Individual whole-body concentration of (137)Cesium is associated with decreased blood counts in children in the Chernobyl-contaminated areas, Ukraine, 2008-2010.

Lindgren, Anna; Stepanova, Eugenia; Vdovenko, Vitaliy; McMahon, Daria; Litvinetz, Oksana; Leonovich, Elena; Karmaus, Wilfried

Published in:
Journal of Exposure Science & Environmental Epidemiology

DOI:
10.1038/jes.2013.60

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Individual whole body concentration of 137Cesium is associated with decreased blood counts in children in the Chernobyl contaminated areas, Ukraine, 2008-2010.

Authors: Anna Lindgren1, Eugenia Stepanova2, Vitaliy Vdovenko2, Daria McMahon3, Oksana Litvinetz2, Elena Leonovich2, Wilfried Karmaus4

1Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden.
2Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.
3Department of Epidemiology and Biostatistics, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.
4Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Tennessee, USA.

Corresponding author

Wilfried Karmaus, MD, Dr.med., MPH
Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 301 Robison Hall, Memphis, TN 38152, USA.
Tel: (+1) 901-678-2491
Fax: (+1) 901-678-0372
Email: karmaus1@memphis.edu
Abstract

Narodichesky region, Zhitomir Oblast, Ukraine, is situated approximately 80 km from the Chernobyl Nuclear Power Plant, which exploded in 1986 and polluted the environment. A previous study found that children living in villages with high activity of ^{137}Cs in the soil had decreased levels of hemoglobin, erythrocytes and thrombocytes. These findings motivated the present study which used a more comprehensive exposure assessment, including individual whole-body concentrations (WBC) of ^{137}Cs (Bq/kg). This cross-sectional sample examined between 2008-2010, included 590 children in the age 0-18 years. Children with higher individual log(WBC) activity in the body, had significantly decreased hemoglobin, erythrocyte and thrombocyte counts. The effect of log(WBC) on decreased thrombocyte count was only seen in children older than 12 years. The average village activity of ^{137}Cs (kBq/m2) in soil was associated with decreased blood counts only indirectly, through ^{137}Cs in the body as an intermediate variable.

Children in this study were born at least four years after the accident and thus exposed to low doses of ionizing radiation from ^{137}Cs. This cross-sectional study indicates that low levels may be associated with decreased blood counts, but we cannot exclude that these results are due to residual confounding factors.

Key words

child exposure/health, epidemiology, personal exposure, radiation

Running short title

^{137}Cs and blood counts in children in Ukraine
Ethical permission

The study was approved by the Committee on Bioethics of the Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine (Report #1, August 31, 2007) and by the Office of Research Compliance at the University of South Carolina.

BACKGROUND

The Narodichesky region in Zhitomir Oblast, Ukraine, is one of the most contaminated populated areas around the Chernobyl Nuclear Power Plant, which exploded in 1986. The population in the contaminated areas is still exposed to ionizing radiation from the accident, mainly from the long-lived radioactive isotope 137Cs (1), which has a physical half-life of 30 years. A previous longitudinal follow-up (1993-1998) found that children living in villages with high activity of 137Cs in the soil had decreased levels of hemoglobin, erythrocytes and thrombocytes (2). These findings motivated the present study, which used a more comprehensive exposure assessment, including individual whole-body concentrations (WBC) of 137Cs (Bq/kg).

Radiation exposure in the years after the accident has been declining not only because of physical decay of the radionuclides, but also because of vertical migration deeper into the soil, which shields off the exposure, and because of countermeasures to reduce the doses (3). The average total (external and internal) radiation dose from Chernobyl for the population in the Narodichesky region has been estimated to be 17 mSv for the single year 1986, 13 mSv in cumulative dose for 1987-90, and only 3.2 mSv in cumulative dose 2001-05 (1). The average total dose from the accident for the single year 2008 in the Narodichesky region was
estimated to be 0.13-2.2 mSv, depending on village (4). The exposure is thus small in children born today compared to early after the accident.

External exposure from soil is only a part of the total dose, in the Narodichesky region it was approximately 70% of total exposure during 1986-2005 (1). In addition to external exposure radiating directly from radioactive deposition in the soil, people are internally exposed from ingestion of contaminated food; high activity of 137Cs has been found in milk, meat and especially forest products such as mushrooms, wild berries, game meat, and fish from local ponds (3, 5, 6). Radioactivity from inhaled dust was an additional major source of internal exposure in the first years after the accident, but is an insignificant pathway today (7). The levels of food contamination do not necessarily decrease as steadily as the soil radiation, since it’s not affected by the vertical migration, but rather fluctuate from year to year depending on the harvest. The internal exposure from food makes up an increasing proportion of the total exposure in later years in many areas (7, 8).

Generally, a high level of 137Cs deposition in soil can be expected to also contribute to a high level of 137Cs in the body, and such a correlation has been reported (9), but there are also studies which have found no correlation (10, 11). The lack of agreement depends on many factors such as the soil-transfer to vegetation, dietary habits, and countermeasures applied to protect the population.

