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ABSTRACT	49	

Background: Polyhexamethylene biguanide (PHMB)-based antiseptic solutions can 50	

reduce bacterial loads in different clinical settings and are believed to lower risk of 51	

infections. 52	

Objective: To assess the efficacy of a PHMB-based solution in lowering bacterial 53	

loads of full-thickness skin grafting (FTSG) wounds and the risk of SSIs. 54	

Methods: In this double-blinded clinical trial, 40 patients planned for facial FTSG 55	

were randomized 1:1 to receive tie-over dressings soaked with either PHMB-based 56	

solution or sterile water. Quantitative and qualitative bacterial analysis was performed 57	

on all wounds before surgery, at the end of surgery, and 7 days postoperatively. In 58	

addition, all patients were screened for nasal colonization of S. aureus.  59	

Results: Analysis of wounds showed no statistically significant difference in bacterial 60	

reductions between the groups. The SSI rates were significantly higher in the 61	

intervention group (8/20) than in the control group (2/20) (P=.028). Higher 62	

postoperative bacterial loads were a common finding in SSIs (P=.011). This was more 63	

frequent when S. aureus was present postoperatively (P=.034), intraoperatively 64	

(P=.03), and in patients with intranasal S. aureus colonization (P=.007). 65	

Limitations: Assessment of SSIs is largely subjective. In addition, this was a single-66	

center study and the total number of participants was 40. 67	

Conclusion: Soaking tie-over dressings with PHMB-solution in FTSG had no effect 68	

on postoperative bacterial loads and increased the risk of SSI development. The 69	

presence of S. aureus intranasally and in wounds preoperatively and postoperatively 70	

increased postoperative bacterial loads, which in turn resulted in significantly more 71	

SSIs. 72	

 73	
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Capsule summary:  99	

• PHMB as an antiseptic has gained popularity in different clinical settings but 100	

hasn’t yet been studied in full-thickness skin grafting (FTSG).  101	

• This trial showed that adding PHMB to tie-over dressings had no effect on 102	

reducing bacterial loads in wounds and resulted in more surgical site 103	

infections.  104	

• Use of PHMB in FTSG as a method to prevent SSIs is questionable, and 105	

further clinical studies are warranted. 106	
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INTRODUCTION	124	

Polyhexamethylene biguanide (PHMB) is a polymer used as a disinfectant and 125	

antiseptic. 1-6 In recent years, it has gained popularity and has been used safely in 126	

different clinical settings such as in intraoperative irrigation during nail surgery 1, 127	

treatment of burns 5, orthopedic surgery antisepsis 6, wound dressings 3, prevention of 128	

infections in peritoneal catheters 4, and in combination with negative-pressure wound 129	

therapy (NPWT) where it has been shown to be better than NPWT alone in treating 130	

infected wounds. 7 131	

 132	

The advantages of PHMB include broad antibacterial activity, good cell and tissue 133	

tolerability, low risk of contact sensitization, promotion of wound healing, and no 134	

development of bacterial resistance. 2 In addition to having an effect on Gram-135	

negative bacteria 8, it also has effects against methicillin-resistant Staphylococcus 136	

aureus (MRSA). 9 The microbicidal effect of PHMB is comparable to that of 137	

chlorhexidine 10, but does not contain the toxic substituents found in chlorhexidine. 11 138	

 139	

In this study we investigated whether a PHMB-based antiseptic solution added to tie-140	

over dressings used in full-thickness skin grafting (FTSG) could reduce bacterial load 141	

of wounds. This is a factor believed to have a role in the development of surgical site 142	

infections (SSIs) as previously published by our group. 12 We hypothesized that a 143	

reduction in the bacterial load would lower the risk of SSIs. We were also interested 144	

in examining the presence of S. aureus intranasally and wanted to study its relevance 145	

for SSIs. Recent studies have indicated that nasal colonization with S. aureus is an 146	

important risk factor for development of SSIs. 13-15 By analyzing bacterial quantities 147	
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and species at different stages of surgery, we sought to improve our understanding of 148	

the development of SSIs and its complex pathogenesis. 149	

 150	

METHODS	151	

Study Design 152	

We conducted this prospective, double-blinded, randomized, placebo-controlled trial 153	

between September 2014 and September 2015 at Lund University Hospital, Sweden. 154	

