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Diabetes is a lifelong chronic disease. During the 
past 100 years, its diagnosis has been based on 
measurements of raised blood glucose concentrations. 
In the 1960s, diabetes was subclassifi ed based on 
age at onset and need for insulin treatment (ie, 
juvenile or maturity onset; insulin or non-insulin-
requiring diabetes). Because diabetes was believed 
to be an inherited disease, much hope was placed 
on the identifi cation of genetic markers that would 
help to diagnose diabetic subgroups. Although 
investigators in the 1970s noted that type 1 diabetes 
was strongly associated with the HLA locus on 
chromosome 6, determination of HLA genotypes did 
not add substantial diagnostic value because of their 
high prevalence.1 The discovery of autoantibodies to 
diff erent islet antigens in the 1980s2 added strong 
discriminatory power to the diagnosis of autoimmune 
type 1 diabetes, and this knowledge was later applied 
to a late-onset autoimmune form of diabetes 
in adults.3

The fi rst real genetic breakthroughs in diabetes 
classifi cation came with the discovery that mutations 
in the genes encoding glucokinase, HNF1A, and HNF4A 
were associated with diff erent forms of maturity-onset 
diabetes of the young.4–6 Whereas maturity-onset 
diabetes of the young can show varying penetrance and 
severity, neonatal diabetes, a rare (1:100 000 births) 
severe form of diabetes, is diagnosed in infants 
younger than 6 months. The group in Exeter, UK, 

pioneered the genetic dissection of neonatal diabetes, 
and noted that one form could be linked to mutations 
in the KCNJ11 gene encoding the Kir6.2 subunit of 
the ATP-dependent potassium channel in pancreatic 
islets, and could be treated with sulfonylureas.7,8 During 
the past 20 years, more than 20 genes have been 
identifi ed as causing neonatal diabetes, as discussed by 
Elisa De Franco and colleagues in their accompanying 
study in The Lancet.9

In many of these monogenic diseases, a causal 
diagnosis has had an important eff ect on choice of 
treatment and disease outcome. In one striking case,10 
after identifi cation of a mutation in the KCNJ11 gene 
in a poorly developing child with neonatal diabetes and 
switching from insulin to la rge doses of sulfonylurea, 
the child’s diabetes could not only be well controlled, 
but development, walking, and talking became 
possible. Kir6.2 is also expressed in the brain, and this 
combination of diabetes, developmental brain defects, 
and sometimes epilepsy has been called developmental 
delay-epilepsy-neonatal diabetes. Clear evidence exists 
of a genetic diagnosis improving treatment.7,8

In patients diagnosed with maturity-onset diabetes of 
the young, those with mutations in the glucokinase gene 
do not need any treatment because the mutation only 
modestly raises the threshold for the phosphorylating 
capacity of the enzyme, but the slight increase in glucose 
can fully overcome this defect. Therefore, maturity-onset 
diabetes of the young 2 caused by glucokinase mutations 
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is not really a disease, but a compensated metabolic 
disorder.11 One of my patients received a diagnosis of 
diabetes as a child, but, after many years and about 
19 000 insulin injections, received a precise genetic 
diagnosis that her diabetes was caused by a mutation in 
the glucokinase gene. Now, she needs no treatment.

The Exeter group has not only pioneered research in 
this specialty, but also removed barriers by providing 
genetic tests to patients from many diff erent countries 
for free covered by research grants.8 In the early days 
of the study in 2000, genetic testing was expensive 
and time consuming, and the investigators used 
Sanger sequencing of genes that were selected 
on the basis of previous clinical information. The 
addition of targeted next-generation sequencing to 
Sanger sequencing in 2012 reduced the cost and time 
required, and also broadened the range of variants 
that could be tested without clinical data. This change 
resulted in the identifi cation of a genetic diagnosis 
in 82% (840/1020) of tested patients in De Franco 
and colleagues’ study.9 Because most patients are 
now referred within weeks of being diagnosed with 
diabetes, physicians can achieve an early genetic 
diagnosis and predict the development of associated 
clinical features. Indeed, De Franco and colleagues 
document the clinical benefi t of early diagnosis and 
treatment in certain subgroups of patients with 
neonatal diabetes.9 

This approach still requires a prediction of the genes 
to sequence, which is reasonable in neonatal diabetes 
(ie, with a clear phenotype of diagnosis of diabetes 
<6 months of age), but not all cases of monogenic 
diabetes are this clear cut. The next step in less clear 
clinical situations will be whole-genome sequencing 
without any assumptions about what genes might 
be involved. Although cost is a restriction in this 
situation, this whole-genome sequencing approach 
can already work for recessive mutations, which are 
rare. 

We recently identifi ed three recessive mutations 
in BBS10 causing the Bardet-Bield syndrome in an 
analysis of next-generation sequence data from 
Finland.12 The three adult carriers had not been 
diagnosed with the syndrome, even though clinical 
features meant that Bardet-Bield syndrome could not 

be excluded. However, many challenges will need to be 
overcome before whole-genome sequencing becomes 
part of routine clinical work-up in diff erent specialties. 
Hopefully the UK Government’s 100 000 Genome 
Project and the US$215 million promised by President 
Obama to create a Precision Medicine Initiative in 
the USA will provide impetus towards this goal. Such 
projects should not only lead to more precise diagnosis 
informing treatment in diff erent genetically-
determined diseases, but also increase the number of 
aff ected individuals who will benefi t from diagnosis 
and treatment.
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