137Cs is an alkali metal which has very similar characteristics to Potassium and is homogenously spread in the body. The average biological half-life in the body is 100 days before excretion. The uptake is rapid and complete both by inhalation and ingestion (12). Considering the homogenous spread of moderate amounts of 137Cs in the body, organ-specific doses resulting from 137Cs in the body can in the Zhitomir region be expected to be low.
Although the acute detrimental effects of high-dose radiation on the hematopoietic system are well known, both from Chernobyl (13), and other radiation accidents (14), there is little information on long-term low dose radiation effects on the hematopoietic system. The Techa river incident, a plutonium processing facility established in 1948 with radioactive waste leakage into the river, caused decreased levels of thrombocytes, erythrocytes and hemoglobin, in addition to a range of other symptoms which together were labeled “chronic radiation syndrome” (15, 16). However, in residents of the areas along the Techa river, the accumulated bone-marrow doses from internal 137Cs and 90Sr were up to 3-4 Sv, considerably higher than the total accumulated doses in the Narodichesky region.

Regarding health effects in the Chernobyl area, in addition to our previous study, we have identified six published articles on long-term effects on red blood cells, but these are in people born before the accident or irradiated in utero (17–22). Stepanova et al (2006) found more transitory, prehemolytic and degenerative forms of erythrocytes in children irradiated in utero, in comparison with control children.

A study with cross-sectional comparisons in 1986, 1992 and 1998 found no difference in mean hemoglobin, erythrocyte or thrombocyte counts in children residing in settlements with 137Cs soil activity of 37-555 kBq/m2 compared to children living in settlements with less than 37 kBq/m2 (19). However, this study only describe means in the two exposure groups without statistical adjustment for any factors, which is typical for many of the studies of health effects from Chernobyl (23). In contrast, in a repeated measurement study (1993–1998), which included children born before and after the accident, we found decreased hemoglobin, erythrocyte and thrombocyte counts in children residing in villages with 137Cs soil activity of 266-310 kBq/m2 and 350-879 kBq/m2 compared to 29-112 kBq/m2 (2).
The purpose of the analysis at hand is to investigate whether our previous findings can be replicated and expanded upon, by using more comprehensive exposure assessment including not only average village soil activity of ^{137}Cs but also individual measurements of whole body concentration of ^{137}Cs.

METHODS

Study population

Settlements in the Narodichesky region (Zhitomir Oblast, Ukraine), are located approximately 80 km from the Chernobyl Nuclear Power Plant. In 2001, a population census determined that this region had approximately 11 400 inhabitants, including 2000 children. The study area has been extensively described in previous publications (2, 24). The lifestyle in the Narodichesky region is similar in all villages, with predominantly locally homegrown food supply and little migration. All children in Narodichesky region are provided with free breakfast and lunch at school. The menu at school has to meet standards of sanitary hygiene and follow the provision of The Ukrainian Government (25). The meals served in school are prepared from products imported from areas free from contamination with radionuclides. Meals consumed at home, at the 5 o’clock snack and supper, are prepared from local produce (milk, meat, fish, vegetables, berries, mushrooms and fruit).

Study selection and missing data

This cross-sectional study included 590 children in the age 0-18 years; 566 (age 2-18) had complete exposure measurements on ^{137}Cs whole body concentrations and residential ^{137}Cs soil estimates, and were used in the analyses.
We examined predominantly children of school age. In addition, some preschool children were assessed upon request of their parents. On the day of examination, all school children present in a class were transported to the Central Hospital of Narodichi, by their teachers. Parents were notified of the forthcoming examinations in advance, and their verbal permission was requested for young children (0-6 years). Parents of all school children gave their written permission for the examination.

We excluded from the analysis 23 children with missing values of ^{137}Cs WBC and one child with missing information on ^{137}Cs in soil. Missing WBC was found exclusively in children 0-4 years of age, since these children had difficulties to comply with the exposure assessment.

Exposure assessment

Village average soil activity of ^{137}Cs. The average ^{137}Cs soil activity per village for 2008 was obtained from a report published by the Ukrainian Ministry of Health (4). The Ministry publishes yearly estimates for the purpose of monitoring the population exposure. The report stated that the estimates of ^{137}Cs in soil for 2008 were based on soil measurements conducted in 1992 and that a decay function was applied to obtain the estimates for 2008. The estimated average external effective dose for each village in 2008, was also obtained from this publication.

Individual measurements of whole body concentration of ^{137}Cs. Whole-body concentration of ^{137}Cs was measured for all children in 2008-2010 using a gamma-spectrometer (Whole Body Counter SCRINNER – 3M, designed and produced by INECO (Ukrainian Institution of Human Ecology, Academy of Technological Sciences). ”SCRINNER-3M” is used in 12 regional medical centers of the Ukraine for mass screening of
residents of contaminated areas (26), and is also used in Belarus, at the Whole Body Counter Laboratory at the Institute of Radiation Safety (BELRAD) (27).

The whole-body counter is designed as a standard chair (with lead shielding in the back and seat of the chair for local protection from background radiation). The single detector of the "SCRINNER-3M" is incorporated into the back of the chair and detects γ-rays from the top of the head to the knee level. The angle between the back of a chair and the seat is 100 degrees, and the distance form the back and the base of the chair to detector is 40 cm. Children were sitting in upright position during the measurements.

