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Popular summary in English

We live in a time of wireless technologies, robotics and small computers with very high
computing power. is is mainly due to a large emphasis given towards the study of semi-
conductor materials which are the building blocks of today’s electronic industry. One of
the secrets behind creating faster computers is the ability to integrate more and more tran-
sistors on a small semiconductor chip. GordonMoore, the co-founder of Intel predicted in
 that the number of transistors per integrated circuit will be doubled every two years.
His prediction accurately worked for several decades. To fit in large number of transistors
in a small computer chip, a reduction in the size of the transistors is a key. is is where
the emergence of a relatively newer field of technology comes in to play, nano engineering.
With nano engineering, transistors as small as few nm size can be fabricated. In  Intel
has reported a processor where . billions of transistors integrated only on a 456mm2 area
chip.

As the size of the transistors gets smaller and smaller, the laws of physics governing the mo-
tion of charge carriers through the devices has to be modified compared to larger transistors.
One of the most common experimental setup is the measurement of current through the
device which is connected to a potential difference (voltage).

In macroscopic size electronic circuits, the dependence of the current on the applied voltage
can be either linear or non-linear depending on the circuit elements. For a regular resist-
ance, such as light bulb, the current is linearly proportional to the applied voltage (Ohm’s
law). However, if the circuit is composed of non-linear elements such as transistors or di-
odes, the dependence of the current on the applied voltage is non-linear, but typically the
current increases with bias. is situation is different in nano scale electronic devices which
are characterized by discrete energy levels due to confinement. In this case the current dis-
plays discrete peaks which are dependent on the accessibility of energy levels for the applied
bias.

In the first part of this thesis, a study of electron transport properties of quantum dots has
been performed. Due to confinement, the electron-electron (ee) interaction is enhanced
in quantum dots compared to macroscopic size devices. As a result, understanding and

ix



x Popular summary in English

careful description of the interaction types and their strength to the transport of charge
carriers through the device is of great importance. One peculiar behavior in nanoscale
devices is that the ee interaction becomes a factor that greatly determines the transport
behavior across these devices.

In the second part of the thesis, interaction of light with nanostructures is studied with the
aim of simulating the microscopic physical processes in efficient quantum dot based solar
cells. e photovoltaic effect in which a material generates an electric current as a result
of exposure to light has been known for more than a century. Many countries are now
giving priorities for utilization of renewable energy sources for electric power generation.
Semiconductor based solar cells have already been used to convert solar energy to a usable
form of electric current. However, they are not as popular yet as fossil fuel due to their
limited efficiency. In  a famous work by William Shockley and Hans Queisser puts a
limit on the maximum theoretical conversion efficiency of a solar cell using a single p-n
junction to be not more than 33.7%. Finding possibilities to circumvent the Shockley-
Queisser limit is an active area of current research.

In recent years, quantum-dot based solar cells demonstrated enhanced conversion effi-
ciency. An understanding on a microscopic level how the charge carriers and the light
field interacts in quantum dot based solar cells plays a key role in the design of the future
solar cells. One mechanism which is described in this thesis is the multiple exciton gen-
eration (MEG) in which a generation of more than one electron-hole pairs (exciton) per
absorbed photon enhances the conversion efficiency.



Part I

Background and eory







Chapter 

Introduction

e semiconductor industry has shown a rapid growth in the past couple of decades with
an increased capability of fabricating nanostructures. Quantum dots, nanowires, nano-
particles are among the most common forms of nanostructures which are characterized
by a size that ranges between microscopic and molecular size at least in one dimension.
eir wide range of technological applications in modern electronics industries has been
a driving factor for the ever increasing popularity of nanostructures. ese days, one can
buy Light Emitting Diodes (LED) and Television displays that are made from quantum
dots []. In addition, their potential applications in photovoltaic devices [–], quantum
computing [], biology and medical imaging [], optics [] etc., make quantum dots and
other forms of nanostructures exceptionally useful in the future.

e potential future applications for nanostructures demand a systematic study of how
they work as part of an integrated system. Due to their small dimensions, quantum ef-
fects become important and their operation mechanism can not be fully explained with
the laws of classical mechanics. Quantization of conductance [–], [, ],and exciton
formation [, ] are some of the quantum effects that become dominant as a consequence
of confinement in nanostructures. As a result one needs to employ the laws of quantum
mechanics to explain and predict the operation of nanostructures.

e interaction of charged particles in low dimensional structures is enhanced compared
to their bulk counterparts due to confinement []. e electron-electron (ee) interaction
energy scales as an inverse length which is more significant at smaller separations between
the interacting particles.

ese interactions play a major role in describing important physical processes in solid
state systems. e electron transport in quantum dots can be modified greatly due to
interaction. is can have an effect of blockade or transparency depending on the geometry





 Chapter . Introduction
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Figure 1.1: Energy level diagram of a quantum dot coupled to metallic leads under biasing condition (left) and the corresponding
current spectrum as a function of gate voltage (right). The distance between the peaks in the I-V curve reveals the
interaction strength if changes in quantization energy are negligible.

and arrangement of the dots and the environment.

In spectroscopic measurements changes in the system behavior can be probed (measured)
via different techniques. Two different probing techniques are discussed in this thesis. e
first probing technique is to study the current or conductance as a function of applied
voltages. In quantum dots at low temperature the current is non-zero as long as there is
an available state within the bias window (µL − µR), where µL and µR are the chemical
potentials of the left and right leads respectively. For a fixed bias voltage Vbias = (µL −
µR)/e, where e is the electron charge, the level energies within the dot can be controlled by
varying the gate voltage Vg (cf. Fig. . (left)). In the linear response regime (with Vbias ≪
U/e) [] as shown in Fig. . (right) a peak in the current appears for each available state
within the bias window. e distance between these peaks corresponds to the Coulomb
charging energy needed to add one extra charge to the dot. Hence the name Coulomb
oscillation. A more detailed information can also be obtained by using a two dimensional
scan as a function of the gate and bias voltage to produce the so-called Coulomb diamonds
[, ].

e second probing technique is to study optically the change in the emission and ab-
sorption spectrum of the system as a result of interaction with a light field. Several linear
and non-linear spectroscopic techniques exist for studying the dynamics and structures of
nanostructures and molecules. One of the simplest type of experiment in this regard is to
study a two-level system coupled with an oscillating light field. e resulting population
of the two levels as a function of time exhibit the so-called Rabi-oscillation [, ]. As
shown in Fig. . information about the system such as the level splitting can be obtained
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Ref. [20]. δ = ω − ω21 is the detuning, which is the difference between the level splitting ℏω21 = E2 − E1 and
the pulse frequency ω = 3Ω1 assumed here. δ = 0 is the resonance condition in which the driving frequency
matches the level splitting. Ω1 = µ12E0 is the Rabi-frequency. For larger detunings δ the oscillation frequency

Ω =
√

Ω2
1 + δ2 increases.

by looking at the oscillation frequencies and amplitudes. In excitonically coupled systems
the oscillations can indicate the strength of the Coulomb coupling between excitons.

One potential application of quantum dots is their usability as a building block in efficient
solar cells. e solar spectrum covers a range of frequencies in the electromagnetic spectrum
ranging from infrared to ultraviolet (see Fig. .). For any type of single junction solar cell
the maximum percentage of power converted to electrical energy from solar radiation is
about 33% which is also called the Shockley-Queisser limit []. e rest of the radiation,
about 67%, is lost due to several reasons. As discussed in Ref. [] there are two major
intrinsic losses and few other extrinsic losses which can be eliminated.

e first intrinsic loss is due to the mismatch between the broad solar spectrum and the
gap energy of single junction solar cells. Photons with smaller energies than the band gap
ℏω < Eg can not be absorbed. An absorbed photon with energy higher than the band gap
ℏω > Eg can generate an electron-hole pair which will immediately loose almost all energy
in excess of the band gap by emitting phonons, which heat the lattice.

e second intrinsic loss is due to radiative recombination of newly created electrons and
holes. Some of the extrinsic losses that can limit solar cell efficiency are reflection, contact
shadowing, series resistance etc.

Ross and Nozik in  [] pushed the limit of theoretical conversion efficiency up to 66%



 Chapter . Introduction

for single junction solar cells by their suggestion to collect the hot carriers before relaxation
in the form of heat. e hot carriers are ”hot” in the sense that they have large kinetic
energy as a result of absorbing a photon with energy much larger than the band gap energy.

Several proposals have been suggested to improve the efficiency of solar cells beyond the
Shockley-Queisser limit []. A recent review on various aspects of optical energy conver-
sion is given in Ref. []. Some of the proposals include the following techniques: e
use of multijunction photovoltaic cells (also called ”tandem cells”) []. Concentration
of the absorbed sunlight using lenses and curved mirrors onto a small multijunction solar
cells []. Intermediate band photovoltaics in which the solar cells incorporate an en-
ergy band that is partially filled within the gap to let photons with less energy than the
band gap to be absorbed []. Hot electron capture where a carrier after excitation with
photon energy way above the band gap is extracted before relaxing to the band edge with
special contacts []. Photon upconversion in which a special material is introduced in the
module which can absorb two or more photons with energy below the band gap and emit
one photon with energy above the band gap [] and finally Multiple exciton generation
(MEG) [, , , –].

MEG sometimes also called carrier multiplication is a physical process in which absorption
of a high energy photon results in a creation of more electron-hole pairs by the excess energy
instead of dissipating as heat. is process is mainly due to ee interaction in which the initial
high energy exciton is disintegrated via inverse Auger recombination into two excitons with
lower energy. A conversion efficiency as high as 44% for single sun and 85% for maximum
concentration (46300 suns) has been demonstrated via MEG for quantum dots of various
small band gap samples []. e MEG effect is enhanced in nanostructures compared to
their bulk materials due to larger Coulomb interaction and the absence of requirements for
momentum conservation.

is thesis is organized as follows: In chapter two the basic theory for calculating transport
through coupled quantum dot is discussed. Since the calculations are based on the density
matrix approach, introduction to the basics of density matrix and equation of motion for
the density matrix is given in the beginning. Following the introduction of the density
matrix, the model Hamiltonian is explained. Since the main focus of paper I is the study of
the effects of different ee interaction terms for transport calculation, the Coulomb matrix
elements and their evaluation for triple quantum dot of a given dimension is discussed in
chapter two.

Chapter three begins by introducing the theory of excitons, which are the main subject
of paper II and paper III. In addition, an outline of the calculations for evaluating the
energy levels, Coulomb and dipole transitionmatrix elements for the model systems used in
paper II and paper III is described. Chapter four discusses the method used for calculating
MEG yield with and without a contact. Here the results obtained in Paper II and paper
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Figure 1.3: Direct solar irradiance based on the data from Ref. [37] in wavelength (left) and in energy (right).

III are summarized and discussed. Chapter five describes a method of two-dimensional
spectroscopy, which is one of the extensively used techniques to measure ultra-fast processes
in quantum dots andmolecules. Finally, in chapter six an outlook and a conclusion is given.





Chapter 

Transport in quantum dots

e topic of electron transport in nanostructures has been an active area of research in
recent years following the rapid growth in fabrication methods of nanostructures. A typical
theoretical challenge in this regard is the description of charge and energy transport through
a quantum system coupled to electron reservoirs (metallic leads). e quantum system can
be a single or coupled system which is characterized by discrete energy levels. e metallic
leads on the other hand are considered to be composed of non-interacting electrons that
obey the Fermi-Dirac distribution.

As already mentioned in the introduction chapter, current spectroscopy could provide
sufficient information about transport of electrons through single and coupled quantum
dots connected to metallic contacts. In paper I we investigated the effect of different
electron-electron (ee) interaction terms in electron transport through a serially coupled
triple quantum dot attached to metallic leads. One of the most common ways of repres-
enting measurement data in current spectroscopy is by using charge stability diagrams [].
ese diagrams are sometimes called Coulomb diamonds in the case of single quantum dot
attached to metallic leads. e name ”diamond” is due to the shapes of Coulomb blockade
regions in the two dimensional plot of current as a function of gate voltage and bias voltage
(see Fig. .).

is chapter discusses the methods used to calculate the current through a triple quantum
dot system with an emphasis on the effect of ee interaction on transport. Before discussing
the transport calculation for coupled quantum dots, a brief motivation on the information
that can be obtained via current spectroscopy through a single quantum dots is given in
the following section.


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. Current Spectroscopy for Single Quantum Dot

e motivation in this section is to give an overview of the type of information obtained
via current measurements by focusing only on transport through single quantum dot. e
common setup is that a quantum dot is connected to metallic source and drain leads both
from left and right to create an applied bias. By varying the chemical potential on the
leads, a bias window can be opened or closed. In addition, the energy levels in the dot
can be varied by changing the gate voltage Vgate. By raising or lowering the gate voltage,
additional electrons can be added into or removed from the dot.

In Fig. . a plot of current (in the left) and differential conductance (in the right) as a
function of the gate energy and the difference in the right and left chemical potential (bias
energy) is shown. e current is calculated as the net flow of electrons through the left lead
for an arbitrary parameter sets (given in the caption). e Pauli master equation approach
is used to calculate the current, which will be discussed later in this chapter.

e charge stability diagrams in Fig. . provide a large amount of information on condi-
tions of the gate energy with respect to the bias energy. is way one can identify regions
on the two dimensional map where current is non zero or blocked. Fig. . displays the
basic principle of the transport mechanism with Coulomb blockade. On the x-axis the bias
is varied symmetrically. is is done by increasing the difference in the left/right chem-
ical potentials. For positive bias the chemical potential for the left lead is positive and the
chemical potential for the right lead is negative with the same magnitude. On the y-axis
the dot energies are varied. By pulling downward the gate voltage, new states can enter the
bias window.

Figure . shows the scenario for some selected points (A-F) on the two dimensional plot
in Fig. .(left). e points for zero (low) bias (A, C and E) are colored light green, the
points that correspond to positive bias (B and F) are colored light red and the point that
correspond to negative bias (D) is colored light blue. At points (A and C) the net current
is zero as it is equally probable to tunnel through either side of the leads. e number of
electrons in the dot is fixed in the diamond or Coulomb blockade regions indicated by light
green in Fig. .(left). On the boundary points between two diamonds, such as point (A),
the number of particles in the dot fluctuates between N and N + 1. In the specific model
used in Fig. ., the number of particles varied from zero to four. At point (E) the total
number of electrons in the dot is 1. For the next level to come to the bias window at this
point, one needs to pull downward the dot chemical potential by an amount proportional
to the charging energy U plus separation between the levels ΔE.