This single-center study was approved by the ethical committee in Malmö/Lund, 155	

registration number (2013/762) and registered with ClinicalTrials.gov 156	

(NCT02253069). All patients over age 18 planned for facial FTSG were allowed to 157	

participate in the trial. We limited inclusion to surgery localized to the face because 158	

bacterial loads are known to vary from one anatomical site to another. 16 All grafts 159	

were harvested from the neck region. Exclusion criteria were diabetes, treatment with 160	

antibiotics within the last four weeks prior to surgery, and planned antibiotic therapy. 161	

Written informed consent was obtained from all patients before enrollment. The same 162	

nurse prepared all patients for surgery, which included using a 0.5% chlorhexidine 163	

solution for preoperative skin preparation. Four dermatologists performed surgery 164	

under routine sterile conditions. One principal investigator was in charge of collecting 165	

bacterial samples and assessing wounds postoperatively. 166	

 167	

Power analysis and randomization 168	

In a previous in vitro study, a reduction of >5 log10 was achieved with a concentration 169	

of 0.02% PHMB against S. aureus. 10 We hypothesized that application of 0.1% 170	

PHMB as found in the commercially available Prontosan® Wound irrigation solution 171	

(B. Braun Medical, Switzerland) would at least reduce bacterial load in wounds by 172	
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half versus placebo. To get 80% power with an α-value of 0.05, it was calculated 173	

that 16 patients were required in each group. By including 20 patients in each group 174	

in this trial to allow for dropouts, noticeable differences in bacterial reduction would 175	

be detected. Patients were randomized according to a list generated using QuickCalcs 176	

(www.graphpad.com/quickcalcs).  177	

 178	

In vitro antibacterial assay 179	

Prior to this trial, in vitro experiments were performed to assess antibacterial activity 180	

of PHMB. See Supplementary Methods. 181	

 182	

Intervention 183	

At the end of each surgery, once the skin graft had been sutured to the wound, a tie-184	

over dressing was cut from Mepilex®. It was then soaked with either Prontosan® 185	

solution or sterile water (see Supplementary Methods for details) according to the 186	

randomization protocol.  187	

 188	

Follow up 189	

All patients were planned for a single follow up 7 days after surgery. Skin grafts were 190	

assessed in terms of redness, edema, discharge, graft take, and pain resulting in an 191	

overall assessment by the blinded principal investigator classifying a wound as 192	

"infected" or "non-infected". No scoring system was used for this purpose. Digital 193	

photographs were taken of all wounds pre- and postoperatively.  194	

 195	

Bacterial load analysis 196	
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Bacterial samples were blindly collected from each patient using Eswabs (Copan, 197	

Brescia, Italy). Swabs were taken in a controlled manner by swabbing in a circular 198	

motion for 10 seconds. This was done at 3 different phases. Before surgery (BS) prior 199	

to antisepsis, the skin area containing the suspected neoplasm planned for excision 200	

was swabbed to establish the starting bacterial load level. Next, at the end of surgery 201	

(ES), the skin graft sutured to the wound was swabbed to establish a second starting 202	

load level. A final swab was taken from the wound one week after surgery (1W) after 203	

removal of the tie-over dressing.  204	

Each swab was analyzed quantitatively by counting CFU per cm2 of area swabbed as 205	

well as the type of bacteria present. Bacterial quantification was done by serially 206	

diluting each swab to 3 different concentrations plating each concentrate onto a Todd-207	