The "SCRINNER-3M" is equipped with Pb collimator: thickness 50mm, coaxial scintillation detector NaI(Tl): Ø150x100mm. Prior to the measurements, "SCRINNER -3M” is calibrated using phantoms in 6 age groups, composed from taurpaline filled with dried peas with known radionuclide content. Additional information about the phantoms is presented in Supplemental file 1 (S1). IAEA has made intercomparisons of chair type whole body counters with other whole body counters, and also of “dried pea phantoms” (28). The general characteristics of the "SCRINNER-3M" in calibrated state is given in Table I. The minimum detection activity (MDA) for 3 minutes exposition on a 70kg adult phantom (with a maximum error of 30%) was 340Bq. The measurements were conducted according with the recommendations provided by the Research Center of Radiation Medicine Academy of Medical Sciences of Ukraine (29, 30). The protocol has been published (31). Each measurement continued until its error dropped to the level of 30% or lower as required by the standards of International Commission on Radiological Protection (ICRP). Under these measurement conditions, the required measurement error for most children was obtained within 3 minutes, and only a few children required up to 5 minutes. Calculations of measured activity (Bq) accounted for child’s weight by including calibration coefficients. To further
reduce residual confounding by weight, we took further account of child’s weight by using WBC (Bq/kg) as the unit for our regression analyses, instead of the measured activity (Bq).

Every child had only one measurement of the WBC of 137Cs. Almost all of the children, 561 out of 566, had this measurement in 2009. The measurements were predominately conducted in three months: April (n=255), September (n=209), and December (n=55). A few measurements were done in others months. Since levels of 137Cs are known to potentially vary by season due to different food consumption during different seasons (i.e., mushrooms in the autumn) (32, 33), we adjusted for season in the final multivariable statistical analyses.

Calculations of individual internal effective dose from 137Cs

The internal dose calculations were based on the age-dependent committed dose coefficients for ingestion e(nSv/Bq), from ICRP publication 72 (34). Based on the point-measurements of 137Cs in the body, a constant steady-state of the measured activity was assumed for the whole year. A biological half-life of 100 days was assumed, with an effective half-life of 99 days. The intake in Bq to remain in steady state was first calculated for one day: $(\ln(2)/99) \times 137\text{Cs} \text{ (Bq)}$. The doses were then calculated as:

\[
\text{Daily intake to remain in steady state (Bq)} \times e \text{ (nSv/Bq)} \times 365, \text{ and converted to mSv/year.}
\]

Medical assessment and questionnaires

Medical assessments followed the same protocol as the previous studies (2, 23). Blood was collected in tubes containing EDTA. A blood count, including erythrocytes (red blood cell count; RBC), leukocytes, thrombocytes (Plt) and hemoglobin(Hb), was conducted using Sysmex model F-800 (TOA Medical Electronics Company, Kobe, Japan). Normal blood smears were stained using the standardized azure B-eosin GIEMSA Y Romanowsky
procedure and the cells were counted. We calculated the Color Parameter (CP) to classify anemia. CP is an old parameter equal to Mean Corpuscular Hemoglobin (MCH)*0.03 with MCH = Hb (g/L) / number of erythrocytes (x10^{12} cells/L) (35).

CP <0.8 (hypochrom) may be indicative of iron-deficiency anemia, CP = 0.8-1.0 (normochrom) is considered normal range, and CP >1.0 (hyperchrom) may be indicative of B12/folate-deficiency anemia. The reference values for hemoglobin, erythrocytes, and thrombocytes are provided in (Table II) (36, 37).

More extensive confounder information was gathered in this study compared to our previous investigation. Information on potential confounders such as environmental tobacco smoke, active tobacco smoking, and type of fuel used for residential heating or cooking, was collected during interviews. Medical assessments, interviews, and the measurements of WBC of 137Cs, were performed on the same day.

Statistical methods

Multiple Linear Regression analyses were performed using Rx64 (R Development Core Team, 2012), version 2.15.0 to estimate the associations of 137Cs in soil and WBC with blood counts. The outcome variables were hemoglobin, erythrocyte count, and thrombocyte count. The exposure variables were log(WBC) and 137Cs in soil (kBq/m²). The log transformation of WBC (Bq/kg) was done to fulfill the model assumptions of linearity and constant variance. We adjusted all estimates for sex of the child, age (continuous), season (spring, summer, autumn, winter), environmental tobacco smoke (ETS) (Yes/No), active tobacco smoking (0 cigarettes/day, 1-10 cigarettes/day, >10 cigarettes/day) and use of coal/wood for cooking (Yes/No). These variables were deemed as potential confounders, and kept in the model regardless of their statistical significance, for model consistency. All 566 children had
complete information on these variables. None of the 566 observed values were excluded from the analyses, despite a few extreme values on WBC. A few extreme values were expected since the 137Cs intake may be highly variable.

Effects of interaction between 137Cs in soil and age, and log (WBC) and age on blood counts, were tested by partial t-test with age as a continuous variable. If the interaction terms were significant we presented estimates stratified by age. As a sensitivity analysis we included CP as an additional categorical variable (hypochrom, normochrom, hyperchrom), in the model which estimated effects of 137Cs in soil and log(WBC) on Hb. The purpose was to see if the effect estimates changed when adjusting for hypochrom and hyperchrom erythrocytes, which are often caused by nutritional deficiencies. The significance level for all analyses was alpha=0.05.

Path-analysis, i.e. Covariance Analysis of Linear Structural Equations (28), was performed using SAS version 9.3. Path-analysis is a method used to decompose sources of correlation to see how much of the total effects of a variable is due to its "direct effect" (partial correlation with the outcome after adjustment for other variables), and "indirect effect" (correlation with variables which have a partial correlation with the outcome). Path-analysis can be used to test the assumption that a variable is an intermediate step in a chain of responses. If it is, the exposure variable should have a direct effect on the assumed intermediate variable, which should have a direct effect on the outcome.