By increasing the bias window, non-zero current can be obtained for regions outside the
Coulomb blockade diamonds. For very large bias, more than one level can be in the bias
window giving multiple transport channels which result in a finite current. is behavior
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can be observed as we go further in the bias with more enhanced current signals. In ex-
perimental measurements, it is very common to represent the data in terms of differential
conductance as shown in Fig. .(right). In differential conductance plots the border lines
of the Coulomb diamonds are more visible. One obtains information such as the charging
energy and level splitting by measuring the width and height of the Coulomb diamonds.

Figure 2.1: Current (left) and the corresponding differential conductance (right) as a function of bias and gate energy for a single
quantum dot attached to two metallic leads. Coulomb blockade areas with fixed number of particles are indicated
in diamond shapes. The size of each diamond is proportional to the interaction strength U = 100Γ plus the level
splitting ΔE = 50Γ assumed. We consider a spin-polarized system, where each level is only occupied once. Other
parameters used are kBT = 2Γ, ΓL = ΓR = Γ are the coupling strength of the dot levels to the left and right lead
respectively. For convenience the units are all given in energy units normalized by the lead-dot coupling strength Γ.

A

E

C

D F

B

2

U+ΔE

U+ΔE

Figure 2.2: Schematic diagrams describing the transport situation for the different points marked in Fig. 2.1. The points A, E
and C are zero (low) bias points, point D is negative bias and points B and F are positive bias points. The bias voltage
is defined as Vbias = (µL − µR)/e. µN, µN+1 and µN+2 are the chemical potential of the dot containing N, N + 1
and N + 2 electrons respectively.
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Once we discussed the basic principles of current spectroscopy through a single quantum
dot, we can start discussing the transport calculations carried out in paper I. e main
observable is the current through the serially coupled three quantum dots under a biasing
condition as shown in Fig. .. e methods used for calculating the current is based on
the density matrix theory as discussed in Refs. [–].

In order to follow the discussions in the next sections, introducing the concept of a density
matrix will be helpful at this stage.

.. Density Matrix and its Properties

Following Ref. [] a density matrix (also called density operator) can be defined for a
quantum system, that can be represented by a general time dependent wave function |ψ(t)⟩
as,

ρ(t) = |ψ(t)⟩⟨ψ(t)|. (.)

For an arbitrary basis set {|i⟩} such that |ψ(t)⟩ =
∑

i ci(t)|i⟩, Eq. . becomes

ρ(t) = |ψ(t)⟩⟨ψ(t)| =
∑

i

∑
j

ci(t)c∗j (t)|i⟩⟨j| =
∑

ij

ρij(t)|i⟩⟨j|, (.)

where ρij(t) = ci(t)c∗j (t) is the density matrix element. e system in question can be in
a pure state, where it can be described by a single wave function (state vector). Otherwise
it is said to be in a mixed state, in which case it is described by a mixture of different states
|ψi⟩ with their respective probabilities Pi. In such a case density matrix can be written as:

ρ(t) =
∑

i

Pi|ψi(t)⟩⟨ψi(t)|, (.)

where Pi is the probability of the system to be in the state |ψi(t)⟩ which is non-negative
and normalized to unity:

Pi ≥ 0, (.)∑
i

Pi = 1. (.)

In the case of a pure state all Pi = 0 except one of them which is Pi = 1. e corresponding
density matrix element for a system in a mixed state can be obtained from Eq. .

ρij(t) = ⟨i|ρ(t)|j⟩ =
∑

i

Pi⟨i|ψi(t)⟩⟨ψi(t)|j⟩. (.)

Below a summary of important properties of the density matrix is given:
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. e density matrix is Hermitian, i.e.,

ρ∗ij(t) = ρji(t). (.)

. e diagonal elements of the density matrix cannot be negative since they represent
probabilities of occupation of states. For a general case in a mixed state,

ρii(t) =
∑

i

Pi⟨i|ψi(t)⟩⟨ψi(t)|i⟩ =
∑

i

Pi|⟨i|ψi(t)⟩|2 ≥ 0. (.)

ese diagonal matrix elements are often called populations.

. e off-diagonal elements of the density matrix ρij(t) with i ̸= j are generally com-
plex. ese off-diagonal matrix elements are often called coherences which describe
superposition of states.

. e trace of the density matrix is unity. is condition is called the normalization
condition analogous to the normalization of the wave function. is is due to the fact
that the trace is the sum of the diagonal elements which are occupation probabilities
of the individual states.

Trρ(t) = 1. (.)

. e square of the trace of the density matrix satisfies

Trρ2(t) ≤ 1, (.)

where the equality is true for pure states while for mixed state Trρ2(t) < 1. is
quantity can be used as a measure for purity of a state.

. e Schwartz inequality for the density matrix: e magnitude of each off-diagonal
element of the density matrix is smaller than or equal to the geometric mean of the cor-
responding diagonal elements

• For a pure state

ρiiρjj = |ρij|2 for all i,j. (.)

• For a mixed state

ρiiρjj ≥ |ρij|2. (.)
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. Quantum Master Equations

.. Model System and Many Particle Representation.

Most of the derivations in this chapter strictly follow previous works developed in our
group [–, ] for transport calculations through nanostructures. For transport calcu-
lations through nanostructures the first step towards the solution is to define the system
Hamiltonian. In a typical transport calculation the total Hamiltonian can be separated
into parts that describe the quantum system, the leads and the coupling between the lead
and the system. For quantum dots and coupled quantum dots the energy level within the
dot is assumed to be discrete. Depending on the size of the dots and type of the materials,
the spacing between energy levels can vary. For metallic leads one usually assumes Fermi-
Dirac distribution of electrons in the lead. e lead and the dot systems are coupled via a
tunneling process. e general form for the total system-lead Hamiltonian is given by:

Htotal = HDot + HLead + HDot−Leads, (.)

HDot is the dot Hamiltonian in the single particle basis, which can be written as

HDot =
∑
iσ

Eid
†
iσdiσ, (.)

where the summation i runs through all levels of the quantum dot. d†i and di are the creation
and annihilation operator in the dot level i with spin σ respectively. For coupled quantum
dot system, an additional term to the Hamiltonian in Eq. . is needed to describe the
coupling between the states in the different dots and the single particle energies in each
dot. is modifies Eq. . as

HDot =
∑
iσ

Eid
†
iσdiσ +

∑
ijσ

Ωijd
†
iσdjσ, (.)

where Ωij is the coupling matrix element between the ith level in one dot and the jth level
in the neighboring with spin σ. In the case where more than one electron is considered, ee
interactions become relevant. In this case an additional term for the dot Hamiltonian in
Eq. . is needed.

HDot =
∑
iσ

Eid
†
iσdiσ +

∑
ijσ

Ωijd
†
iσdjσ +

1
2

∑
ijklσσ′

Vmnkld
†
iσd†jσ′dkσ′dlσ, (.)

where Vmnkl is the Coulomb matrix element. In most cases, for electrons in different
quantumdots that have significant spatial separation, the ee contribution to the dotHamilto-
nian is significantly small. Often for quantum dots that are not immediate neighbors, both
the coupling between the levels in the dots, Ω, and the Coulomb matrix elements are zero.
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Details on the calculation of the Coulombmatrix element Vmnkl for a specific model system
will be given in Sec. .. e Hamiltonian describing the metallic lead ℓ is given as:

HLead =
∑
kσℓ

Ekσℓc
†
kσℓckσℓ, (.)

whereEkσℓ in Eq. . is the energy of an electron in the lead ℓwith spinσ andwave vector k.
c†kσℓ and ckσℓ are fermion creation and annihilation operators for the lead states respectively.
e remaining term from Eq. . is the lead-dot coupling Hamiltonian HDot−Lead which
is a tunneling process of creating an electron in the dot state by destroying one in the lead
state and vice-versa:

HDot−Lead =
∑
i,kσℓ

(
ti(kσℓ)d

†
iσckσℓ + t∗i (kσℓ)c

†
kσℓdiσ

)
, (.)

ti(kσℓ) in Eq. . is the tunnel matrix element between the level in the dot and the lead
state. e evaluation of the tunneling matrix element can be done via different approaches
that depend on the problem at hand. In paper I we assumed energy independent tunnel
couplings ti(kσℓ) = ti(σℓ).

A many particle state |a⟩ is obtained by exact diagonalisation of the dot HamiltonianHDot.
In this many particle basis, the dot Hamiltonian is diagonal.

HDot|a⟩ = Ea|a⟩. (.)

By using the second quantization representation [] the general form of the many particle
state is given by

|a⟩ =
∑

i1,i2···iNa

a(i1, i2 · · · iNa)d
†
i1d

†
i2 · · · d

†
iNa
|0⟩ =

∑
i1,i2···iNa

a(i1, i2 · · · iNa)|i1i2 · · · iNa⟩,

(.)

where d†i1d
†
i2 · · · d

†
iNa

create particles in the levels i1, i2, · · · , iNa respectively. Here the or-
dering of the indices i1 ≤ i2 ≤ · · · ≤ iNa is assumed to avoid double counting. One is
often interested in the problem of coupling between the lead and the many particle states
of the system. Here the tunneling Hamiltonian can be reformulated in the many-particle
basis by inserting the complete set

∑
a |a⟩⟨a|,

∑
b |b⟩⟨b| in to Eq. .

HDot−Lead =
∑

kσℓ,a,b

(
|b⟩
∑

i

ti(kσℓ)⟨b|d†iσ|a⟩︸ ︷︷ ︸
=Tba(kσℓ)

⟨a|ckσℓ + c†kσℓ|a⟩
∑

n

t∗i (kσℓ)⟨a|diσ|b⟩︸ ︷︷ ︸
=T∗

ba(kσℓ)

⟨b|

)
,

(.)
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which can be further simplified as

HDot−Lead =
∑

kσℓ,a,b

Tba(kσℓ)ckσℓ|b⟩⟨a|+ T∗
ba(kσℓ)c

†
kσℓ|a⟩⟨b|. (.)

In Eq. . the first term on the right side of the equal sign describes the transition in the
dot from state |a⟩ → |b⟩ when an electron tunnels in to the dot from the lead ℓ with spin
σ and wave vector k. e second term is its Hermitian conjugate. It describes tunneling
out of the dot system |a⟩ → |b⟩ and creating an electron in the lead ℓ with spin σ and wave
vector k. e convention for themany particle eigenstates |a⟩, |b⟩, |c⟩ · · · is that the number
of particle increases by 1 in increasing order of the letters. i.e, Nc = Nb + 1,Nb = Na + 1
etc. erefore the first term in the right part of Eq. . describes an increase in the particle
number of the dot system by 1 due to the tunneling from the lead. On the other hand, the
complex conjugate term describes a tunneling out of the dot which causes a reduction of
the number of particles in the dot by 1.

Following the notation described in Ref. [], for the coupled system (in our case the dots
and the leads) a general state vector can be written as a product state |ag⟩ = |a⟩ ⊗ |g⟩ with
|a⟩ being the many-particle states of the central region and |g⟩ = |{Nkσℓ}⟩ being the state
of the leads, where Nkσℓ ∈ {0, 1}.

We introduce the following notation, which is consistent with the anti-commutation rela-
tions.

• c†kσℓ|g⟩ ≡ δNkσℓ,0|g + kσℓ⟩ and ckσℓ|g⟩ ≡ δNkσℓ,1|g − kσℓ⟩.

• |gkσℓ⟩ ≡ c†kσℓckσℓ|g⟩ and |gkσℓ⟩ ≡ ckσℓc
†
kσℓ|g⟩. I.e., |gkσℓ⟩ = δNkσℓ,1|g⟩.

• Taking into account the anti-commutation rule of the operators, the order of indices
is opposite to the order of the operators. For example,
|g + kσℓ− k′σ′ℓ′⟩ = ck′σ′ℓ′c

†
kσℓ|g⟩ = −c†kσℓck′σ′ℓ′ |g⟩ = −|g − k′σ′ℓ′ + kσℓ⟩.

As the many-particle state |a⟩ implies the presence of Na creation operators, see Eq.(.),
one obtains

ckσℓ|ag⟩ = ckσℓ|a⟩ ⊗ |g⟩ = (−1)Na |a⟩ ⊗ ckσℓ|g⟩ = (−1)Na |ag − kσℓ⟩,

and similarly c†kσℓ|ag⟩ = (−1)Na |ag + kσℓ⟩.
e elements of the density matrix ρ in a general way can be written as,

ρ
[n]
ag;bg′ = ⟨ag|ρ̂|bg′⟩, (.)
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where the label n indicates the total number of electron-hole excitations (ehx) involved in
transforming g to g′. e hole in this case is the absence of an electron. It participates in
transport with opposite charge to the electron. In the calculation we restrict ourselves to a
maximum of n = 1.

. Equation of Motion for the Density Matrix.

e time evolution of the density operator is given by the von-Neumann equation:

iℏ
d
dt
ρ = [H, ρ]. (.)

From Eq. . the equations of motion for the 0− ehx and 1− ehx matrix elements are

iℏ
d
dt
ρ
[0]
bg;b′g = (Eb − Eb′)ρ

[0]
bg;b′g +

∑
a,kσℓ

(−1)NaTba(k)ρ
[1]
ag+k;b′g

+
∑
c,kσℓ

(−1)NbT∗
cb(k)ρ

[1]
cg−k;b′g −

∑
c,kσℓ

(−1)NbTcb′(k′)ρ
[1]
bg′;cg−k

−
∑
a,kσℓ

(−1)Naρ
[1]
bg;ag+kT

∗
b′a(k),

(.)

and

iℏ
d
dt
ρ
[1]
cg−kσℓ;bg = (Ec − Eb − Ek)ρ

[1]
cg−k;bg +

∑
b′

(−1)NbTcb′(k)δNk,1ρ
[0]
b′g;bg

−
∑

c′
(−1)Nbρ

[0]
cg−k;c′g−kT

∗
c′b(k) +

∑
k′σ′ℓ′

[∑
b′

(−1)NbTcb′(k′)ρ
[2]
b′g−k+k′;bg

+
∑

d

(−1)NcT∗
dc(k

′)ρ
[2]
dg−k−k′;bg −

∑
c′
(−1)Nbρ

[2]
cg−k;c′g−k′Tc′b(k′)

−
∑

a

(−1)Naρ
[2]
cg−k;ag+k′T

∗
ba(k

′)
]
.

(.)

For most physical quantities, one is interested in the processes involving the dot states.
As the number of degrees of freedom for the lead states (described by the Fermi-Dirac
distribution) is much larger than the degrees of freedom for the dot states, the occupation
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of the lead states is not affected by the coupling to the dots. Hence one can trace out all
the lead states g to obtain a reduced density matrix,

Φ
[0]
b′b =

∑
g

ρ
[0]
b′g;bg (.)

We also introduce the following current amplitudes neglecting excitations with n ≥ 2

Φ
[1]
ba (kσℓ) = (−1)Na

∑
g

ρ
[1]
bg−k;ag. (.)

