Variable 

 

  Data 

 

Mean ± SEM 

 

Freq. 

 

Age (years)                                                    

 

 

All: 

                                                                                

 

  

59.7 ± 3.2 

 

Sex 

 

Male             

Female  

 8 

6 

Preoperative VA (logMAR)   All: 

 

  

  1.19 ± 0.3  

Lens status   Phakic 

  Pseudophakic 

 

 11 

3 

 

Vitreous haemorrhage   Yes 

  No 

 

 5 

9 

Extent of detachment (quadrants)   1-2 

  3-4 

 

8 

6 

Macular status   On 

  Off 

 

5 

9 
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Table 2. Individual results of the vitreous sample analysis 

 

Sample 

no. 

 

a
Disease 

 

b
Hemoglobin 

 

 

c
Total Protein     

 

(mg/ml)               

 

A1M
 

(µg/ml)        

 

Carbonyl groups 

(abs units/µl sample)  

R1    RRD    0  1.43                       0.85              0.174 

R2    RRD   +  2.09                       1.27              0.255 

R3    RRD   +  1.57                       0.54              0.178 

R4    RRD   0  0.18                       0.15              0.030 

R5    RRD   +  0.67                       0.98              0.074 

R6    RRD   +  0.23                       0.35              0.026 

R7    RRD   0  0.26                       0.11              0.029 

R8    RRD   ++ 0.37                       0.13              0.034 

R9    RRD   0  0.47                       0.15              0.038 

R10    RRD   0  0.18                       0.05              0.021 

R11    RRD   ++  1.70                       1.02              0.176 

R12    RRD   ++  0.38                       0.13              0.036 

R13    RRD   0  0.17                       0.03              0.023 

R14    RRD   0  1.18                       1.20              0.126 

Mean
d
   

Mean
d
  

  RRD  (n=14) 

MH   (n=14) 

 0.78 (0.18) 

0.52 (0.18)                       

0.50 (0.12) 

0.21 (0.061)            

  0.087 (0.021) 

  0.062 (0.014) 

 

a
RRD = Rhegmatogenous Retinal detachment, MH = Macula hole. 

b
Semi-quantification of hemoglobin as seen in SDS-PAGE (Fig. 1): “0” = 

negative, “+” = low levels, “++” = medium levels, “+++” = high levels  

c
Vitreous levels of total protein measured by Bradford assay as described in 

Materials and Methods.  

d
Mean and (SEM) values are given. 
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Table 3. A1M and GAPDH mRNA expression in rat retina. 

  

GAPDH  

(Mean Ct ± SEM) 

 

A1M  

(Mean Ct ± SEM) 

 

c
A1M  

(ΔΔCt ± SEM) 

 

a
Tissue 

(n=14) 

 

 

15.85 ± 0.26   

 

 

29.80 ± 0.14  

 

 

0 ± 0.22 

 

b
Culture 

(n=10) 

 

 

24.44 ± 0.16 

 

 

36.12 ± 0.13  

 

 

2.27 ± 0.18 

a
To explore A1M expression in the non-cultured normal retina tissue, neuroretinas were 

kept for 3h in PBS as described in Materials and Methods prior to mRNA analysis. 

 
b
To investigate the capacity of the retina to upregulate A1M under stress-induced 

conditions, neuroretinas was cultured for 24h as described in Materials and Methods prior 

to mRNA analysis. 

c
Ct-values were re-calculated to ΔCt-values by normalizing to the Ct-values of human 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The ΔΔCt-values shown in the 

Table were then calculated by normalizing 24 h-cultured retinas against 3h-incubated 

retinas. Hence, the ΔΔCt values of the 3 h-incubated retinas correspond to zero. A lower 

Ct-value corresponds to an increased mRNA-level and is therefore depicted as an increased 

ΔΔCt-value, and vice versa. 

 

 