Based on results from our previous study, we hypothesized that 137Cs in soil 1) has a direct effect on blood counts, and 2) also has an indirect effect on blood counts through WBC Bq/kg as an intermediate variable. The full model that we first specified is included in the Supplemental file 4 (S4). Blom transformation was used to standardize the variables. The model was modified to fulfill the criteria for model fit, with non-significant Chi-square test,
Root Mean Square Residual (RMSR) close to zero, goodness of fit index (GFI) and adjusted goodness of fit index (AGFI) > 0.98, indicating a good fit (38). The final fitted path models supported by the data, are presented in Supplemental file 2, S2.

RESULTS

Population

Fifty percent of the children were recruited from the small town Narodichi, and the rest from 27 different rural villages (Table I). Five children were living outside the Narodichesky region.

All children were born after the accident, the oldest child in 1990 (Table IV). The majority (73.5%) of the children were between the ages of 12-18 at the time of examination. Just under half of the sample (45%) was exposed to environmental tobacco smoke (ETS), but only 5% of the children were active daily tobacco smokers (Table IV).

Exposure description of WBC and 137Cs kBq/m2

The individual WBC Bq/kg had a right-skewed distribution, with few observations above 300 Bq/kg (Fig 1a). The average activity of 137Cs in soil of the village had a left-skewed distribution with approximately half of the population living in a village with >200 kBq/m2 (Fig 1b, Table III). Overall, the individual WBC had moderate positive correlation with the activity of 137Cs in soil (Spearman’s rank correlation, $r_s=0.508$ p<0.001; Fig 1c).

The WBC was highest for measurements performed in the spring (Figure 2). The mean internal effective dose was 0.14 mSv/year (Table III). There were 5 children with an estimated effective internal dose >1mSv/year.
Blood markers

Overall, many children appeared to be low in hemoglobin concentrations and erythrocyte counts. 21.7% of the children were below the reference values for Hb, and 65.4% were below the reference values for erythrocytes (RBC) for their age. Hemoglobin values and erythrocyte counts below reference levels were more common in the older children (Table II). For thrombocyte counts (PLT), only 0.7% of the children were below the references values for their age.

Plots of the bivariate relationships between individual WBC and log(WBC) with blood counts, suggest negative associations between WBC and Hb, RBC:s and PLT:s (Fig 3). Although less apparent, similar relationships were observed between 137Cs activity in soil (kBq/m2) and Hb, RBC:s and PLT:s (Fig 4). The log transformed WBC (Bq/kg), log(WBC), had a more linear relationship with the outcomes, and was used for the multivariate analyses

In multivariate analyses, log(WBC), was associated with the hemoglobin level (Table V). One unit increase in log(WBC) decreased hemoglobin by -5.94 g/L, 95%CI [-6.75, -5.13]. One unit increase in 137Cs activity in residential soil was associated with decreased Hb, when adjusting for confounders other than individual log(WBC), but when adjusting for log(WBC) the effect was small and statistically insignificant (Table III). There was no interaction between log(WBC) or 137Cs in soil and age, regarding the effects on Hb.

The log(WBC), was also associated with erythrocyte count (RBC; Table V). One unit increase in log(WBC) decreased the RBC by -0.238 x 10^{12}/L, 95%CI [-0.27, -0.21]. One unit increase in 137Cs activity in soil was also associated with decreased RBC when adjusting for confounders other than individual log (WBC), but when adjusting for log (WBC) the effect
was very small and instead associated with increased RBC (Table V). There was no interaction between log(WBC) or 137Cs in soil and age, regarding the effects on RBC.

Regarding the effects on thrombocytes, there was a significant interaction between log(WBC) and age (p-value=0.004), when using age as a continuous variable, but nonsignificant for 137Cs in soil and age. We therefore show separate results for age < 12 years and 12-18 years. In children 12 years and older, log(WBC) was associated with thrombocyte count (Table V). One unit increase in log(WBC) decreased the count by -15.99×10^9/L, 95%CI [-21.37, -10.62]. In children 12 years and older, one unit increase in 137Cs activity in soil was also associated with decreased thrombocytes when adjusting for confounders other than individual log(WBC), but when adjusting for log(WBC) the effect was very small and statistically insignificant (Table V). In children 2-11 years, there was no statistical association between log(WBC) or 137Cs in soil with the thrombocyte count.

Sensitivity analysis using Color Parameter

There were 18 children with color parameter <0.8, indicating low levels of hemoglobin per erythrocyte; 527 children had a normal CP=0.8-1.0, and 21 children had a color parameter >1.0 indicating high levels of hemoglobin per erythrocyte. Adjusting for CP as a categorical variable with three groups (CP< 0.8, CP=0.8-1.0, CP >1.0) did not change the effect estimate for log(WBC) on Hb, which changed by less than 2%. The effect of 137Cs activity in soil remained small and statistically insignificant after adjustment for CP. The fact that adjustment for CP did not change the results, decreases the likelihood (but does not fully exclude) that iron-deficiency anemia or B$_{12}$/folate-deficiency anemia (which typically exhibits abnormal CP), are confounders in this study.
Path analysis investigating $^{137}\text{Cs/kg}$ as an intermediate variable between ^{137}Cs in soil and Hb, RBC and PLT

The partial correlations support our hypothesis that residential soil activity of ^{137}Cs had an indirect effect on blood counts through a direct effect of WBC (Bq/kg). There was no support for any direct effects from ^{137}Cs in soil. The graphs of the final fitted models supported by the path analysis can be seen in the Supplemental file 2 (S2).