Using the Markov approximation for Φ[1]
ba (kσℓ) and equilibrium distribution in the leads

we obtain the first order von-Neumann (vN) equation, which we used in paper I. e
change in occupation of the state k with spin σ and in lead ℓ can be expressed in terms of
Φ
[1]
ba (kσℓ) as follows

d
dt

nkσℓ =
d
dt
⟨c†kck⟩ =

i
ℏ
∑
gb

⟨gb|[Ĥ, c†kck]ρ̂|gb⟩

=
i
ℏ

(∑
abg′

(−1)NaTba(k)ρ
[1]
ag′+k;bg′ −

∑
bcg

(−1)NbT∗
cb(k)ρ

[1]
cg−k;bg

)

=
i
ℏ
∑
gbc

(
(−1)NbTcb(k)ρ

[1]
bg;cg−k − (−1)NbT∗

cb(k)ρ
[1]
cg−k;bg

)
=

2
ℏ
∑
cb

ℑ{T∗
cb(k)Φ

[1]
cb (k)}.

(.)

e running indices a, b, g′ were replaced by b, c, g in the third line in the above equation
and |g⟩ = c†k|g

′⟩ were taken.
From Eq.(.), it is easy to see that the elements Φ[1]

cb (k) describe current amplitudes as-
sociated with the single-particle transitions.

e particle current Jℓ from the lead ℓ into the structure is given by

Jℓ = −
∑
kσ(ℓ)

d
dt

nkσℓ = −2
ℏ
∑

kσ(ℓ)cb

ℑ{T∗
cb(k)Φ

[1]
cb (k)}, (.)

which is represented by the particle losses in the respective lead due to the current amp-
litudes. ℑ in Eq. . is used to indicate that the the imaginary part of the quantity in the
bracket is considered.
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. Pauli Master Equation

Sometimes the contribution from the off-diagonal elements of the density matrix to trans-
port can be negligible. In such cases the calculation of observables such as current based
on the Pauli master equation approach can provide similar result to those calculated via the
first order von-Neumann approach. Numerically it is much simpler to calculate than other
similar approaches as the number of non-zero matrix elements are reduced significantly.
e Pauli master equation is a set of differential equations for occupation probabilities of
the many particle states {|a⟩, |b⟩ · · · } given. Following Refs. [, ]:

dPb

dt
=
∑
aℓ

Pa Γa→b,ℓfℓ(Eb − Ea)︸ ︷︷ ︸
γin

a→b(ℓ)

+
∑

cℓ

Pc Γc→b,ℓ(1− fℓ(Ec − Eb))︸ ︷︷ ︸
γout

c→b(ℓ)

(.)

−Pb
∑
aℓ

Γb→a,ℓ(1− fℓ(Eb − Ea))︸ ︷︷ ︸
γout

b→a(ℓ)

−Pb
∑

cℓ

Γb→c,ℓfℓ(Ec − Eb)︸ ︷︷ ︸
γin

b→c(ℓ)

,

where the indices {a, c} run over the many particle states {|a⟩, |b⟩ · · · }, Γa→b,ℓ is the trans-
ition rate to tunnel from lead ℓ to the dot which causes the dot state to change from |a⟩ to
|b⟩, which can be calculated by Fermi’s golden rule:

Γa→b,ℓ =
2π
ℏ
∑
kσ

|Tba(kσℓ)|2δ(Ea − Eb + Ek), (.)

Pa, Pb and Pc are probabilities of finding the system in a state |a⟩, |b⟩ and |c⟩ respect-
ively, which are the diagonal elements of the reduced density matrix with different particle
numbers. fℓ(Eb − Ea) is the Fermi-Dirac distribution function given by

fkσℓ(E) =
1

exp(
Ekσℓ−µℓ

kBT + 1)
, (.)

where µℓ is the chemical potential of the lead ℓ, kB is the Boltzmann constant, and T is the
system temperature.

e role of each term on the right hand side of Eq. . will be discussed below. e first
term describes a contribution to occupy state |b⟩ by tunneling from the lead state to the
dot which were initially in state |a⟩. e rate of this process is given by the generalized
rate γina→b(ℓ). e second term describes a contribution to occupy state |b⟩ by tunneling
out from the dot which was initially in state |c⟩ to the lead state. is happens with the
corresponding generalized rate γoutc→b(ℓ). e third term describes a reduction in occupa-
tion of state |b⟩ by tunneling out to the lead from the dot state |b⟩. is happens with
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a generalized rate γoutb→a(ℓ). Finally the fourth term described a reduction of occupation
for state |b⟩ as a result of tunneling in from the lead to the dot which was initially in state
|b⟩. e corresponding generalized rate for this process is γinb→c(ℓ). All the above processes
conserve energy.

In this approach the particle current from the lead ℓ to the dot is given by:

Jℓ =
∑
ab

[PaΓa→b,ℓfℓ(Eb − Ea)− PbΓb→a,ℓ(1− fℓ(Eb − Ea))], (.)

is approach is valid for weak tunnel coupling (Γ) compared other energies of the system
such as temperature (kBT) and level spacing (ΔE).

Γ ≪ kBT,ΔE (.)

e current through a single quantum dot shown in Fig. . was calculated based on
Eq. ..

. Coulomb Matrix Element Calculations for Triple Quantum
Dots

In paper I, the importance of Coulomb ee scattering for enabling transport through serial
triple quantum dot is discussed. In this section an outline of the calculations for the Cou-
lomb matrix elements will be given. For the purpose of obtaining non-degenerate levels,
the individual quantum dots are assumed to have a cuboid geometry as shown in Fig ..
Experimentally it is common to grow nanowires which are cylindrical for the dimensions
used in paper I and hexagonal for larger diameters as they form facets when the thick-
ness increases []. Approximation by an elongated cuboid can still capture the major
features. e wavefunctions for the levels shown in the model can be obtained by solving
the Schrödinger equation assuming a particle confined in a box model for each dot:

|ψ(nx, ny, nz, s)⟩ =
√

8
LxLyLz

sin(
nxπx
Lx

) sin(
nyπy
Ly

) sin(
nzπz
Lz

)χ(s), (.)

where nx, ny, nz denote the quantum numbers in the x,y and z directions respectively and
χ(s) is the spin wave function. Lx, Ly, Lz determine the dimension of the box with Lz >
Ly > Lx which are adjusted to obtain appropriate energies.

For spinfull simulations a total of 10 states with 4 in the first and second dot and two in
the third dot are considered see Fig. .. In the case of spinless simulations only 5 states
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Figure 2.3: Schematics of cuboid triple quantum dot

with states 1 and 2 and in the first dot states 3 and 4 are in the second dot and state 5 in
the third dot are considered.

E

Z

Dot 3Dot 2Dot 1

9       10 5       6 

7       8 1       2 

3       4 

(1,1,1)

(1,1,2)

(1,1,2)

Figure 2.4: Schematics of serially coupled triple quantum dots attached with left and right leads. Spin degenerate energy levels
are labeled from 1 to 10. Only the levels in the first dot and the third dot are coupled to the leads. In addition, the
(nx, ny, nz) is indicated for some of the levels.

e Coulomb matrix element for a given wave function Ψ(r, s) can be evaluated as:

Vn1n2;m1m2 = ⟨χn1 |χm2⟩⟨χn2 |χm1⟩
∫ ∫

d3rd3r’ϕ∗n1(r)ϕ
∗
n2(r’)V(r− r’)ϕm1(r’)ϕm2(r),

(.)
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which conserves spin for the pairs (n1,m2) and (n2,m1). With the (screened) Coulomb
potential

V(r-r’) =
e2e−λ|r−r’|

4πϵhostϵ0|r− r’|
, (.)

where ϵhost is the dielectric constant of the host material, ϵ0 is the permittivity of free space
and λ is the screening length. Eq. . can be written as a Fourier transform which will
simplify further calculations:

V(r-r’) =
e2

ϵhostϵ0

1
(2π)3

∫
d3q

eiq.(r-r’)

(|q|2 + λ2)
(.)

=
e2

ϵhostϵ0

1
VN

∑
q

eiq.(r-r’)

(|q|2 + λ2)
.

Putting Eq. . into Eq..,

Vn1n2;m1m2 =
e2

ϵhostϵ0

1
VN

∑
q

1
(|q|2 + λ2)

∫
d3rϕ∗n1(r)e

iq.rϕm2(r)︸ ︷︷ ︸
A(q)n1,m2

∫
d3r’ϕ∗n2(r’)e

−iq.r’ϕm1(r’)︸ ︷︷ ︸
A∗(q)m1,n2

.

(.)

e A integrals can be solved separately for all the possible pairs which correspond to trans-
itions between states.

A(q)n1,m2 =

∫
d3rϕ∗n1(r)e

iq.rϕm2(r). (.)

e possible set of (n1,m2) pairs that are important for the processes considered are sum-
marized in table ..

All the Coulomb matrix elements in table . were evaluated numerically from Eq. . by
using wave functions in cuboids with Lx = 33nm, Ly = 35nm and Lz = 40nm for each
dots. ese results were used for comparison with the estimated matrix elements used in
the paper. In some of the cases, the estimates are based on dipole matrix elements obtained
from a tight-binding superlattice model []. e important steps will be sketched below.
Here the two major categories are the Intradot and Interdot interactions based on if the
interaction is localized only within the same dot or not.



.. Coulomb Matrix Element Calculations for Triple Quantum Dots 

Table 2.1: Important matrix elements considered in the calculation and their explanations.

V1221 Intradot interaction -direct
(Within the same dot between degenerate electrons with different spin).

V4334 Intradot interaction -direct
(Within the same dot between degenerate electrons with different spin).

V1331 Intradot interaction -direct
(Within the same dot between electrons in different levels with same spin).

V2442 Intradot interaction -direct
(Within the same dot between electrons in different levels with same spin).

V1313 Intradot interaction -exchange
(Within the same dot between electrons in different levels with same spin).

V1423 Intradot interaction -scattering
(Within the same dot between electrons in different levels with different spin).

V1243 Intradot interaction -scattering
(Within the same dot between electrons in different levels with different spin).

V1551 Interdot interaction -direct
(Within different dots between electrons in different levels with same spin).

V1753 Interdot interaction -scattering
(Within different dots between electrons in different levels with same spin).

V1771 Interdot interaction -direct
(Within different dots between electrons in different levels with same spin).

V1553 Interdot interaction
(Within different dots between electrons in different levels with same spin).

Intradot Interaction

In this case all the participating levels n1n2m1m2 arise from the same dot. By employing
the normalization condition for the wave functions one obtains for the direct elements an
estimate:

Vn1n2n2n1 ≈
e2

4πεrε0σ
= U, (.)

where σ =
√

⟨(r− ⟨r⟩)2⟩ is the standard deviation for the spatial extension of the dot
wave functions. A second set of intradot interactionmatrix elements are of the typeVn1n2n1n2 ,
that act as exchange terms in the case of equal spins and as scattering terms in the case of
different spins. A typical value in this case is:

Vn1n2n1n2 ≈ Uex with Uex =
U
5
, (.)

which is confirmed by our numerical integration (see Table .)

Interdot Interaction

For interdot interaction not all the levels n1n2m1m2 are from the same dot. In the same
way as Eq. (.) the direct interaction between two states in the neighboring dot can be
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Table 2.2: Comparison for selected Coulomb matrix elements calculated via a numerical integration Eq. 2.40 and approximation
using Eqs. 2.42- 2.47. For the estimation, the following parameters are used. ϵr,InAs = 15 (see Ref. [48]), d = 43 nm,
σ = 11 nm and the dipole matrix element |S21 = 8nm|. Regarding the spins, the convention that odd numbered
levels are spin up and even numbered levels are spin down is used.

Matrix Element Numerical evaluation Estimate based on Eqs. .- .
V1221 7.5 meV U = 8.6meV

V1331 6.6 meV U = 8.6meV

V2442 6.6 meV U = 8.6meV

V1313 1.7 meV Uex = 1.7 meV

V1551 2.0 meV Un = 2.2meV

V1423 1.7 meV Uex = 1.7 meV

V1243 1.7 meV Uex = 1.7 meV

V1753 −0.16meV Usc = −0.15 meV

V1771 2.1 meV Un = 2.2meV

V1553 0.4 meV Udc = 0.4meV

written as:

Vn1n2n2n1 ≈
e2

4πεrε0d
= Un, (.)

where d is an approximate distance between the centers of the dots. In addition to the
direct terms, the dipole-charge Udc and dipole-dipole scattering Usc can be defined as:

Vlnml ≈
e2

4πεrε0

snm · (Ri −Rj)

d3
= ±Udc, (.)

Vmnkl ≈
−e2

4πεrε0

2sml · snk

d3
= Usc, (.)

with the intradot dipole matrix element

snm =

∫
d3rφ∗

n(r)rφm(r), (.)

where the Taylor expansion of 1/|r− r′| around the centers of the respective dotsRi,Rj,
see Ref. [] and |Ri − Rj| = d for neighboring dots was used in Eq. . and Eq. .
above.

A good agreement between the two sets of calculation was obtained as shown in Table .
for few selected elements.

For serially coupled triple quantum dots with level configurations as shown in Fig. ., one
of the main findings from the paper is discussed as follows. In a biasing condition where
the states 1/2 are aligned with the chemical potential of the left dot µL and the states
9/10 are aligned with the chemical potential of the right lead µR, no current is predicted
by varying the levels in the middle dot by standard considerations of coherent transport.
However, via scattering interaction a current flow is enabled. Considering similar spins for
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example (only spin up electrons labeled by odd numbers) in the condition where levels 
and  are occupied, an energy conserving scattering creates simultaneous transitions 1 → 3
and 7 → 5 (for E7 − E5 = E3 − E1) which will then tunnel to the right lead through state
.

ese calculations were the basis for paper I, which discusses furthermore the validity of
the Pauli master equation. is was checked by comparing the agreement of the results
obtained using the Pauli master equation with the results of the vN approach. Here the
difference between the two approaches is that the Pauli master equation approach neglects
coherences while vN takes into account the full density matrix elements of the reduced
quantum dot system. By using the Pauli master equation one can, to large extent, reproduce
qualitatively all the resonances correctly. In some regimes where the lead coupling is larger
than the energy splitting, i.e., Γ > ΔE, the current can be overestimated by this approach.
is can happen due to the fact that it is the regime where coherences strongly reduce the
current.





Chapter 

Exciton Dynamics

In this chapter, an introduction to the concept of excitons and their properties will be given.
Excitons and the study of their dynamics constitute a major part in this thesis. Following
the introduction, methods used to calculate energy levels and the dipole matrix elements for
PbS quantum dot, which is the model system in most of the calculations, will be discussed.
e chapter will be concluded by describing the modeling of the light field, which is used
for the simulations in paper II and paper III.