Hewitt agar plate using sterile glass beads and incubating all plates in 5% CO2 at 208	

37°C for 24 h. The CFU were then counted and were usually between 30 and 300 209	

CFUs. The CFU was divided with the swab area to measure bacterial loads in 210	

CFU/cm2. Bacterial species were determined via matrix-assisted laser 211	

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.  212	

 213	

Intranasal swabs 214	

Before surgery, an Eswab was rotated in the patient’s naris that was closest to the 215	

neoplasm planned for excision. Typing was performed using MALDI-TOF to detect 216	

presence of S. aureus. No quantification was done on these swabs.   217	

 218	

Statistics 219	

Statistical analyses were performed with SPSS v.22 software (SPSS Inc., Chicago, 220	

IL). Bacterial load reduction was determined by using the following formulas: 221	
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CFU(1W)-CFU(BS), CFU(1W)-CFU(ES), CFU(1W)/CFU(BS), and 222	

CFU(1W)/CFU(ES). All median values obtained were compared using a Mann-223	

Whitney U test to examine if differences existed between the groups. Differences in 224	

categorical variables were determined using the chi-square test. Differences in 225	

continuous variables were estimated using Student´s t test. Statistical significance was 226	

set at P < .05.  227	

 228	

Outcome measures 229	

Our primary measure was to compare bacterial load reductions in both groups. The 230	

development of SSIs was a secondary outcome in this trial, and the tertiary outcome 231	

was the intranasal presence of S. aureus and examining its relevance for the bacterial 232	

dynamics of surgical wounds. 233	

 234	

RESULTS	235	

Our in vitro trials showed that only dressings soaked with PHMB inhibited growth of 236	

both S. aureus and S. epidermidis (Supplementary Figure 1). This was in accordance 237	

with previously published studies demonstrating antibacterial properties of PHMB 238	

against various skin bacteria.17-20 As for this trial, there were no significant differences 239	

in patient characteristics in each group in terms of age, sex, wound location, and 240	

tumor excised (Supplementary table 1). Most wounds were located on the nose, which 241	

is known to be the most common site of skin malignancies. 21 No significant 242	

differences were noted among the groups in bacterial load levels measured before 243	

surgery, at end of surgery, and after one week. (Supplementary Table 2). No 244	

significant differences were detected between the groups in terms of bacterial 245	

reduction via the four calculations described in Methods (Supplementary Table 2). 246	
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 247	

A total of 10 wounds were assessed as infected to give an overall SSI rate of 25% in 248	

this study. Eight of these wounds belonged to the intervention group, which had a 249	

statistically higher rate of infection (chi-square 4.8, P=.028). Statistical analyses 250	

showed that patient characteristics such as gender, age, and wound location did not 251	

correlate to SSI rates in this study. All patients with SSIs had a significantly higher 252	

bacterial load measured postoperatively after one week as illustrated in Figure 1A. 253	

When S. aureus was isolated from wounds postoperatively after one week, patients 254	

had a significantly higher bacterial load (Figure 1B). The presence of S. aureus 255	

intranasally before surgery was also associated with a higher postoperative bacterial 256	

load (Figure 1C). Whether coagulase-negative staphylococci (CoNS) were isolated 257	

from wounds postoperatively or not had no effect on postoperative bacterial loads, 258	

although a higher spread in the total CFUs was observed (Figure 2A). The presence of 259	