DISCUSSION

The main strength of the study was, compared to our previous study, that the village levels of ^{137}Cs exposure were complemented by assessment of individual levels of ^{137}Cs WBC, which can be expected to decrease the amount of measurement error. We also gathered individual information on risk factors such as active tobacco smoking, environmental tobacco smoke, and household fuels such as coal and wood, which had only marginal influence on the risk estimates. Since the residents in the investigated areas are poor, anemia due to poor nutrition is not unlikely, and we hypothesized this could confound or dilute the effects of radiation. Our results, however, show that most children had normal CP, which indicates that iron or B_{12}/folate deficiency due to poor nutrition is not a main cause of anemia in this area, and our sensitivity analysis shows that having low/high CP was not associated with ^{137}Cs exposure. These findings speak against that the low blood counts are due to nutritional deficiencies. However, we cannot exclude completely that a combination of iron-deficiency and B_{12}-may exist. The combination of both would result in a normal CP. Hence, the absence of other biochemical parameters such as ferritin and B_{12} is a limitation of our study. The expected effect of long-term exposure to ^{137}Cs on red blood cells is most likely related to activation of
free radical oxidation in these cells. It is also possible, that long-term exposure ^{137}Cs may
directly affect bone marrow and lead to decreased production of blood cells and development
of normochrom (normocytic) anemia, which is also what was mainly observed in this
population.

Our results show that children of the Narodichesky region with high levels of log transformed
WBC of ^{137}Cs, had decreased levels of hemoglobin, and erythrocyte and thrombocyte counts.
The average village level of ^{137}Cs in soil was not associated with decreased blood counts after
adjustment for individual body burden of ^{137}Cs. The effects of log(WBC) on decreased
thrombocyte counts were only seen in children 12 years and older.

Our results, supported by a path analysis, suggest that internal exposure of ^{137}Cs affects blood
counts, and that ^{137}Cs in soil has only indirect effects on the blood counts via internal
exposure to ^{137}Cs as an intermediate variable, but no direct effect due to external exposure
was detected. However this finding should be interpreted with caution and cannot be fully
attributed to internal dose being more important than external exposure, since it may also be
influenced by measurement errors of the external exposure. The external exposure was
assessed on average village level, while internal ^{137}Cs was measured on an individual level,
i.e. a larger measurement error can be expected to dilute the effects of external exposure. A
strength was; however, that there was a high variability in the level of ^{137}Cs soil
contamination between the villages.

The level of external exposure has been decreasing for each year since the accident, but the
ranking of which the population in the villages receives high or low external exposure is
identical since 1992 (4). The average soil contamination for the village of a child can thus be
used as a proxy of both cumulative and current exposure of that child. The population is stable
and rarely relocates to places with different external exposure levels, which further strengthens the validity as a proxy for long-term exposure.

Internal exposure to $^{137}\text{Cesium}$ measured by WBC is a point measurement primarily reflecting current intake, but it may also have long-term predictive value if dietary habits and levels of dust inhalation are stable. The very highest ^{137}Cs-whole body concentrations are likely to result from very recent intakes of contaminated food. The fact that we adjusted for season and also took the logarithm of WBC, shrinks the values of the peak whole body counts and probably makes the counts more representative of average long-term intake.

The cross-sectional nature of the study, however, was a limitation. To study dose-effect relationships, one needs to have information about the total cumulative dose for the entire period of residence in the Narodichesky region.

Since WBC reflects dietary intake, the most likely potential confounding factors would be nutritional deficiencies, or environmental contaminants correlated with ^{137}Cs. There may be a possibility of environmental confounding or partial effects due to other long-lived radionuclides released from the Chernobyl accident, such as $^{90}\text{Strontium}$, $^{239}\text{Plutonium}$ and $^{241}\text{Americium}$. These radionuclides were not as widely geographically distributed as ^{137}Cs, but mainly deposited within 100km of the Chernobyl reactor, due to dispersal with larger particle size (3). However, these radionuclides have a relatively high deposition in Zhitomir Oblast (1, 39), but have not been measured to the same extent as ^{137}Cs. They are expected to make a small contribution to the total radiation dose in the population, but they are prone to bone deposition and are also accumulated in the bone due to very long physical and biological half-life (12). Especially Plutonium and Americium are concentrated in the endosteum (12), which is also where stem cell production in the bone marrow is concentrated (40). In addition, a large amount of lead (Pb) was dumped on the burning Chernobyl reactor to extinguish the
fire, and since lead is a known cause of anemia the possibility of confounding due to lead has
to be considered. However, a study conducted in areas 30-100km from Chernobyl, found
levels of lead in soil to be low, between 2-27 mg/kg, which equals background values in these
soil types (41).