. Excitons

In bulk systems, excitation of a semiconductor with a light field causes an electron to jump
across the band gap to an available state in the conduction band leaving a ”hole” behind in
the valence band. e hole, treated as an effective particle, has an opposite charge to that
of the negatively charged electron. As a result, the hole and the electron feel an attractive
Coulomb force. In the limit where the electron and the hole wavefunctions do not spread
over a large number of atoms, they form a bound state. ese electrically neutral, bound
electron-hole pairs are called Excitons [–]. Yakov Frenkel in  was the first to formu-
late the exciton as a non-conductive electronic excitation. e so called Frenkel excitons
[, ] are one of the two major divisions of excitons, where the electron and the hole are
tightly bound to each other, allowing them to fit in the same lattice site. Frenkel excitons
are sometimes called zero-radius excitons due to their small exciton Bohr radius, in analogy
to the Bohr radius of a hydrogen atom. Frenkel excitons are a common type of excitons
in several small dielectric molecular systems and biological materials. On the other hand,
materials with large dielectric constant, such as ionic crystals and inorganic semiconduct-
ors, have a large exciton Bohr radius. Due to screening, the Coulomb binding energy of


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(a)

(b)

(c)

(d)

(e)

Figure 3.1: Exciton transfer in the Frenkel picture (inspired by Fig.2.2 from Ref. [51]). In a chain of two level systems an excitation
is initiated by light in (a). The excited electron can now be transferred to the neighboring same energy level (b).
A repulsive Coulomb force pushes the electron in the valence band to the neighboring atom (c). As a result the
exciton which was located in the first site in (a) is moved to the second site in (c). the process repeats in (d) and (e)
transferring the exciton by one more site

the electron and the hole in this case is not as large as compared to the Freknel excitons.
ese large radius weakly bound excitons are the second type of excitons called Wannier
excitons []. Excitons play large role in energy transfer without transferring charge due to
their electrically neutral nature. For Frenkel excitons an energy transfer across a chain of
two level systems, which can represent coupledmolecules, is schematically shown in Fig. ..
In a chain of two level systems, an excitation initiated in the beginning is transferred across
the different sites.

. Excitons in Nanostructures

Nanostructures have a characteristic discrete energy levels due to confinement. In quantum
dots and molecules, an exciton can be formed by exciting the system using light field with
an energy that matches the allowed transitions from the valence to the conduction band
levels. As long as the transitions are allowed by selection rules the pulse energy can be varied
to create spectrum of excitons cf. Fig. .. In nanostructures, in addition to the type of the
material, parameters such as the shape and the size of the structure greatly influence the
properties of excitons []. Unlike the case in bulk materials, in nanostructures the exciton
size is determined not only by the Coulomb interaction strength between the electron and
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Figure 3.2: Excitation with different light energies can create spectrum of excitons in nanostructures.

the hole but also the physical size and shape of the system. e technological advancements
in nanostructure fabrication provide freedom for controlling the growth parameter, which
makes it possible to tune the sizes of excitons.

Due to their potential applications for optoelectronic and solar cell devices [], lead sulfide
(PbS) colloidal quantum dots and their size dependent optical properties have been invest-
igated intensively. Colloidal quantum dots are different from the gate defined quantum
dots in a nanowire, described in the previous chapter. ey are chemically synthesized
quantum dots which are suspended in solution []. In most of the simulations described
in this thesis, parameters of a 4 nm PbS colloidal quantum dot is used. is is motivated
by the availability of experimental data for such systems.
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. Calculation of Energy Levels and Dipole Matrix Elements

For evaluating the single particle energy spectra, a calculation based on theK ·P method
is used. e spectra depend on material parameters such as the size of the quantum dot and
the effective mass for both the electron and the hole. Whenever needed, the parameters
from Table  of Ref. [] were used. In the following section a brief introduction to the
calculation of single particle spectra based on the K ·P approach is given.

.. eK ·PMethod

Several theoretical models are available for calculating band structures of bulk semicon-
ductors and energy spectra for their nanostructure counterpars. e choice of methods
generally depends on their capacity to include realistic effects to better predict band struc-
tures that agree well with experiments. One method which provides an accurate prediction
of energy spectra for small PbS quantum dots is the K ·P method [, ].

Fig. . shows a band structure for bulk PbS from Ref. []. It can be seen from the figure
that PbS is a direct band gap material with the principal conduction band minimum and
valence band maximum at the L point of the Brillouin zone. e conduction band min-
imum has L−

6 symmetry (with pz-like spatial Bloch function where z is the ⟨111⟩-direction
of the cubic lattice) and the valence band maximum has L+

6 symmetry (with s-like spatial
Bloch function).

e corresponding band edge Bloch functions are denoted as |L−
6 ↑ / ↓⟩, |L+

6 ↑ / ↓⟩ for
conduction and valence band for both spins, respectively.

eK ·Pmodel ofMitchel andWallis [] has been used extensively to describes the band
structure near the band extrema (in this case the L point) for bulk PbS.ismodel takes into
account coupling between the highest valence band and conduction bands and the lowest
conduction band and valence bands in the second order perturbation approximation. In
addition, the model considers the spin-orbit interaction and treats the four-band problem
with two spin-degenerate states in the conduction band and two in the valence band exactly.
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Figure 3.3: Band structure of bulk PbS along high symmetry directions of the first Brillouin zone. Indicated k⃗ points along
the horizontal axis are X( 1

2 ,
1
2 , 0), Γ(0, 0, 0), L( 1

2 ,
1
2 ,

1
2 ), K( 3

4 ,
3
8 ,

3
8 ) and W( 3

4 ,
1
2 ,

1
4 ). Picture reproduced with

permission from Ref. [61], Copyright ©2007 Elsevier.

e Hamiltonian matrix is:

Ĥ =



|L−
6 ↑⟩ |L−

6 ↓⟩ |L+
6 ↑⟩ |L+

6 ↓⟩
Eg
2 +

ℏ2k2t
2m−

t
+

ℏ2k2ℓ
2m−

ℓ

0 ℏ
mPℓkℓ ℏ

mPtk_

0 Eg
2 + ℏ2k2t

2m−
t
+

ℏ2k2ℓ
2m−

ℓ

ℏ
mPtk+ − ℏ

mPℓkℓ

ℏ
mPℓkℓ ℏ

mPtk_ −Eg
2 − ℏ2k2t

2m+
t
− ℏ2k2ℓ

2m+
ℓ

0

ℏ
mPtk+ − ℏ

mPℓkℓ 0 −Eg
2 − ℏ2k2t

2m+
t
− ℏ2k2ℓ

2m+
ℓ


.

(.)

e different terms in the above Hamiltonian matrix will be explained below.
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k⃗ is the electron wave vector for the state considered relative to the band extrema:

k⃗ = K⃗ − 2π/a(1/2, 1/2, 1/2), (.)

where K⃗ is the reduced wave vector of the state [].
e longitudinal component of the wave vector kℓ is in the direction parallel to the ⟨111⟩-
direction.
A Cartesian coordinate is defined in such a way that z is parallel to the ⟨111⟩-direction.
is gives,

kℓ = kz. (.)

Perpendicular to the kℓ is the transversal component kt which itself has two components
perpendicular to each other denoted here as kx and ky with k2t = k2x + k2y . In terms of kx
and ky one obtains

k_ =(kx − iky), (.)
k+ =(kx + iky).

Eg is the bulk band gap, m is the mass of a free electron. e diagonal elements include far-

band contributions ℏ2k2t
2m−

t
+

ℏ2k2ℓ
2m−

ℓ

for the conduction band and ℏ2k2t
2m+

t
+

ℏ2k2ℓ
2m+

ℓ

for the valence

band. e masses m+
t/ℓ are the transversal and longitudinal components of the conduc-

tion band effective mass, respectively. Similarly, m−
t/ℓ are the transversal and longitudinal

components of the valence band effective mass, respectively. e momentum matrix ele-
ments Pt/ℓ are the transversal and longitudinal components taken between the extremal
conduction and valence band states.

e detailed evaluation of the individual Hamiltonian matrix elements in Eq. . requires
knowledge of the full wavefunctions. However, by looking at a general form of perturbation
Hamiltonian which includes the spin-orbit coupling [, ]

Ĥ′ =
ℏ
m
K · π =

ℏ
m
K · (P+

ℏ
4mc2

σ ×∇V), (.)

one can argue which part of the Hamiltonian couples which states. In Eq. . the first term
on the right hand side couples states between the different bands with similar spins. is
is the K · P perturbation without the spin orbit coupling. Since the conduction band
states are pz like and the valence band states are s like only the z (longitudinal) components
become non-zero while evaluating elements such as ⟨L−

6 ↑ | ℏmK ·P|L+
6 ↑⟩ = ℏ

mPℓkℓ. e
mixing between conduction band and valence band level with different spins are due to the
spin-orbit coupling term proportional to K · (σ ×∇V).
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e Hamiltonian in Eq. . can be diagonalized to obtain a dispersion relation for the
valence and conduction band[

Eg

2
+

ℏ2k2t
2m−

t
+

ℏ2k2ℓ
2m−

ℓ

− E(k)
][

−
Eg

2
− ℏ2k2t

2m+
t
−

ℏ2k2ℓ
2m+

ℓ

− E(k)
]
=

ℏ2

m2 (P
2k2t + P2k2ℓ),

(.)

similar to Eq. in Ref. []. In the limit

m± = m±
t = m±

ℓ , (.)

and

P = Pt = Pℓ (.)

one obtains a k dependent expression where k2 = k2t + k2ℓ

EV(k) =
1
2

[(
ℏ2k2

2m− − ℏ2k2

2m+

)
−

√(
Eg +

ℏ2k2
2m− +

ℏ2k2
2m+

)2
+

4ℏ2k2P2

m2

]
(.)

EC(k) =
1
2

[(
ℏ2k2

2m− − ℏ2k2

2m+

)
+

√(
Eg +

ℏ2k2
2m− +

ℏ2k2
2m+

)2

+
4ℏ2k2P2

m2

]
,

for the valence and the conduction band energies, respectively.

However, the same limit specified in Eq. . and Eq. . is not always valid since the
bands are not isotropic. Due to anisotropy the longitudinal and the transversal masses and
momentum matrix elements can become different. Following Ref. [], in this case we use
the effective parameters

3P2 = 2P2
t + P2

ℓ , (.)

and

3/m± = 2/m±
t + 1/m±

ℓ . (.)

For a spherical quantum dot with radius a the simplest solution can be obtained by solving
the Schrödinger equation for a particle of mass m in a spherical potential well. In this case
one obtains the wavefunctions []

Φn,l,m(r, θ, ϕ) = C
jl(kn,lr)Ym

l (θ, ϕ)

r
, (.)
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where C is a normalization constant, Ym
l (θ, ϕ) are the spherical harmonics and jl(kn,lr) is

the lth order spherical Bessel function, and

kn,l = αn,l/a, (.)

where αn,l is the nth zero of the Bessel function jl. e corresponding energy spectrum is

En,l =
ℏ2k2n,l
2m

=
ℏ2α2

n,l

2ma2
, (.)

where n(1, 2, 3, ...) and l(s, p, d, ...) are the quantum numbers. Using the K ·P method,
one obtains energy spectrum for the states in the conduction and valence bands with a
similar form as Eq. .

Ev
nl =

1
2

[(
E0

nlme

m− −
E0

nlme

m+

)
−

√(
Eg +

E0
nlme

m− +
E0

nlme

m+

)2
+ 4EpE0

nl

]
, (.)

Ec
nl =

1
2

[(
E0

nlme

m− −
E0

nlme

m+

)
+

√(
Eg +

E0
nlme

m− +
E0

nlme

m+

)2

+ 4EpE0
nl

]
,

with

E0
nl =

ℏ2α2
nl

2mea2
and (.)

Ep =
2P2

me
.

An energy spectrum using the formulas in Eq. . is plotted in Fig .. As an input for
the formulas in Eq. ., the material parameters for PbS quantum dots were adopted from
Table  of article []. ese values area displayed in Table ., where Eq. . and Eq. .
were used in evaluations.
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Table 3.1: Parameters for the K · P Hamiltonian for PbS. Adopted from Table 1. of Ref. [59]

Parameters values
Eg(T=k)(eV) .

m/m−
t .

m/m−
ℓ .

m/m− .
m/m+

t .
m/m+

ℓ .
m/m+ .

2P2
t /m(eV)(eV) .

2P2
ℓ/m(eV)(eV) .

2P2/m(eV)(eV) .

Orbitals
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1g E=2.1749
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2d E=-2.9569
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E
g

Conduction

Valence
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Figure 3.4: Single particle spectrum for the spherical quantum dot of diameter 4 nm calculated with the K · P method.

. Dipole Matrix Elements

Once the energy levels are calculated, the determination of the transition matrix elements
will be the next step. In chapter  of Ref. [] a treatment for dipole matrix elements
in quantum wells is given. Here we provide the important steps in evaluating the dipole
transition matrix elements for quantum dots. e two major categories in this case are the
interband and intraband matrix elements. Interband matrix elements involve transitions
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between states that originate from the conduction and valence band while intraband matrix
elements involve transitions between states originating from the same band. e methods
used for calculating both types of the matrix elements will be discussed below.

.. Interband Matrix Elements

e dipole transition matrix element is given by the overlap integral []

µc,v = ⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩, (.)

where e⃗ denotes the polarization of the light field and the total wave functions for the
conduction and the valence band electrons are given by |Ψc(⃗r)⟩ and |Ψv(⃗r)⟩, respectively.
At the band extrema, these wave functions are proportional to the product of an envelope
function (χn) and the appropriate Bloch functions (unk), where n ϵ {c, v} and k is the
wave vector at the band extrema. However, near the band edge the Bloch function is
weakly dependent on the wave vector k []. As a result one can assume k-independent
Bloch functions unk ≈ un,

|Ψc(⃗r)⟩ ∝χc(⃗r)uc(⃗r), (.)
|Ψv(⃗r)⟩ ∝χc(⃗r)uv(⃗r). (.)