S. aureus at the end of surgery in patients resulted in significantly higher 260	

postoperative bacterial loads (Figure 2B). 261	

 262	

Typing of all strains isolated from swabs revealed that CoNS and S. aureus were the 263	

predominant species (Table 1). The number of species successfully isolated from all 264	

patients was highest in in the swabs before surgery (27 different species) and lowest 265	

one week after surgery (8 species). Four out of 10 infected wounds contained S. 266	

aureus.  267	

 268	

DISCUSSION	269	

SSIs in dermatologic surgery result in unnecessary health costs as well as added pain, 270	

discomfort, and dissatisfactory cosmetic outcomes for patients. 22,23 Furthermore, the 271	
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use of preventative measures such as antibiotic prophylaxis, although sometimes 272	

warranted, can contribute to the emergence of resistant bacterial strains and give 273	

unwanted side effects, such as allergic reactions in patients. 24 Effective evidence-274	

based measures are therefore highly needed—especially in FTSG surgery, which is 275	

normally associated with a higher rate of SSI. 25  276	

 277	

In this randomized controlled trial, we tested the efficacy of PHMB in preventing 278	

SSIs. Our results show that PHMB had no effect on reducing postoperative bacterial 279	

loads. Surprisingly, adding PHMB to tie-over dressings resulted in a significantly 280	

higher risk of SSI. Previous studies have shown that applying a certain antibacterial 281	

agent locally to wounds can suppress the growth of certain bacterial species, which 282	

can cause an overgrowth of other species that might be harmful. 26 Although 283	

speculative, it is possible that PHMB, by reducing the commensal flora, i.e. the 284	

microbiome, could give rise to an increased colonization of S. aureus or other 285	

pathogens. Indeed, there appeared to be a higher spread in the bacterial levels when S. 286	

epidermidis was absent postoperatively (Fig. 2A), and Gram-negative bacterial 287	

species were particularly detected in the PHMB-treated group one week after surgery 288	

(Table 1), findings suggestive of possible microbiome changes induced by PHMB. 289	

Clearly, the limited number of patients enrolled in this study makes it impossible to 290	

draw any firm conclusions on the protective role of commensals and the role of 291	

PHMB. However, it is worth noting that the microbiome has recently been attributed 292	

with important roles in protection against infections. For example, Staphylococcus 293	

epidermidis can produce antimicrobials, which can keep potential pathogens at bay. 27 294	

S. epidermidis can also activate toll-like-receptor-2 (TLR2) signaling and induce 295	
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antimicrobial peptide expression, thus enabling the skin to mount an enhanced 296	

response to pathogens. 28,29  297	

 298	

We found 27 different bacterial species before surgery making it impossible to 299	

analyze which particular species could be responsible for increasing the risk of SSIs 300	

from a statistical point of view. A quantification of each particular species would be 301	

necessary to investigate this further. Here, only the total quantity of all bacteria in a 302	

swab was measured.  Nevertheless, it was interesting to note that the variation of 303	

bacterial species was highest prior to surgery and lowest postoperatively in both 304	

groups. Yet in 24 out of 40 patients, bacterial loads were higher postoperatively than 305	

preoperatively. It appears that certain species exhibits a stronger tendency to grow 306	

directly after surgery. Further studies in larger patient groups are needed to verify this 307	

observation. Another result was that the bacterial species observed here agreed well 308	

with previously published studies showing that most frequently isolated species from 309	

wounds are S. aureus and CoNS. 30  310	

 311	

In this trial, we established two different starting bacterial loads due to the nature of 312	

FTSG surgery where skin is moved from one anatomical site to another. Comparing 313	

postoperative bacterial loads present on a graft to the presurgical swab taken on 314	

anatomically different skin would be unfair. We therefore compared the postoperative 315	

bacterial loads levels with the levels observed before and at end of surgery. Our 316	

analyses showed that the PHMB-based dressing had no effect on reducing 317	

postoperative bacterial loads. Indeed, there was actually a tendency towards higher 318	

loads one week after surgery in the intervention group compared to the control group. 319	