The present study supports the previous finding that children living in villages with high level
of ^{137}Cs in soil had decreased levels of hemoglobin, red blood cells and thrombocytes (2). The
previous study showed that thrombocytes were less affected in later years which is also in
agreement with our current finding that thrombocytes are only affected by WBC in older
children. A previous study by Babeshko et al, did not find any difference in blood cells count
depending on village level of ^{137}Cs in soil, but this may depend on the simple comparison of
means between the two groups of exposure, without adjustment for other factors (19). Previou​s studies in Zhitomir Oblast have found morphologic changes in red blood cells in
children irradiated in utero and living in the exposed areas (22). This is not directly
comparable since our children are born at least a few years after the accident, and thus been
exposed to lower doses of radiation.

Studies in Kyrgyzstan have found decreased Hb and erythrocytes in children and adults living
in close proximity to radioactive waste dumps, compared to control groups (42,43). However,
the exact levels of radioactive exposure for these individuals were not presented.

The current total doses from the Chernobyl accident in Zhitomir Oblast have been estimated
to be low, on average 0.13-2.2 mSv/year in 2008 (4), and this agreed well with the doses
observed in our study. For some children, the levels were above the 1mSv y$^{-1}$, which is the
reference level as recommended by the ICRP for population exposure from a non-natural
source (44), but well below the 20mSv y$^{-1}$ which is the ICRP reference level for occupational
exposure.
After the Techa river incident, in which people were exposed to accumulated bone marrow doses of up to 3-4Sv, hematopoiesis recovery was seen after reduction in red bone marrow dose rates to 100 mSv/year or lower (16). However, the dose reconstruction is retrospective in these studies, and the high uncertainty in the dose estimates can be expected to have diminished the ability to find effects from lower doses.

The ability to find effects of low-level exposure in epidemiological studies is highly dependent on the precision of the exposure assessment. WHO concluded that there is a complete lack of analytical studies of long-term effects from Chernobyl (23). This is the only study on long-term effects from 137Cs on blood cells, which has used individual exposure assessment. Our findings suggest that the radiation exposure from fallout after the Chernobyl accident may still affect children in the contaminated areas. However, possible confounding from other radionuclides or heavy metals released from Chernobyl, cannot be excluded and should be considered in future studies.

Although an association between low erythrocytes/Hb/thrombocytes and high 137Cs was detected, the blood counts were only mildly decreased. No major symptoms should be expected of these subnormal blood counts observed in the children, except possible tiredness in the children with most apparent anemia. However, even if mildly decreased blood counts do not markedly affect a healthy child under normal circumstances, the resources to cope with diseases or hard physical exercise may be diminished, especially if the subnormal blood counts reflect underlying disease with diminished cell production capacity.

Children in this study were born at least four years after the accident and thus exposed to low doses of ionizing radiation from 137Cs. This cross-sectional study indicates that these levels may be associated with decreased blood counts, but we cannot exclude that our results are due
to residual confounding factors. Since WBC reflects dietary intake, the most likely potential confounding factors could be nutritional deficiencies, or environmental factors causing anemia/decreased blood count. Future studies are needed to investigate the possible role of other radionuclides which may be correlated with ^{137}Cs, and possibly other heavy metals, in addition to ^{137}Cs.

Acknowledgements

Anna Lindgren received a scholarship from the Swedish Council for Working Life and Social Research (FAS) (2011-1769), for conducting research at Arnold School of Public Health. Financial support for the health screenings was provided by the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine. This research was partially supported by a grant from the United States Civilian Research and Development Foundation (UKB1-2929-KV-08).

Competing interests

The authors have no competing interests.

Supplementary information

Supplementary information is available at Journal of Exposure Science & Environmental Epidemiology’s website

Supplemental File S2. Path analysis. Code and graphs for the path analysis testing the assumption of 137Cs in the body being an intermediate variable between 137Cs in soil and low blood counts. Word-document.
<table>
<thead>
<tr>
<th>Table I. General characteristics, WBC “SCRINNER-3M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multichannel Pulse Analyzer (MCA)</td>
</tr>
<tr>
<td>Detector</td>
</tr>
<tr>
<td>Collimator</td>
</tr>
<tr>
<td>Measured radioisotope</td>
</tr>
<tr>
<td>Registration energy, kEV</td>
</tr>
<tr>
<td>MCA step, kEV/Ch</td>
</tr>
<tr>
<td>Energy resolution, %</td>
</tr>
<tr>
<td>Registration efficiency for 70kg adult, Bq/cpm</td>
</tr>
<tr>
<td>Background attenuation factor for 70kg adult</td>
</tr>
<tr>
<td>Background counts, cpm</td>
</tr>
<tr>
<td>Minimum detection activity (MDA, sensitivity level for 3 min exposition of 70 kg adult), Bq</td>
</tr>
</tbody>
</table>
Table II. Ukrainian reference levels for Hb, RBC and PLT, and prevalence of children with current values below reference levels.