Both the envelope and the Bloch functions are usually treated independently and normal-
ized separately,

∫
V
|χn(⃗r)|2d3⃗r = 1, (.)∫

V
|unk(⃗r)|2d3⃗r = 1, (.)

both integrals above run over the volume of the sample Ω. e total wave functions can
be set to have the form

|Ψn(⃗r)⟩ =
√
Ωχn(⃗r)un(⃗r), (.)

so that it obeys the same normalization as the components. e matrix element is then

µc,v = ⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩ = Ω
∫

V
χ∗

c (⃗r)u
∗
c (⃗r)(⃗e · p⃗)χv(⃗r)uv(⃗r)d3⃗r. (.)

e above integral can be split into two parts as it contains functions which vary on two
length scales. e Bloch functions un(⃗r) vary within each unit cells (they are the same
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within each unit cell) while the envelope functions χn(⃗r) vary on a much longer scale and
almost constant within each unit cell. us the envelope functions can be pulled out of the
integral as being constant within each cell and the integral can be considered as the sum
over each unit cell j such that

µc,v = ⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩ ≈ Ω
cells∑

j

χ∗
c (r⃗j)χv(r⃗j)

∫
cell j

u∗c (⃗r)(⃗e · p⃗)uv(⃗r)d3⃗r︸ ︷︷ ︸
(Ωcell/Ω)⃗e·⃗pcv

, (.)

with p⃗cv being the momentum matrix element between the Bloch wave functions at the
band extrema. us

µc,v = ⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩ ≈ e⃗ · p⃗cvΩcell

cells∑
j

χ∗
c (r⃗j)χv(r⃗j). (.)

e sum over the cells can be turned to an integral over the sample as

µc,v = ⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩ ≈ e⃗ · p⃗cv

∫
χ∗

c (⃗r)χv(⃗r)d3⃗r. (.)

From this expression we note that for transitions to be allowed, the matrix element in
Eq. . must satisfy selection rules that

• e Bloch functions of the band edges must satisfy the dipole selection rules, i.e. two
states with same parity can not be coupled via electric dipole Hamiltonian [, ].

• e spin component of the initial and final wavefunctions must be the same.

Numerical estimate for the allowed interband dipole matrix elements which are independ-
ent of the geometry for the dot can be obtained by considering the momentum matrix
element for PbS from the article [] with the convention that P = Pℓ = Pt.

Depending on the polarization of the light field, the dipole matrix element is a multiple of
P. at is, if the light is polarized in the z direction e⃗ = êz, then

µc,v ≈ e⃗ · p⃗cv = P. (.)

e above result is the value for the momentum matrix element. e corresponding po-
sition matrix element can be found by equating the dimensionless oscillator strength f in
momentum and position space (see Ref. [])

fcv =
2

mEg
|⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩|2 =

2mEg

ℏ2
|⟨Ψc(⃗r)|⃗e · r⃗|Ψv(⃗r)⟩|2, (.)
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such that the position matrix element becomes

|⟨Ψc(⃗r)|⃗e · r⃗|Ψv(⃗r)⟩|2 =
ℏ2

m2E2
g
|⟨Ψc(⃗r)|⃗e · p⃗|Ψv(⃗r)⟩|2. (.)

A typical value for the dipole matrix element by considering parameters from Table . is:

|⟨Ψc(⃗r)|⃗e · r⃗|Ψv(⃗r)⟩| = 0.7371 nm. (.)

.. Intraband Matrix Elements

If both initial and final states originate from the same band, the evaluation of the dipole
matrix elements can be obtained by direct integration in position space. Here we considered
the states either in the conduction or valence band that satisfy the dipole section rule and
conserve spin.

For the polarization in the z direction e⃗ = (0, 0, 1), consider the initial and final states

|Ψi⟩ =|ψ(nx, ny, nz)⟩ and (.)
|Ψf⟩ =|ψ(nx, ny, (nz + 1))⟩,

with both having same spin, and only the quantum number along the z direction is differ-
ent,

For transitions within the conduction band for example, this can correspond to

|Ψi⟩ =|ψc(1, 1, 1)⟩ and (.)
|Ψf⟩ =|ψc(1, 1, 4)⟩.

For Lx = 2.7925 nm, Ly = 3 nm and Lz = 4 nm one obtains

⟨Ψf |̂z|Ψi⟩ = −0.57640Å. (.)

. Pulse Parameters

In paper II and paper III, the excitation of a quantum system by a time dependent single
pulse is considered. e time dependence in the interaction Hamiltonian originates from
the electric field of the pulse

ĤI(t) = −µ̂ · E⃗(t). (.)
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where µ̂ is the electric dipole operator and E⃗(t) is the time dependent electric field. In the
calculation, ⃗E(t) is assumed to be a sinusoidal with a Gaussian envelope,

E⃗(t) = E⃗0 exp(−4ln2
( t − t0

τ

)2
) cos(ωpulse(t − t0)), (.)

where in the above expression

• ωpulse is the central frequency for the pulse, which can be tuned to have a value close
to the resonance frequency between the different many-particle states. Typically this
value is chosen to be in resonance to one of the main transitions.

• τ is the full width at half maximum (FWHM) of the pulse with a typical values
ranging from picoseconds (ps) to femtoseconds (fs) for short pulses.

• |E0| is the electric field amplitude. A typical value can be obtained from an ex-
periment. In the supplementary material of Ref. [], a laser pulse with energy
E = 1.2 mJ with a pulse duration of about τ = 150 fs and a pump diameter at
the focus of 0.7 mm is given. is gives an electric field peak value

|E0| =
√

EZ0

Aτ
≈ 2.8× 108V/m,

with A = π(d/2)2 being the area of the beam and Z0 =
√

µ0
ε0

= 377Ω being the
free space impedance.

• t0 is the center of the pulse.

e electric field in Eq. . has been used in simulations for paper II and paper III. In
paper IV, four Gaussian pulses each having similar form as in Eq. . with time delays is
used.





Chapter 

Multiple Exciton Generation and
Extraction

. Multiple Exciton Generation (MEG)

MEG is a process in which the absorption of a single high-energy photon results in the
creation of more than one electron hole-pair (exciton) [, , –]. MEG is a result of
Coulomb electron-electron interaction in the form of an inverse Auger process also called
impact ionization (II). It is a radiation-less transition in which a relaxation of charge car-
rier with high energy causes a creation of another electron hole pair as depicted in Fig. ..
MEG effect is more significant in QDs than in bulk structures due to the forced overlap

Eg Eg

Inverse Auger

Auger

Figure 4.1: Auger recombination versus its inverse process. From left to right a relaxation from the upper level causes a creation
of a new exciton. From right to left, the inverse process where the recombination of an electron and a hole causes
an excitation to a higher energy.


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of electronic wavefunctions []. Furthermore, spatial confinement leads to the absence of
conservation of momentum, modified carrier-cooling rates and reduced dielectric screen-
ing, which altogether account for enhanced MEG in QDs [, ]. For an efficient design
of solar cells utilizingMEG, a detailed microscopic description ofMEG inQDs is essential.

Schaller and Klimov in  [] demonstrated the first efficient MEG in PbSe QDs. Fol-
lowing their work, a significant attention has been given towards the study of QD based
systems for efficientMEG by several groups [, , , ]. e commonQDs used for effi-
cient MEG study include Lead Chalcogenide QDs (PbS and PbSe), Cadmium Chalcogen-
ide QDs, Indium based QDs (InAs and InP) and Silicon QDs [, –]. Experimentally
the most common setup to measure MEG is by using ultrafast transient absorption spec-
troscopy []. is is due to the fact that the main processes of bi-exciton formation and
Auger recombination occur on the ps time scale []. is is a much faster timescale as
compared to the lifetimes of single excitons (ns time scale) [].

In this chapter the method used to calculate the yield, a measure of how many electron-
hole pairs are created upon absorption of a single photon with energy much higher than
the band gap, will be discussed. Two different ways have been used to measure the yield.
In the case where there is no extraction and injection process (paper II), the ratio between
the total number of recombination at the band gap to the total absorbed energy is used to
evaluate the yield. In Paper III where extraction and injection processes are considered, the
ratio between the total extraction to the total absorbed energy is used instead to calculate
the yield. In both cases, a similar type of quantum dot as described in chapter  was used.
Below a summary of the papers Paper II and Paper III is given.

. MEG Yield (Paper II)

A quantum yield of about 20% due to MEG in lead chalcogenide nanocrystals has been
reported by Karki et.al. []. is means that an absorbed photon generates in average
1.2 electron-hole pairs. Here we calculate the yield of a PbS quantum dot by properly
defining the total number of recombination and total absorbed energy using the density
matrix approach.

e time evolution of the density matrix is solved in the Lindblad form [] which also
consistently takes into account the relaxation processes by the Lindblad jump operators:

ℏ
d
dt
ρ̂S(t) = i[ρ̂S(t), Ĥeff(t)] +

Njump∑
j=1

Γj

[
L̂jρ̂S(t)L̂

†
j −

1
2

(
ρ̂S(t)L̂

†
j L̂j + L̂†

j L̂jρ̂S(t)
)]
(.)



.. MEG Yield (Paper II) 

where in Eq. . the Hamiltonian of the system in single particle basis is given by

Ĥeff(t) =
∑

i

Eiâ
†
i âi + Ĥee︸ ︷︷ ︸
Ĥ0

+ĤI(t), (.)

which is the sum of the time independent Hamiltonian Ĥ0 and the time dependent in-
teraction Hamiltonian ĤI(t). e time independent Hamiltonian Ĥ0 is composed of the
total single particle energies and the electron-electron interaction term Ĥee as described in
chapter . e interaction Hamiltonian ĤI(t) is given by

ĤI(t) = −µ̂ · E⃗(t). (.)

where µ̂ is the electric dipole operator and E⃗(t) is the time dependent electric field described
in section ..

e following jump operators were considered in relation to the different decoherence
mechanisms. e energy levels are labeled according to Fig. .
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Figure 4.2: Schematic single particle energies for PbS quantum dot indicating the ground state EGS, single exciton ESX and
double exciton EDX in many particle configuration. Levels associated with spin up are labeled by odd numbers and
those with spin down are labeled with even numbers. Optical excitation upon absorption of photon followed by
Auger recombination and the inverse process is shown.

Relaxation in the conduction band

L̂rel = â†1↑â3↑ + â†2↓â4↓, with strength ΓRelaxation. (.)

Relaxation in the valence band

L̂rel = â†7↑â5↑ + â†4↓â8↓, with strength ΓRelaxation. (.)
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Recombination across the band gap

L̂rec = â†5↑â1↑ + â†6↓â2↓, with strength ΓRecombination. (.)

Dephasing in the conduction band

L̂deph = â†1↑â1↑ + â†2↓â2↓, with strength ΓDephasing (.)

L̂deph = â†3↑â3↑ + â†4↓â4↓, with strength ΓDephasing.

Dephasing in the valence band

L̂deph = â†5↑â5↑ + â†6↓â6↓, with strength ΓDephasing (.)

L̂deph = â†7↑â7↑ + â†8↓â8↓, with strength ΓDephasing.

ese jump operators are defined in such a way that they all conserve the total spin.

In Fig. . the lowest eight single particle states for a  nm quantum dot,  in the valence
band and  in the conduction band, are considered. All possible Coulomb interaction
matrix elements as well as the transition matrix elements were calculated based on the
methods discussed in chapter . We define the recombination rate as

Rec(t) = ΓRecombinationTr{L̂recρ̂L̂†
rec}. (.)

Integrating Eq. . over time provides the total number of recombined electron-hole pairs
generated by the pulse.

Number of recombinations =
∫ ∞

−∞
dt Rec(t). (.)

In addition, the power transferred to the system by the oscillating field has to be calculated
in order to obtain the yield. Here we show that this quantity can be calculated via two
different approaches which provided similar numerical results for integrated values over
time. e time rate of the expectation value of an arbitrary time independent observable
Ô can be evaluated as []

d
dt
⟨Ô⟩ = d

dt
[Tr{Ôρ̂(t)}] = Tr{Ô d

dt
ρ̂(t)}, (.)

where

d
dt
ρ̂(t) =

i
ℏ
[ρ̂S(t), Ĥeff(t)] +

Njump∑
j=1

Γj

[
L̂jρ̂S(t)L̂

†
j −

1
2

(
ρ̂S(t)L̂

†
j L̂j + L̂†

j L̂jρ̂S(t)
)]
. (.)
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e power P(t) can be evaluated by the energy balance for the interaction with the light
field []. Considering the energy of the system as ⟨Ĥ0⟩ one obtains the time rate of change
of the system energy or rate of energy absorption [] as

d
dt
⟨Ĥ0⟩ =Tr{Ĥ0

d
dt
ρ̂(t)} (.)

=Tr

{
Ĥ0

i
ℏ
[ρ̂S(t), Ĥeff(t)]

}

+

Njump∑
j=1

ΓjTr

{
Ĥ0

[
L̂jρ̂S(t)L̂

†
j −

1
2
(ρ̂S(t)L̂

†
j L̂j + L̂†

j L̂jρ̂S(t))
]}

=Tr

{(
i
ℏ
[Ĥeff(t), Ĥ0] +

Njump∑
j=1

Γj

[
L̂jĤ0L̂

†
j −

1
2
(Ĥ0L̂

†
j L̂j + L̂†

j L̂jĤ0)

])
ρ̂S(t)

}

=Tr

{(
i
ℏ
[ĤI(t), Ĥ0] +

Njump∑
j=1

Γj

[
L̂jĤ0L̂

†
j −

1
2
(Ĥ0L̂

†
j L̂j + L̂†

j L̂jĤ0)

])
ρ̂S(t)

}

=

⟨
i
ℏ
[ĤI(t), Ĥ0]

⟩
︸ ︷︷ ︸

P(t)

+

Njump∑
j=1

Γj

⟨
L̂jĤ0L̂

†
j −

1
2
(Ĥ0L̂

†
j L̂j + L̂†

j L̂jĤ0)

⟩
,︸ ︷︷ ︸

Q̇j

where P(t) is the power transferred from the pulse to the system and Q̇j is the energy
transfer by the jump process j. Alternatively one can consider the energy of the system as
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⟨Ĥeff⟩. In this case

d
dt
⟨Ĥeff(t)⟩ =Tr{Ĥeff(t)

d
dt
ρ̂(t)}+ Tr{ρ(t) d

dt
Ĥeff(t)} (.)

=Tr

{
Ĥeff(t)

i
ℏ
[ρ̂S(t), Ĥeff(t)]

}
︸ ︷︷ ︸

=0

+

Njump∑
j=1

ΓjTr

{
Ĥeff(t)

[
L̂jρ̂S(t)L̂

†
j −

1
2
(ρ̂S(t)L̂

†
j L̂j + L̂†

j L̂jρ̂S(t))
]}

+Tr
{
ρ(t)

d
dt

ĤI(t)
}

=Tr

{(
d
dt

ĤI(t) +
Njump∑

j=1

Γj

[
L̂jĤeff L̂†

j −
1
2
(Ĥeff L̂†

j L̂j + L̂†
j L̂jĤeff)

])
ρ̂S(t)

}

=

⟨
d
dt

ĤI(t)
⟩

︸ ︷︷ ︸
P(t)

+

Njump∑
j=1

Γj

⟨
L̂jĤeff L̂†

j −
1
2
(Ĥeff L̂†

j L̂j + L̂†
j L̂jĤeff)

⟩
,︸ ︷︷ ︸

Q̇j

e evaluation of the power transferred to the system from the light field based on Eq. .
and Eq. . provide similar numerical values. For the yield calculation in paper II the
power is calculated based on Eq. ., i.e.