The extensive variety of bacterial species found preoperatively (27 different species) 320	
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is yet another interesting finding. We could only compare these data to the variety 321	

present postoperatively (8 different species). Thus, this difference could again be 322	

attributed to the anatomical skin flora variations per se at the donor sites or to the 323	

microbiome and host defense changes as mentioned above. Another theory in line 324	

with a recent publication 31 is that the presence of a neoplasm in the swab taken 325	

preoperatively is somehow related to a high bacterial variety.   326	

 327	

We validated our previously published findings 12 and showed that a total 328	

postoperative bacterial load correlates positively to wound infection. Furthermore, 329	

postoperative bacterial loads were shown to be significantly higher when S. aureus 330	

was present in wounds intra- and postoperatively as well as in patients who had a 331	

nasal colonization with S. aureus detected prior to surgery. However, there was no 332	

direct relationship between presence of S. aureus in wounds, or intranasally, and SSIs. 333	

Still, S. aureus appears to continue to be one of the key pathogens involved in the 334	

development of SSIs. The presence of CoNS in wounds on the other hand seems to 335	

reduce the tendency towards developing an SSI by a reduced postoperative bacterial 336	

load. However, this observation was not statistically significant (P=.08) as shown in 337	

Figure 2a.  Although speculative, it is thus possible that an expanded preoperative 338	

screening of bacteria present preoperatively—not only in the nares, but also at the 339	

surgical site—could aid in the prediction of SSIs. It is also possible that boosting of 340	

the "healthy" microbiome—including S. epidermidis—could be beneficial for wound 341	

healing outcomes and in ongoing in vitro based experiments. Thus, we therefore are 342	

currently evaluating the effects of both commensal and pathogenic bacteria in skin 343	

models. 344	

 345	
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A limitation of our study is that one of our outcomes (diagnosis of SSIs) was 346	

dependent on a subjective assessment of a single investigator.  Studies have shown 347	

both inter- and intra-observer variations when diagnosing SSIs 32. These show the 348	

importance of finding a more objective method of diagnosing SSIs in the future. 349	

Nevertheless, the SSI scoring was performed in a blinded fashion to avoid potential 350	

bias between the groups. Other limitations were that this was a single-center study 351	

and that the total number of participants in the study was 40. 352	

 353	

CONCLUSION	354	

We used PHMB as a novel disinfectant to prevent SSIs in FTSG. PHMB appeared to 355	

increase the risk of SSIs at least in the experimental setting used here. In light of the 356	

emergence of new resistant bacterial strains that cause SSIs, there is a need for further 357	

research that can define preventative methods to improve outcomes. Measures that 358	

lower bacterial loads, prevent S. aureus regrowth in wounds and abolish intranasal 359	

colonization are important and ongoing.  360	

 361	
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Figure 1. Postoperative bacterial loads after one week shown for each patient 513	

group (controls and PHMB) or all patients combined. (A) Differences between 514	

wounds classified as infected and non-infected. (B) Differences in regard to 515	

presence of S. aureus in wounds at one week after surgery. (C) Levels 516	

correlated to presence of S. aureus intranasally. Outliers in all plots are 517	

indicated by an asterisk (★). Solid bars depict interquartile range and the hash 518	

marks show the total range. A difference in median CFU/cm2  (calculated 519	

using Mann-Whitney´s test) with a P value of <.05 is regarded as statistically 520	

significant. 521	
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Figure 2. Bacterial loads at one week after surgery measured in all patients 534	

whether (A) CoNS were isolated postoperatively and whether (B) S. aureus 535	

was isolated at end of surgery. The outliers were expressed with an asterisk 536	

(★). Solid bars depict interquartile range and the hash marks show the total 537	

range. Calculations of median CFU/cm2 values using a Mann-Whitney test 538	

with a P value of <.05 were regarded as statistically significant. 539	

540	
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	542	

n	S.	epidermidis		543	
n	S.	hemolyticus	544	
n	S.	lugdunensis	545	
n	Other	CoNS	546	
n	S.	aureus	547	
n	Gram-negative	species	548	
n	Corynebacterium	species	549	
n	Acinetobacter	species	550	
n	Bacillus	551	
n	Streptococci	552	
☐	No	growth	553	
	554	
	555	