<table>
<thead>
<tr>
<th>Reference level</th>
<th>(n below)/(total n)</th>
<th>% below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb<sup>1</sup> (g/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 years ≥110</td>
<td>1/8</td>
<td>12.5%</td>
</tr>
<tr>
<td>5-7 years ≥115</td>
<td>5/25</td>
<td>20%</td>
</tr>
<tr>
<td>8 and older ≥120</td>
<td>117/533</td>
<td>22%</td>
</tr>
<tr>
<td>Total</td>
<td>123/566</td>
<td>21.7%</td>
</tr>
<tr>
<td>RBC<sup>2</sup> (<x>10<sup>12</sup></x> cells/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5 years ≥3.9</td>
<td>4/16</td>
<td>25%</td>
</tr>
<tr>
<td>6-11 years ≥4.0</td>
<td>26/134</td>
<td>19.4 %</td>
</tr>
<tr>
<td>12 to 17 years ≥4.5</td>
<td>340/416</td>
<td>81.7%</td>
</tr>
<tr>
<td>Total</td>
<td>370/566</td>
<td>65.4%</td>
</tr>
<tr>
<td>PLT<sup>3</sup> (<x>10<sup>9</sup></x> cells/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All ages ≥150</td>
<td>4/566</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

¹Shabalov, N.P., 2001 (35).
²Nicholson JF, Pesce M, 2000 (36).
³Stepanova, E et al, 2008 (2).
Table III. Description of current 137Cs exposure level for villages included in the study. Official residential soil activity and external doses of 137Cs for each village, and measured individual whole body concentration and internal dose of 137Cs (n=566).

<table>
<thead>
<tr>
<th>Village</th>
<th>N</th>
<th>%</th>
<th>Official average surface density of 137Cs in soil</th>
<th>Official average external effective dose</th>
<th>137Cs WBC, measured in this study</th>
<th>Internal effective dose calculated in this study</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitomir</td>
<td>1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Kiev</td>
<td>1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>Brodnik</td>
<td>16</td>
<td>2.8</td>
<td>27</td>
<td>0.03</td>
<td>(0.02-0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liplanchina</td>
<td>1</td>
<td>0.2</td>
<td>32</td>
<td>0.06</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vyasanovka</td>
<td>8</td>
<td>1.4</td>
<td>31</td>
<td>0.04</td>
<td>(0.01-0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubejevka</td>
<td>2</td>
<td>0.4</td>
<td>47</td>
<td>0.02</td>
<td>(0.02-0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radcha</td>
<td>3</td>
<td>0.5</td>
<td>33</td>
<td>0.04</td>
<td>(0.03-0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budo-Golubevi</td>
<td>2</td>
<td>0.4</td>
<td>131</td>
<td>0.15</td>
<td>(0.09-0.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Radcha</td>
<td>2</td>
<td>0.4</td>
<td>24</td>
<td>0.04</td>
<td>(0.04-0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klochki</td>
<td>2</td>
<td>0.4</td>
<td>16</td>
<td>0.04</td>
<td>(0.03-0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norinci</td>
<td>15</td>
<td>2.7</td>
<td>26</td>
<td>0.04</td>
<td>(0.02-0.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guto-Mariatyn</td>
<td>6</td>
<td>1.1</td>
<td>61</td>
<td>0.07</td>
<td>(0.02-0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babinichi</td>
<td>10</td>
<td>1.8</td>
<td>68</td>
<td>0.06</td>
<td>(0.02-0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laski</td>
<td>19</td>
<td>3.4</td>
<td>15</td>
<td>0.03</td>
<td>(0.005-0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerev</td>
<td>14</td>
<td>2.5</td>
<td>44</td>
<td>0.06</td>
<td>(0.03-0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolotnica</td>
<td>17</td>
<td>3</td>
<td>30</td>
<td>0.05</td>
<td>(0.01-0.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latashi</td>
<td>5</td>
<td>0.9</td>
<td>16</td>
<td>0.03</td>
<td>(0.02-0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.Dorogin</td>
<td>4</td>
<td>0.7</td>
<td>30</td>
<td>0.06</td>
<td>(0.02-0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakusily</td>
<td>33</td>
<td>5.8</td>
<td>72</td>
<td>0.09</td>
<td>(0.03-0.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Dorogin</td>
<td>2</td>
<td>0.4</td>
<td>20</td>
<td>0.04</td>
<td>(0.03-0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zalesie</td>
<td>2</td>
<td>0.4</td>
<td>91</td>
<td>0.13</td>
<td>(0.07-0.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suharevka</td>
<td>15</td>
<td>2.7</td>
<td>95</td>
<td>0.11</td>
<td>(0.04-0.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moteyki</td>
<td>1</td>
<td>0.2</td>
<td>201</td>
<td>0.38</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megeliska</td>
<td>28</td>
<td>4.9</td>
<td>125</td>
<td>0.12</td>
<td>(0.03-0.25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selec</td>
<td>23</td>
<td>4.1</td>
<td>135</td>
<td>0.23</td>
<td>(0.03-1.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narodichi</td>
<td>284</td>
<td>50.2</td>
<td>123</td>
<td>0.17</td>
<td>(0.009-1.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basar</td>
<td>49</td>
<td>8.7</td>
<td>138</td>
<td>0.16</td>
<td>(0.01-0.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubarka</td>
<td>1</td>
<td>0.2</td>
<td>139</td>
<td>0.27</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kiev.