P(t) =

⟨
i
ℏ
[ĤI(t), Ĥ0]

⟩
. (.)

e absorbed energy is obtained by integrating Eq.. over time

Absorbed Energy =

∫ t

−∞
dtP(t) =

∫ t

−∞
dt
⟨

i
ℏ
[ĤI(t), Ĥ0]

⟩
. (.)

e yield is a measure of the total number of recombined electron-hole pairs per absorbed
photon. In this regard, it is defined as the ratio between the number of recombinations and
the absorbed photons.

Yield =
Number of recombination

Absorbed Energy
× ℏωpulse. (.)
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Figure 4.3: A yield as a function of pulse energy and a detuning between the single exciton and the double exciton.Δ is a
parameter that shifts the band gap. As a result, the level energies in the conduction band increases by this amount.
This way the double exciton energy and the single exciton energy can be effectively separated by Δ. [From paper II]

Fig. . shows the calculated yield as a function of the pulse energy ℏωpulse and the detuning
Δ between the single exciton and double exciton energies. It is obtained using the formula
in Eq. .. A yield of . is obtained for the model system considered as it can be seen
from Fig. . close to Δ ≈ −0.0215 eV. e calculated value for the yield agrees very well
with the experimentally measured MEG yield in Ref. [].

We were also able to describe the time evolution of the excitons for Δ = −0.0215 eV
where the single and double excitons are very close in energy. We are interested in the
time evaluation for the two excitons |SX⟩ and |DX⟩. However, these states mix highly in
the many-body spectrum (|22⟩ and |26⟩) which are both singlets. To better describe the
time evolution of the excitons |SX⟩ and |DX⟩, a basis transformation from the many-body
representation to exciton representation as described in Eqs. . and . is done. is
allows to follow the evolution of the individual excitons. Fig. . show the time evolution
of the ground state |G⟩, low energy single exciton |ex⟩, high energy single exciton |SX⟩ and
double exciton |DX⟩ states. In addition the time evolution of the two many-body states
|22⟩ and |26⟩ are also shown. e transformation to the exciton basis satisfy,

|22⟩ ≈ α1|SX⟩+ β1|DX⟩, (.)

and
|26⟩ ≈ α2|SX⟩+ β2|DX⟩, (.)

such that in terms of these coefficients the probability for the double exciton and single
exciton is given by

ρDX,DX = ⟨DX|ρ|DX⟩ = α2
1ρ26,26 + α2

2ρ22,22 − 2α1α2R{ρ22,26}, (.)
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Figure 4.4: Time evolution for selected many particle states for Δ = −0.0215 eV and ℏωpulse = 4.255 eV. An increased pulse
area ofΘ = π/2 is used in order to emphasise the effect. The grey area depicts the duration of the pulse. The inset
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and

ρSX,SX = ⟨SE|ρ|SX⟩ = β21ρ26,26 + β22ρ22,22 − 2β1β2R{ρ22,26}, (.)

respectively.

e gray region in Fig. . denotes the pulse width, where coherent transfer dominates. e
pulse is initially in resonance with the |SX⟩ which is the first to be excited. e Coulomb
ee interaction (inverse Auger recombination) causes population transfer from |SX⟩ to |DX⟩
around t = t0. e single exciton state |ex⟩ can be created by a competing relaxation process
from |SX⟩ which starts to grow within the pulse window. After the pulse, both the |SX⟩
and |DX⟩ loses their populations via recombination.

. MEG Yield Optimization with Extraction and Injection (Pa-
per III)

In paper III the yield is calculated with additional processes involving extraction and injec-
tion of electrons as shown in Fig. .. e focus here is to determine parameter regimes in
which the total number of extraction of charged particles from the band edges is optimal
per single absorbed photon. e main parameter of interest, the yield is in this case defined
as

Yield =
Number of extraction
Absorbed Energy

× ℏωpulse, (.)
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where the average number of extracted electron is given by

Number of extractions =
∫ ∞

−∞
dtExt(t), (.)

with the extraction rate

Ext(t) =
∑
i=1,2

ΓExtTr{L̂iρ̂L̂
†
i }, (.)

and the absorbed energy which is the total energy transferred from the light pulse to the
dot is given as

Absorbed Energy =
∫ t

−∞
dtP(t). (.)

e power P(t) in Eq. . is evaluated based on Eq. .

P(t) =

⟨
∂ĤI(t)
∂t

⟩
= e⟨ẑ⟩Ė(t). (.)

e model system used and all possible processes are shown in the schematics in Fig. ..
For the levels in Fig. . the convention that carriers with spin up ↑ occupy odd numbered
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levels and those with spin down ↓ occupy even numbered single particle levels is used in all
the definitions. Regarding the dissipative processes due to coupling with the environment,
the following processes are taken into account in the model cf. Fig. .:
Extraction from the conduction band edge

L̂1 = â1↑ and L̂2 = â2↓, with strength ΓExt.

Injection into the valence band edge

L̂3 = â†5↑ and L̂4 = â†6↓, with strength ΓInj.

Relaxation in the conduction band

L̂5 = â†1↑â3↑ + â†2↓â4↓, with strength ΓRel.

Relaxation in the valence band

L̂6 = â†7↑â5↑ + â†4↓â8↓, with strength ΓRel.

Recombination across the band gap

L̂7 = â†5↑â1↑ + â†6↓â2↓, with strength ΓRec.

In addition, dephasing of all states

L̂8 = â†1↑â1↑ + â†2↓â2↓,
L̂9 = â†3↑â3↑ + â†4↓â4↓,
L̂10 = â†5↑â5↑ + â†6↓â6↓,
L̂11 = â†7↑â7↑ + â†8↓â8↓,

with strength ΓDeph.

In all the definitions above, the jump operators are defined in such a way that the processes
with different spin that involve levels with the same energies being added together. In do-
ing so, they all conserve the total spin if the particle number is conserved. e different
decoherence mechanisms (relaxation, recombination and dephasing) which are described
in Eq. (.), can be associated to all forms of intrinsic scattering mechanisms other than
electron-electron scattering, which has already been included in the effective Hamiltonian.
e strength of these processes are all assumed phenomenologically in all the simulations
by looking at typical timescales for such processes in quantum dots. e dephasing rate is
assumed to be ΓDeph = 6 meV which corresponds to τDeph = 0.11 ps. As the recombin-
ation is typically the slowest process (larger than a nanosecond time scale unless for very
weak coupling to the reservoir which is not a case considered here), we neglect this process
in our study and set ΓRec = 0. We did a test calculation for a finite but small recombin-
ation rate which showed only very small changes of about 5% for ΓRec = 0.1 meV with
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the corresponding rate in time units of τRec = 6.6 ps, which is fairly large compared to
the typical recombination rates in semiconductor dots.

In modeling the extraction and injection processes an energy requirement for the incoming
and outgoing particles was set. e first scenario is injection of an electron from a reservoir
to the upper level in the valence band of the quantum dots (5 or 6) depending on the spin.
In this case, the initial systemwith particle numberN has an energy E(N). e requirement
in this case is that the incoming particle should have an energy such that it occupies either
the levels 5 or 6 depending on its spin. Defining Δ = 0.2eV to be a small energy margin
above the highest occupied level in the valence band and also below the lowest level in the
conduction band which is an energy associated with the electrochemical potential of the
contacts. Due to the injection the system energy after the jump is increased from E(N) to
E(N + 1). As a result an electron can be injected from the left contact to the system only
if the energy requirement(

E(N + 1)− E(N)
)
≤
(
Eg(4)− Eg(3)

)
+ Δ, (.)

is fulfilled. Where in Eq. . above Eg(N) denotes the ground state energy for N particles
obtained from the diagonalisation of the dot Hamiltonian Ĥ0. In all the cases, for simpli-
city, the broadening of the states due to coupling with the reservoirs is neglected.

e second scenario is extraction of an electron from the lowest levels in the conduction
band to the contacts. Similar to injection, an energy requirement for the electron to be
extracted is such that (

E(N)− E(N − 1)
)
≥
(
Eg(5)− Eg(4)

)
− Δ, (.)

since the particle number in the quantum dot has be decreased by 1.

In this work a qualitative study of the parameter regimes for optimal yield is carried out.
In this respect, the main results are summarized in Fig. .. In the figure, the number of
extraction (Fig. .a), the absorbed energy (Fig. .b) and the yield (Figs. .c, .d) are
plotted as a function of the extraction and the injection rates. e current flow through
the dot can be equally described by considering either the number of extractions or the
number of injections. is is due to the fact that the number of injections, as obtained by
summing over the jump processes  and , equals the number of extractions, as the system
returns into the ground state with  electrons occupying the levels – for large times. It
is shown in all cases that the increase in both injection and extraction rates results in an
increased yield which is normally expected since the increase in these rates means a rapid
extraction while the other competing processes are slow.

InMEG the single high energy exciton |SX⟩ and |DX⟩ are coupled via Coulomb interaction.
After excitation, the population of the single exciton is transferred to the double exciton.
In the absence of extraction, the population from the double exciton will transfer back to
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(a) Number of extraction ΓRel = 3.3 meV (b) Absorbed energy ΓRel = 3.3 meV

(c) Yield ΓRel = 3.3 meV (d) Yield ΓRel = 1 meV

Figure 4.6: Paper III: Number of extractions (a) and absorbed energy (b) for different reservoir coupling strengths. The ratio
between these numbers determines the yield in panel (c). Panel (d) shows the yield for a reduced relaxation rate.

the single exciton and they will keep oscillating. In the case of large extraction rates, the
charge carriers can actually be extracted from the double exciton state before they go back
to the single exciton via Auger recombination.

In figure .c a yield as a function of injection and extraction rate is given which varies
between ≈ 1.13 − 1.25 for a fixed relaxation rate ΓRel = 3.3 meV. It can be seen that
the increase in the yield is different for an increase of injection rate and extraction rate.
e yield increases quicker and saturates faster for increasing the extraction rate compared
to the increase in the injection rate. is is due to the fact that extraction involves the
electrons in the conduction band, which are created as a result of the Coulomb electron-
electron interaction. e yield increases following the creation of the double exciton after
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ΓInj = ΓExt. The relaxation rate ΓRel = 1 meV is used here.

excitation and saturates. However for the injection rate, since it involves the electrons in
the valence band, the yield increases only if the extraction rate is small. is increase is
due to the fact that injection into the level 5/6 depending on the spin hinders the Auger
process converting the |DX⟩ state back to the |SX⟩ state, see Fig. .. is kills the coherent
oscillations between the |DX⟩ and |SX⟩ state in the case of small extraction rate.

For small relaxation rate as shown in Figure .d the overall yield increases compared to the
case with higher relaxation rate as in Figure .c. e reason is that a low relaxation rate
results in a larger chance for the inverse Auger process to occur before the single exciton
relaxes to some other low energy state. is way the creation of a double exciton is favored.

e MEG yield is highly dependent on the two competing processes. e rate of Auger
(inverse Auger) scattering and the relaxation time scales. Fig. . shows the yield as a func-
tion of injection rate for the different strengths of the Coulomb coupling for the Auger
terms. By modifying the strength of the Auger Coulomb matrix element, the yield as a
function of the injection rate for varying values of extraction rate is studied. e dashed
vertical line indicates the splitting energy between the single and double exciton energies
which is about twice the Coulomb matrix element between them |ESX − EDX| ≈ 2|Vee

1263|.
e diamonds on each line indicate the point at which the injection rate and the extraction
rate becomes similar. e common trend from Fig. . is that an improved yield is ob-
tained either by increasing the extraction rate or the Coulomb coupling between the single
and double exciton states. In the regime where the Auger Coulomb coupling is domin-
ant over the extraction rate, 2|Vee

1263| > ΓExt, a small yield is obtained since the coherent
oscillation between the single exciton and double exciton state is only damped by the re-
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laxation processes. However, by injecting an electron into the valence band the double
exciton state can be recovered. is way an increased yield can be obtained which satur-
ates as ΓInj ≫ 2|Vee

1263|. In the limit of high extraction rate ΓExt > 2|Vee
1263| not much

variation on the yield is obtained since the extraction is already high enough to guarantee
a high yield.



Chapter 

Two Dimensional Spectroscopy

is chapter describes themodeling of lightmatter interaction where combinations of time-
delayed laser pulses are involved. Each pulse excites or de-excites the system creating either a
coherence state or a population state based on the state of the system before the interaction.
e aim is to study the dynamics of ultra-fast processes in quantum dot and molecular
systems.

Multidimensional spectroscopy, specifically two dimensional (D) optical spectroscopy,
has been proven to be an efficient technique to provide an optimal information for studying
the effect of an optical field on quantum systems [, –]. By exciting a sample (mo-
lecule, quantum dot, etc.), with properly designed pulses, information about the structure
and dynamics of molecular systems [, , ], photosynthetic complexes [, ] and
semiconductor nanostructures [–] can be obtained.

In paper IV, a simulation for excitonic system as a result of interaction with four collin-
ear pulses¹ is studied. eoretically, the emitted signal in conventional D spectroscopy
can be obtained by calculating the third order response function as a function of the time
delays [–]. Here, instead of perturbation expansion of the response function, we solve
the equation of motion for the reduced density matrix in Lindblad form and calculate
observables that represent different relaxation processes in the system. Our method can
reproduce clear signals that can be used for interpretation of the system dynamics.

In a typical experiment a series of pulses which are time delayed excite the system. e
time delay between the first and the second pulse is called the coherence time denoted as
T1 in this thesis (see Fig. .). In this time the excitation of the system by the pulse creates
a coherence which will be converted to either population or another coherence state by

¹Collinear pulses are pulses which are all propagating in the same wave-vector direction k⃗.


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the second pulse. After the second pulse the system evolves either in a population state
or in a different coherence state than the initially created coherence. is time, which is
the delay between the second and the third pulse, is called the population time denoted
here as T2. After the second pulse, in most of the cases the system is in population state,
hence the name population time for T2. After the population time, a third pulse excites the
system to create a coherence state. Here the coherence evolves until the fourth (last) pulse
arrives. e time delay between the third and the fourth pulse T3 is also called coherence
time. After the fourth pulse the signal is detected. e pair of first and second pulse is
collectively called pump pulse and the third and fourth pulses are collectively called the
probe pulse. By varying the delay between the pump and the probe pulses (the population
time) a change in the system dynamics can be studied.

time

E
(t

)

T
1

T
2

T
3

3rd pulse 4th pulse2nd pulse1st pulse

Figure 5.1: Pulse sequence in a four pulse setup. The time delays between the individual pulses is indicated.

. Our Approach for Calculating D Signals

In the previous chapter on MEG the observables associated with different relaxation pro-
cesses and absorbed energy were calculated by solving the density matrix in the Lindblad
form. However, in chapter  the time dependent interaction Hamiltonian ĤI(t) was
modeled by a single oscillating field without phase modulation.