	556	
	557	
	558	
	559	
	560	
	561	
	562	
	563	
	564	
	565	
	566	
	567	

Table 1. Bacterial species isolated before surgery (BS), after one week (1W), 568	

and intranasally (Nasal). Each row represents a patient. An asterisk (★) in the 569	

beginning of each row indicates patients developing an SSI. 570	

 571	
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SUPPLEMENTARY DATA 577	

 578	

METHODS 579	

 580	

In vitro antibacterial assay 581	

Todd-Hewitt (TH) agar plates were streaked with S. aureus ATCC 29213 and S. 582	

epidermidis ATCC 14909. Each plate contained 1x105 colony-forming units (CFU). 583	

Eight mm polyurethane dressings (Mepilex®, Mölnlycke Healthcare, Göteborg, 584	

Sweden) soaked with Prontosan® solution or sterile water were applied on top to 585	

simulate an in vivo situation where the dressing is applied onto a wound.  586	

The dressings were soaked with 70% of the solution, where 100% was considered as 587	

the maximum wetting capacity of the dressing.  70% wetting was also to be used in 588	

this patient trial. The zone of inhibition around the discs was measured. 589	

 590	

Preparation of Mepilex® dressings 591	

Prior to surgery, seven circular dressing templates with varying diameters ranging 592	

from 10 mm to 34 mm were cut from Mepilex®. Necessary liquid volume to achieve 593	

70% wetting was calculated by subtracting each template’s fully saturated weight 594	

from its dry weight and multiplying the result by 0.7. For each dressing template, 20 595	

test tubes were prepared containing sterile water and 20 test tubes contained 596	

Prontosan® solution. These were marked with either A or B by an external 597	

investigator not involved in this trial and blinded to the nurse, surgeon, and principal 598	

investigator. Prontosan® solution is like water both colorless and odor-free. The 599	

dressing templates were used for proper determination of the volume of Prontosan® or 600	

sterile water required for wetting tie-over dressings used during surgery. 601	

 602	
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FIGURES 603	

A		 	 	 	 	 	 B	604	
	605	

 606	
 607	
 608	
Figure 1. In vitro antibacterial assays illustrating measured inhibition zones of 609	

dressings soaked with water (control) or PHMB on agar plates coated with 610	

1x105 CFU of (A) S. aureus, and (B) S. epidermidis (n=3, bar indicates S611	
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 612	

BCC: Basal cell carcinoma. SCC: Squamous cell carcinoma. 613	

 614	

Table 1. Patient characteristics and selected baseline values. 615	

 616	

 617	

 618	

 619	

 620	

 621	

 622	

Item Intervention group Control group P value 

Age 

Range 

Mean ± SD 

Median 

Sex, n (%) 

Male 

Female 

 

47-92 

74.45 ± 12.05 

74 

 

11 

9 

 

45-91 

78.20 ± 13.05 

85 

 

7 

13 

 

.351 

 

 

 

.204 

 

Wound location 

Nose 

Cheek 

Temple 

Forehead 

Ear 

Scalp 

 

 

13 

1 

3 

2 

0 

1 

 

10 

5 

1 

2 

2 

0 

.216 

Tumor excised 

BCC 

SCC 

Other 

 

 

15 

3 

2 

 

15 

1 

4 

.435 
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 Intervention Group Control Group P value 

Median BS (CFU/cm2) 10640.50 12180.50 .752 

Median ES (CFU/cm2) 13 13 .751 

Median 1W (CFU/cm2) 64132.50 23425.50 .752 

Change (ES-1W) 5668.15 779 .608 

Change (BS-1W) 2.7 1.1 .150 

Difference 1W minus ES 64105.50 23415.50 .752 

Difference 1W minus BS 28903.50 204.50 .343 

 623	

Table 2. Bacterial quantification of all swabs taken before surgery (BS), at 624	

end of surgery (ES), and after one week (1W).  625	