2 Range (Min, Max), is not presented for the villages where only one child was measured.

3 There are no official estimates of the external effective dose from 137Cs in Jitomir and Kiev, since these areas are considered non-contaminated.
<table>
<thead>
<tr>
<th>Characteristics of the study population (n=566), and distribution of age, exposure and outcome variables.</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>300</td>
</tr>
<tr>
<td>Age group (at time of examination)</td>
<td><6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>6-11</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>12-18</td>
<td>416</td>
</tr>
<tr>
<td>Birth year</td>
<td>2002-2007</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1996-2001</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>1990-1995</td>
<td>307</td>
</tr>
<tr>
<td>Environmental tobacco smoke (ETS)</td>
<td>No</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>253</td>
</tr>
<tr>
<td>Active daily tobacco smoking, (cigarettes/day)</td>
<td>No</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>1-10</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>>10</td>
<td>5</td>
</tr>
<tr>
<td>Use of coal/wood for cooking</td>
<td>No</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>163</td>
</tr>
<tr>
<td>Activity of 137Cs in residential soil (kBq/m2)</td>
<td><116</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>116-164</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>>165</td>
<td>357</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>12.9</td>
<td>13</td>
<td>2-18</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>47.4</td>
<td>48</td>
<td>12.5-99.7</td>
</tr>
<tr>
<td>Activity of 137Cs in residential soil (kBq/m2)</td>
<td>189.4</td>
<td>242</td>
<td>10-274</td>
</tr>
<tr>
<td>Activity of 137Cs in the body (Bq)</td>
<td>4447</td>
<td>3404</td>
<td>185-42480</td>
</tr>
<tr>
<td>WBC137Cs (Bq/kg)</td>
<td>100.5</td>
<td>77.1</td>
<td>4-916</td>
</tr>
<tr>
<td>Log (WBC)</td>
<td>4.2</td>
<td>4.3</td>
<td>1.4-6.8</td>
</tr>
<tr>
<td>Effective internal dose (mSv/year)</td>
<td>0.14</td>
<td>0.10</td>
<td>0.005-1.41</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>125.5</td>
<td>124</td>
<td>96-155</td>
</tr>
<tr>
<td>Erythrocyte cell count (RBC) x 1012 cells/L</td>
<td>4.2</td>
<td>4.1</td>
<td>3.1-5.2</td>
</tr>
<tr>
<td>Thrombocyte count x 109 platelets/L</td>
<td>250.5</td>
<td>249</td>
<td>138-422</td>
</tr>
</tbody>
</table>
Table V. Linear relationship between the whole body concentration (WBC) of 137Cs (Bq/kg) and the activity of 137Cs in residential soil (kBq/m2) and blood counts (n=566).

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (g/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(WBC) 1</td>
<td>-5.940</td>
<td>0.411</td>
<td><0.001***</td>
</tr>
<tr>
<td>Cs in soil (kBq/m2) 1</td>
<td>-0.00241</td>
<td>0.00621</td>
<td>0.6978</td>
</tr>
<tr>
<td>Red Blood Cells (x10^{12} cells/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(WBC) 1</td>
<td>-0.238</td>
<td>0.0148</td>
<td><0.001***</td>
</tr>
<tr>
<td>Cs in soil (kBq/m2) 1</td>
<td>0.000548</td>
<td>0.000224</td>
<td>0.0149*</td>
</tr>
<tr>
<td>Platelets (x10^9 plt/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age <12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(WBC) 2</td>
<td>-4.7479</td>
<td>5.348</td>
<td>0.3762</td>
</tr>
<tr>
<td>Cs in soil (kBq/m2) 2</td>
<td>-0.08901</td>
<td>0.06682</td>
<td>0.1850</td>
</tr>
<tr>
<td>Age ≥12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(WBC) 1</td>
<td>-15.99</td>
<td>2.735</td>
<td><0.001***</td>
</tr>
<tr>
<td>Cs in soil (kBq/m2) 1</td>
<td>-0.052</td>
<td>0.0446</td>
<td>0.24387</td>
</tr>
</tbody>
</table>

1 Adjusted for Cs in soil (kBq/m2), log(Cs Bq/kg), age, sex, exam season, ETS, active tobacco smoking, use of coal/wood for cooking.

2 Not adjusted for active smoking, since no children below 12 were smokers.
REFERENCES

3. IAEA. Chernobyl’s Legacy: Health, Environmental and Socio-economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine. Austria, 2006.

30. SCRM AMS of Ukraine. Recommendations on measurements with whole body counters during the dosimetric pasportization of residential areas of Ukraine. Kiev, 1996, 73p.[in Russian].

34. ICRP. Age-dependent Doses to the Members of the Public from Intake of Radionuclides Part 5, Compilation of Ingestion and Inhalation Coefficients. ICRP publication 72. Annals of the ICRP. 1995; 26(1).

of burial places of radioactive waste. [In Russian, Abstract in English]. News of Russian Scientific Center of Rentgenradiology. Issue 6. Available at:

Fig 1. Exposure distributions of a) 137Cs Whole body concentration (WBC, Bq/kg), b) 137Cs in Soil(kBq/m2), and c) the correlation between 137Cs in soil (x-axis) and 137Cs WBC (y-axis). (n=566).
Fig 2. Whole body concentration (WBC) by season. Boxplots displaying the exposure distributions of 137Cs whole body concentration (Bq/kg), depending on season of the measurement (n=566). The cross refers to the mean WBC.
Fig 3. Individual Whole Body Concentration (WBC) of 137Cs (Bq/kg) and log(WBC), plotted against individual blood counts: hemoglobin (Hb) g/L, erythrocyte count (RBC) $\times 10^{12}$ cells/L, and thrombocyte count (PLT) $\times 10^9$ platelets/L, (n=566).
Fig 4. Residential activity of 137Cs in soil (kBq/m2), plotted against individual blood counts: a) hemoglobin (Hb) g/L, b) erythrocyte count (RBC) $\times 10^{12}$ cells/L, and c) thrombocyte count (PLT)$\times 10^9$ platelets/L (n=566).