In D spectroscopy based on phase modulation, the interaction Hamiltonian contains four
Gaussian modulated pulses with specific modulation frequencies which are time delayed.
e system Hamiltonian in this case for an arbitrary quantum system can be written as

Ĥeff(t) =
∑

i

Eia
†
i ai + Ĥee︸ ︷︷ ︸
Ĥ0

+ĤI(t), (.)
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with

ĤI(t) = −µ̂ · E⃗(t). (.)

where µ̂ is the electric dipole operator and E⃗(t) is the electric field. In the following a
scheme of data collection for a typical experiment with phase modulation will be outlined.
A ”train” of four pulses labeled from 1 to 4 with a well defined inter-pulse delay T1 between
pulse 1 and 2, T2 between pulse 2 and 3 and T3 between pulse 3 and 4 is prepared. e
sample is then excited by a number of pulse trains labeled by m each separated by an inter-
train delay T for a certain combination of inter-pulse delays. e electric field for the mth

train is given by
Em(t) = Em

1 (t) + Em
2 (t) + Em

3 (t) + Em
4 (t), (.)

where m counts the number of repetition which typically run from zero up to few thou-
sands. Each pulse within the train in Eq. . is described as

Em
1 (t) =Em

01 exp

[
−4 ln 2(t − T0 − mT)2

τ 21

]
cos

(
ω(t − T0 − mT) + 2πΩ1mT

)
︸ ︷︷ ︸

ϕ1

,

Em
2 (t) =Em

02 exp

[
−4 ln 2(t − T1 − mT)2

τ 22

]
cos

(
ω(t − T1 − mT) + 2πΩ2mT

)
︸ ︷︷ ︸

ϕ2

,

Em
3 (t) =Em

03 exp

[
−4 ln 2(t − T2 − mT)2

τ 23

]
cos

(
ω(t − T2 − mT) + 2πΩ3mT

)
︸ ︷︷ ︸

ϕ3

,

Em
4 (t) =Em

04 exp

[
−4 ln 2(t − T3 − mT)2

τ 24

]
cos

(
ω(t − T3 − mT) + 2πΩ4mT

)
︸ ︷︷ ︸

ϕ4

, (.)

with

T0 =t0, (.)
T1 =T1 + t0,
T2 =T1 + T2 + t0,
T3 =T1 + T2 + T3 + t0,

where t0 is the the center of the first pulse and T1, T2 and T3 are the inter-pulse delays
described above. Ω1 − Ω4 are the modulation frequencies corresponding to the pulses
1 − 4, respectively. ϕi = 2πΩimT is the repetition dependent phase modulation for the
ith pulse. In addition, Em

0i is the electric field amplitude for the ith pulse in the mth train,



 Chapter . Two Dimensional Spectroscopy

τi is the pulse width for the ith pulse, ω is the carrier frequency of the pulses. A schematic
diagram for the pulse sequences considering the first two pulse trains is shown in Fig. ..
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Figure 5.2: Paper IV: Pulse sequences used in the simulation as a function of time. Inter-pulse delays and inter-train delays are
indicated. The first two trains of pulses are shown.

In practice, as described in Ref. [], a train of collinear pulse pairs with a relative phase
modulation at frequency (Ω21 = Ω2−Ω1) can be created. When a molecule or a quantum
system is excited by such a train, the excited state population contains an interference con-
tribution with a phase which is also modulated at the frequency Ω21. As a result the mod-
ulated population gives rise to a time varying fluorescence signal which can be detected.

In the case of four pulse trains as described in Ref. [] the pulses can be grouped into two
independently phase-modulated pulse pairs at frequencies Ω21 and Ω43. Here we expect
different contributions to the interference depending on the combination of the modula-
tion frequencies. Major contribution can be obtained from the so-called linear interference
contributions to the excited state population. ese populations oscillate with phases at the
fundamental frequencies Ω21 and Ω43. In addition, due to optical nonlinearities of the
system one obtains population terms that oscillate at the combined so called the ”sum”
(Ω43 + Ω21) and ”difference” (Ω43 − Ω21) frequencies. ese signals oscillating with the
”sum” and ”difference” frequencies in phase modulation D spectroscopy are analogous to
the rephasing and the non-rephasing pathway in conventional D spectroscopy based on
third order response function [].

In all the simulations we fix the modulation frequencies and the inter-train time delay
motivated by experimental settings following Ref. [] but with small variation for the
purpose of quicker data acquisition. For the inter-train time delay T = 14 ns is used and
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the individual modulation frequencies are

Ω1 =51.4MHz, (.)
Ω2 =51.9MHz,

Ω3 =54.2MHz,

Ω4 =55 MHz.

e modulation frequencies in Eq. . correspond to the radio frequencies used to drive
the acousto-optic modulators in typical experiments [, , ].

e possible linear combinations for the above modulation frequencies are

Ω21 =Ω2 − Ω1 = 500 kHz, (.)
Ω31 =Ω3 − Ω1 = 2800 kHz,

Ω41 =Ω4 − Ω1 = 3600 kHz,

Ω32 =Ω3 − Ω2 = 2300 kHz,

Ω42 =Ω4 − Ω2 = 3100 kHz,

Ω43 =Ω4 − Ω3 = 800 kHz.

In addition, by adding and subtracting the combinations above, non-linear terms can be
obtained. Here the two non-linear combinations associated with the sum (non-rephasing)
and difference (rephasing) combinations are

ΩNon−Rephasing =Ω43 + Ω21 = 1300 kHz, (.)
ΩRephasing =Ω43 − Ω21 = 300 kHz,

respectively.

. D Data Collection and Analysis Example

In order to demonstrate the method of calculating D spectrum, an example based on a
three level model system is discussed in this section. A step by step process from collecting
the data in time domain to the Fourier transformed spectra will be described.
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Γμ Γμ

Figure 5.3: Energy level diagram and possible transitions for the three level system considered in the simulation.

Fig . shows a schematic diagram of the energy levels and the allowed transitions. Both
levels |1⟩ and |2⟩ are coupled to the ground state via a dipole transition with transition
matrix elements µ10 = µ20 = µ. Relaxation from both levels to the ground state |0⟩ is
allowed as indicated in the figure. e signal in this case can be obtained by measuring the
total relaxation from both levels to the ground state.

For the simulation results in this section the following parameters were assumed.

e energy levels are:

E0 =0,
E1 =1.5 eV,
E2 =2 eV,

(.)

Scattering terms describing the relaxation from |2⟩ → |0⟩ and |1⟩ → |0⟩ are assumed as:

Γ20 = Γ10 = 0.413meV, corresponding to 2πτ20 = 2πτ10 = 10 ps. (.)

In addition, equal pure dephasing from all the levels are assumed as:

ΓDeph = 51.7meV, corresponding to 2πτDeph = 80 fs. (.)

Pulse parameters used in the simulations are:

τ1 = τ2 = τ3 = τ4 = 10 fs,

ℏωpulse = 1.75 eV, (.)
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which is tuned exactly in between the levels. ese type of models are known to display
both diagonal and cross peaks in the D spectrum []. e values above are adjusted to
obtain a signal with reasonable computational cost. Hence we are not referring to any
specific experimental system.

e relaxation rate for an arbitrary relaxation process is given by:

Rel(t) = ΓrelTr{L̂relρ̂(t)L̂
†
rel}, (.)

where (Γrel/ℏ) is the rate at which the process in question happens, L̂rel is the jump oper-
ator describing the specific transition by the process in the Lindblad equation (see Eq. .).
is can for example be L̂rel = a†0a1 for relaxation from state |1⟩ to |0⟩ where a† and a are
creation and annihilation operators, respectively. e total relaxation is defined as the in-
tegrated relaxation rateRel(t) over time, which is the quantity of interest that provides the
signals. e density matrix ρ̂(t) in Eq. . is obtained by solving the equation of motion
in the Lindblad form []:

ℏ
d
dt
ρ̂S(t) = i[ρ̂S(t), Ĥeff(t)] +

Njump∑
j=1

Γj

[
L̂jρ̂S(t)L̂

†
j −

1
2

(
ρ̂S(t)L̂

†
j L̂j + L̂†

j L̂jρ̂S(t)
)]
,

(.)

where the Hamiltonian Ĥeff is a sum of the time independent Hamiltonian Ĥ0, and the
interaction Hamiltonian ĤI(t)

Ĥeff = Ĥ0 + ĤI(t), (.)

where

ĤI(t) = −µ̂ · E⃗m(t). (.)

In Eq. . µ̂ is the electric dipole transition operator, E⃗m(t) is the electric field for the mth

train of pulses given in Eq. .. For the model system shown in Fig. . we considered:
Relaxation from |2⟩ → |0⟩

L̂20 = â†0â2, with strength Γ20, (.)

Relaxation from |1⟩ → |0⟩

L̂10 = â†0â1, with strength Γ10, (.)
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Dephasing in the all the levels

L̂00 = â†0â0, with strength Γ00,

L̂11 = â†1â1, with strength Γ11,

L̂22 = â†2â2, with strength Γ22,

(.)

We solve the Lindblad equation (Eq. .) numerically with the initial condition that at
time zero all the population is in the ground state. e signals in the D map are obtained
by evaluating the relaxation rates and integrating over the acquisition time tacquisition as:

Rel10 =

∫ tacquisition

0
dt Γ10Tr{L̂10ρ̂S(t)L̂

†
10}, (.)

Rel20 =

∫ tacquisition

0
dt Γ20Tr{L̂20ρ̂S(t)L̂

†
20}, (.)

For a fixed set of time delays (T1,T2,T3) = (0, 0, 0), the necessary steps of collecting data
points will be demonstrated by considering the signal due to the sum of the total relaxation
from |1⟩ → |0⟩ and |2⟩ → |0⟩. In this case, a train of overlapping pulses with a total
number of repetitions N = 5000 each separated by an inter-train delay T = 14ns excites
the system. For each train the integrated relaxation rate is evaluated for tacquisition = 200 fs
and stored as a vector. As a function of the number of repetitions (m = 0, 1, 2, · · · ,N−1),
the resulting signal exhibit modulations that oscillate at linear and non-linear combination
of the modulation frequencies. is is shown in Fig. ..
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Figure 5.4: The signal from the total relaxation Rel10 as a function the number of repetitions m. Only 1000 repetitions are plotted.
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By performing the discrete Fourier transform of the signal in Fig. ., all the possible fre-
quency components due to the linear and non-linear combinations of the modulation fre-
quencies can be resolved.² e discrete Fourier transform Y of a vector, say X with length
N can be computed as follows. One writes in general,

Y = F(X), (.)

such a transform is defined as

Y(k) =
N−1∑
m=0

X(m)e
−2πimk

N , (.)

with an inverse transform

X = F−1(Y), (.)

where

X(m) =
1
N

N−1∑
k=0

Y(k)e
2πimk

N , (.)
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Figure 5.5: The absolute value of the Fourier transform of the signal shown in Fig. 5.4. The rephasing Ω = 300 kHz and
non-rephasing Ω = 1300 kHz frequencies are shown.

Gathering the two dimensional data in time domain requires varying the time delays T1
and T3 for fixed population times T2. For each combination of time delays (T1,T2,T3),

²e Fourier transforms are done using the built-in fast Fourier transform of Matlab [] software.
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the rephasing (at Ω = Ω43 − Ω21 = 300kHz) and non-rephasing (at Ω = Ω43 + Ω21 =
1300kHz) values of the Fourier transformed complex signals are gathered from the peak
values as shown in Fig. .. From the complex values of the amplitudes a two dimensional
data in time domain can be constructed.

Figure . shows the two dimensional time domain signals considering the sum of the total
relaxation from |1⟩ → |0⟩ and |2⟩ → |0⟩.
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(a) Amplitude of the rephasing (left) and non-rephasing (right) signals in time domain.

(b) Phase of the rephasing (left) and non-rephasing (right) signals in time domain.
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(c) Real value of the rephasing (left) and non-rephasing (right) signals in time domain.

Figure 5.6: Time domain signal for the amplitude (a) and phase (b) and real value (c) of the rephasing and non-rephasing signals.



 Chapter . Two Dimensional Spectroscopy

A cut in the real part of the time domain signal either along T1 or T3 can reveal the oscilla-
tion frequency along these axes for the time domain signals. Fig. . shows the cut along T1
at T3 = 0. e signals for both observables in the rephasing and non-rephasing pathways
are Fourier transformed to resolve the oscillation frequency. It can be seen that the signal
due to theRel10 observable oscillates at the resonance frequencyω10 = (E1−E0)/ℏ and the
signal due to theRel20 observable oscillates at the resonance frequency ω20 = (E2−E0)/ℏ
for both rephasing and non-rephasing pathways.

A difference in the tilt (450) of the oscillatory features for the phase of the rephasing and
non-rephasing signals can be noticed from Fig. .. is originates from the fact that the
coherence during T1 has opposite sign for the rephasing and non-rephasing pathways.
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(a)e real part of the time domain signal along T1 at T3 = 0 (left) and the absolute value
of the corresponding Fourier transformed data (right)
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Figure 5.7: A linear scan of the real part of the time domain signal along one time axis and the corresponding Fourier transform.
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e D spectra is obtained by Fourier transforming the time domain data shown in Fig. .
in two dimensions. e axis in frequency domain³ are labeled as ’Excitation’ and ’Detec-
tion’. e excitation axis is the Fourier transform along the time T1 and the detection axis
is the Fourier transform along the time T3.⁴

e resulting real part of the D spectra is shown in Fig. .. Here we obtained the spec-
trum in their respective quadrants as discussed in the section .. of Ref. []. Four-
ier transforming the real values of the signals result in a signal in quadrants (Excitation,
Detection)=(+,+) and (−,−) for non-rephasing signals and in the quadrants (Excita-
tion, Detection)=(+,−) and (−,+) for rephasing signals.

For the non-rephasing signal, the signal in the quadrant (+,+) is symmetric to the signal
in the (−,−) quadrant. As a result, it is sufficient to look at only one of the two signals. A
common choice is to consider the one in the (+,+) quadrant. Similarly for the rephasing
signal, it is sufficient to look at the (−,+) quadrant due to the symmetry.

Focusing on the the signal at the quadrant (+,+), it can be seen that the signals have diag-
onal peaks at the energies corresponding to the resonance E2−E0 and E1−E0. In addition,
a small but significant off-diagonal signal due to the coherences can be observed. One of
the most common ways to represent a D data is plotting the sum of the rephasing and non-
rephasing signals to obtain a so-called purely absorptive (correlation) signal. Since the reph-
asing and non-rphasing signals lie in different quadrants of the Dmap, one has to ’flip’ the
rephasing signal along the excitation axis as shown in Fig. .c before adding to the the non-
rephasing signal. is corresponds to (Excitation,Detection) → (−Excitation,Detection).

D signals in general contain an absorptive (real) and dispersive (imaginary) signals in each
dimension (excitation and detection) []. ese absorptive and dispersive signals can not
be separated easily just by taking the imaginary or the real part of the signal unlike the
situation in linear spectroscopy, where it is possible to separate the absorptive and dispersive
part of the signal. As a result, the D signal lineshapes exhibit a ”phase twist” caused by the
admixture of the absorptive and dispersive lineshapes []. ese phase twisted lineshapes
are shown in Fig. .(a-c). e phase twists are more visible in Fig. .b, where the signal
due to the relaxation Rel10 and Rel20 are plotted on top of each other for better visibility
of the diagonal and corss-peaks.

Often, the phase twists can complicate interpretation of spectra, specially in the case where
several peaks may overlap. In such cases, it is convenient to plot the total signal by adding
the rephasing and the non-rephasing with appropriate flipping. e fact that the rephasing
and non-rephasing signals being in different quadrants has a consequence that the phase
twists cancel when added to obtain a purely absorptive D signal [].

³We changed the frequency units to energy units (eV) in all the plots.
⁴e Matlab [] built-in fft function is used in a similar way as for the linear transform described.
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Figure 5.8: The real part of rephasing (a), non-rephasing (b), flipped rephasing (c) and total (d) Fourier transformed spectra. A
cut along the anti-diagonal (a) and diagonal (b-d) is plotted on the top of each subplot.
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Figure 5.9: The real part of rephasing (a), non-rephasing (b), flipped rephasing (c) and total (d) Fourier transformed spectra.
Here we focused only on one of the quadrant (+,+) as the signal in the other quadrant (−,−) is symmetric. A cut
along the anti-diagonal (a) and diagonal (b-d) is plotted on the top of each subplot. Compared to Fig. 5.8, where
the sum of the signals Rel10 + Rel20 is plotted, here the individual total relaxations Rel10 (solid line) and Rel20
(dashed line) are plotted on top of each other for the purpose of showing the individual peaks.

. Double Sided Feynman Diagrams

e action of the pulse sequences on arbitrary quantum system can be best explained by
the use of the double sided Feynman diagrams []. In this section an introduction to the
diagrams with examples on their interpretations will be given. is will help in explain-
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ing the the origins of the signals obtained from the simulations. Since all the pulses are
aligned in the same wave-vector direction (collinear), the K⃗ dependence of the electric field
is omitted in Eq. .. e electric field of the jth pulse has a general form:

Em
j (t) =Em

0j exp(
−4 ln 2(t − Tj−1 − mT)2

τ 22
)︸ ︷︷ ︸

E0j(t,m)

cos(ω(t − Tj−1 − mT︸ ︷︷ ︸
Tj

) + 2πΩjmT),

(.)

=E0j(t,m)cos(ωTj + 2πΩjmT).

In exponential form this can be written as:

Em
j (t) =

E0j(t,m)

2

[
exp(i(ωTj + 2πΩjmT))− exp(−i(ωTj + 2πΩjmT))

]
. (.)

Following Ref. [], some of the rules of the diagram are:

• e density matrix is represented by two vertical lines with the bra of the density
matrix being the line on the left and the ket being the line on the right.

• Time is a parameter which increases vertically from bottom to top.

• An interaction with the pulse is indicate by an arrow pointing towards or away from
the vertical lines. For conveniently representing the pulse sequences as the rephas-
ing and non-rephasing pairs we labeled the incoming and outgoing pulses by their
modulation frequencies Ω.

• An arrow pointing to the left and labeled Ωj represents the action of the first part on
the right side of Eq. . i.e.

E0j(t,m)

2
exp(i(ωTj + 2πΩjmT)),

and an arrow pointing to the right and labeled −Ωj represents the action of the
second part on the right side of Eq. . i.e.,

E0j(t,m)

2
exp(−i(ωTj + 2πΩjmT)).

• An incoming arrow represent absorption of a photon (excitation) and an outgoing
arrow represent the opposite process of emitting a photon (de-excitation).

• e combined phase in each diagram is the sum of the individual phases for the pulse
sequences involved.
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Figure 5.10: Double sided Feynman diagram showing possible actions of the pulses on populations (top) and coherences (bot-
tom). The direction and sign of the incoming and outgoing pulses indicated by Ω are the conventions used in this
thesis. For more interactions similar principle holds.

Fig. . summarizes the the diagram rules for populations (|0⟩⟨0|, |1⟩⟨1|) and coherences
(|0⟩⟨1|, |1⟩⟨0|) involving two levels |0⟩, |1⟩. e top diagrams (a-d) show the action of
a pulse on population to create coherences. For the ground state population Fig. .(a)
shows excitation of the system by acting on the bra of the density matrix while Fig. .(b)
shows excitation of the system by acting on the ket of the density matrix. Fig. .(c-d)
show de-exciting the population |1⟩⟨1| by acting on the bra and ket of the density matrix.
e coherences can be converted to populations by acting on the bra and ket to create
population either by de-exciting Fig. .(e-f ) or by exciting Fig. .(g-h).

In the case of four pulses, one obtains four interactions along the time axis sequentially
ordered from - with time delays between each pulse. Since the ground state can not
be de-excited, the first pulse does always acts inwards. In D fluorescent spectroscopy,
since the fluorescence from an excited state is detected, the action of the fourth pulse is to
put the system in an excited state. e relaxation from this excited state is the fluorescent
signal [, –]. In the double sided Feynman diagram, the fluorescence is indicated by
an outgoing wiggly arrow pointing outward from the population state (see Figs. ., .).

Below, the possible double sided Feynman diagrams for the rephasing and non-rephasing
pathways for interaction of four pulses with the three level system shown in Fig. . will be
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discussed. As mentioned in Eq. . the total phase in the rephasing pathway is given by

ΩRephasing =Ω43 − Ω21 = Ω4 − Ω3 − Ω2 + Ω1,

and the non-rephasing pathway is

ΩNon−Rephasing =Ω43 + Ω21 = Ω4 − Ω3 + Ω2 − Ω1.

In both cases, the sign for the fourth pulse is positive which restricts the last pulse to point
towards the left to create the final population in the excited state in all the diagrams. How-
ever, the sign for the first pulse is positive in the rephasing case and negative in the non-
rephasing case. As a result all the rephasing diagrams are characterized by the first pulse
pointing inwards from the right and all the non-rephasing diagrams are characterized by
the first pulse pointing inwards from the left. In addition, one can also differentiate the
two pathways by looking at the direction of the first and third pulse. In the case of non-
rephasing, the first and the third interaction points in the same direction while for rephasing
pathways they point in opposite directions.

Figure . shows the double sided Feynman diagram for the non-rephasing pathways.
e different pathways are categorized as stimulated emission (SE), ground state bleaching
(GSB) and quantum beating (QB) based on the action of the pulse sequences. In systems
with additional high energy levels, an additional pathway associated to excited state absorp-
tion (ESA) is present. In the exciton model considered in paper IV, due to the fourth level,
excited state absorption (ESA) provides a signal in the D spectra.

e peaks associated to the pathways are indicated in the Dmap right below each diagrams
showing weather the specific pathway results in a signal contribution to the diagonal or cross
peak.

e diagonal peaks are obtained by exciting and detecting with similar energy. For the
model system considered here, two diagonal peaks corresponding to the excitation and
detection at energies E1 and E2 can be obtained. On the other hand, cross peaks are ob-
tained by exciting and detecting at different energies. Here,two cross peaks at (Excitation,
Detection)=(E1,E2) and (Excitation, Detection)=(E2,E1) can be obtained for the model
system.
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Figure 5.11: Double sided Feynman diagram for the non-rephasing pathway of the three level system. Red indicates excitation
and blue indicates detection processes. The 2D schematic right below the double sided Feynman diagrams indicate
the peak positions for the process represented in the diagram. In addition, the action of the pulse sequences for
each diagram is shown below the 2D schematics. For the three level model considered here, the non-rephasing
signals mainly contribute to the diagonal peaks due to stimulated emission (SE), ground state bleaching (GSB) and
quantum beating (QB) where the excitation and detection energies are equal. In addition, the signals contribute
to the cross peaks due to ground state bleaching (GSB) where the excitation and detection energies are different.
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Figure 5.12: Double sided Feynman diagram for the rephasing pathway of the three level system. Red indicates excitation and
blue indicates detection processes. The 2D schematic right below the double sided Feynman diagrams indicate
the peak positions for the process represented in the diagram. In addition, the action of the pulse sequences for
each diagrams is shown below the 2D schematics. For the three level model considered here, the rephasing signals
mainly contribute to the diagonal peaks due to stimulated emission (SE), ground state bleaching (GSB) where the
excitation and detection energies are equal (a). In addition, the signals contribute to the cross peaks due to ground
state bleaching (GSB) and quantum beating (QB) where the excitation and detection energies are different (b).
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. Study of Dynamics using D Spectroscopy (Paper IV)

As an application of ourmethod for studying dynamics of a quantum system in real time, we
considered a model consisting of excitons with closely spaced energies as shown in Fig. ..
e objective is to study the coherent beating between the two closely spaced excitons
by examining the change in the diagonal and cross-peaks of the spectra as a function of
population time. D spectroscopy has been particularly useful in investigating oscillatory
beatings and their origins in coupled exciton systems [–]. A similar procedure as
described for the three level system was used to collect and organize the data. However, in
addition to the T2 = 0, which was the case described in the previous sections, we explore
the time dependence of the dynamics at other population times T2 > 0. In order to resolve
the beating frequency, the population time were varied from T2 = 0 to T2 = 100 fs with a
time step ΔT2 = 5 fs. is provides sufficient information to observe the coherent beating
with a frequency that matches the energy splitting between the two closely spaced excitons.
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Figure 5.13: [Paper IV] Energy level diagram for the excitonic system considered in the simulation. The dipole transitions are
indicated by solid double sided arrow while the relaxations are indicated by a dashed one sided arrow.

Fig. . shows the time evolution for the real part of the total, rephasing and non-rephasing
signals. E1 and E2 indicate the energies for the two excitons. Since the total correlation
signal is the sum of the rephasing and non-rephasing signals it exhibits rounded peaks
compared to the rephasing and non-rephasing peaks which are elongated along the diagonal
and anti-diagonal directions, respectively. e energy splitting between the two excitons is

ΔE = E2 − E1 = 1.55 eV − 1.4855 eV = 91.2meV.

is corresponds to an oscillation with a period

T =
2πℏ
ΔE

≈ 45.35 fs. (.)
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is matches the observation from Fig. . that, at T2 = 0 fs the signal is maximum with a
significant reduction in the amplitude around T2 = 15 fs and a revival around T2 = 45 fs.
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Figure 5.14: [Paper IV] Time evolution of the real part of the total, rephasing and non-rephasing signal from Rel10. The popu-
lation time is varied by 5fs from T2 = 0 to T2 = 100 fs. To see the long time behavior the spectrum at T2 = 500 fs
and T2 = 1000 fs are also shown. In each population time T2 the spectrum is multiplied by the maximum amp-
litude of the corresponding time domain data. The rephasing signals are elongated along the diagonal where as
the non-rephasing signals are elongated along the anti-diagonal direction. In all the plots clear oscillation is shown
as a function of population time.



Chapter 

Discussion and Outlook

In this thesis, two different techniques of probing electron collisions in nanostructures were
presented. In the first part, an enhanced transport through serially coupled triple quantum
dots has been obtained due to electron-electron (ee) interactions. Here, we emphasized
the importance of taking into account the different ee scattering terms into consideration
while simulating current and conductance through the structure. In this regard, one could
extend the problem to examine transport through more complicated setup than serially
coupled dots to see if there are possible transport channels due to ee interaction which
would otherwise be blocked.

e second part of the thesis described probing a quantum system with a light field to
study ultrafast dynamics which occur due to ee interactions. Here the subject of multiple
exciton generation (MEG) was central. We examined the situation where an initially cre-
ated exciton with an energy much larger than the band gap creating a double exciton with
equivalent energy. We showed that if one assumes typical parameters for a quantum dot, a
quantum yield close to an experimental value can be obtained. In paper II, we calculated
the yield as the number of recombinations across the band-gap per number of absorbed
photons. Here as an outlook, a quantum yield for several other systems can be explored to
see which materials can be used as a good candidate for solar energy harvesting.

Motivated by the good agreement of the results of paper II with experiment, we explored
the condition of MEG in the case where the quantum dot is attached to external contacts
in paper III. is way electrons and holes can be extracted and collected as in a realistic
photovoltaic device. e yield in this case was defined as the number of extracted electrons
per number of absorbed photons. A condition for optimal yield was examined and we
found out that there is still a room for improved MEG yield by choosing the right type of
contacts. In general, for more transparent contacts, the MEG yield can be improved to its


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maximum limit, Yield ≈ 1.3, for a realistic relaxation rate. We also showed that by quick
extraction, the yield can be improved as this process kills the Coulomb coupled oscillation
between the single exciton and double exciton populations. As an outlook, one could
explore the situation where the contacts are connected to other levels in the conduction and
valence band than the band-edge states. is way simulation of more additional realistic
processes can be possible.

Our method is very flexible and in principle a variety of quantum mechanical processes
can be evaluated by defining an appropriate jump operators for the desired process. In all
the simulations, we considered a model system with up to  spin degenerate single particle
levels. is model captures all the important processes for MEG while taking a reason-
able computational time. However, if one is interested to include more levels to describe
other realistic processes, an optimization of the existing code such as parallelizing might be
needed.

In paper IV, a method is developed to obtain two-dimensional spectra for studying ultrafast
processes in quantum systems. Instead of calculating the response functions perturbatively
as it is done in conventional D spectroscopy, we calculated the full density matrix in the
Lindblad form and evaluated the processes associated to the different pathways fully. is
way a much richer signal with all possible information can be obtained. Here, we took
a model system of an exciton system which exhibits quantum beating as in excitonically
coupledmolecules. With ourmethod, we obtained clear signals that showed the oscillations
between the two energetically close excitons with an oscillation frequency that matches the
energy splitting.

Once the method to calculate the D spectra is developed, various types of simulation can
be carried out which will help explaining measured signals or proposing possible experi-
ments. e possibilities to be explored via D spectroscopy are endless. For starters, the
different pathways that contribute to the MEG signals can be studied carefully. In ad-
dition, a study of the coherent energy transfer in light harvesting complexes, which is an
active area of research in efficient solar energy can be studied.

To summarize, different aspects of ee interactions and their effects in measured signals have
been discussed in this thesis. It is a personal hope of the author of this thesis that, this
work might contribute towards the better understanding of quantum processes in nano-
structures.
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