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A comparison of smooth and blocky inversion methods in 2D
electrical imaging surveys
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ABSTRACT

Two-dimensional electrical imaging surveys are now widely
used in engineering and environmental surveys to map moderately
complex structures.  In order to adequately resolve such structures
with arbitrary resistivity distributions, the regularised least-squares
optimisation method with a cell-based model is frequently used in
the inversion of the electrical imaging data.  The L

2
norm based

least-squares optimisation method that attempts to minimise the
sum of squares of the spatial changes in the model resistivity is
often used.  The resulting inversion model has a smooth variation in
the resistivity values.  In cases where the true subsurface resistivity
consists of several regions that are approximately homogenous
internally and separated by sharp boundaries, the result obtained by
the smooth inversion method is not optimal.  It tends to smear out
the boundaries and give resistivity values that are too low or too
high.  The blocky or L

1
norm optimisation method can be used for

such situations.  This method attempts to minimise the sum of the
absolute values of the spatial changes in the model resistivity.  It
tends to produce models with regions that are piecewise constant
and separated by sharp boundaries.  Results from tests of the
smooth and blocky inversion methods with several synthetic and
field data sets highlight the strengths and weaknesses of both
methods.  The smooth inversion method gives better results for
areas where the subsurface resistivity changes in a gradual manner,
while the blocky inversion method gives significantly better results
where there are sharp boundaries.  While fast computers and
software have made the task of interpreting data from electrical
imaging surveys much easier, it remains the responsibility of the
interpreter to choose the appropriate tool for the task based on the
available geological information.

INTRODUCTION

One of the most significant developments in the resistivity
exploration method over the last 10 years is the increasingly
widespread use of 2D and 3D electrical imaging surveys.  Such
surveys have been successfully used in complex environments
where traditional 1D sounding and profiling surveys are not able to
adequately resolve such geological structures.  Two-dimensional

resistivity and I.P. imaging surveys are now widely used for
various engineering, environmental, and mining studies (Griffiths
and Barker, 1993; Barker, 1996; Dahlin, 1996; Ritz et al., 1999).
Such surveys are usually carried out using a large number of
electrodes (25 or more) connected by a multi-core cable to a
resistivity meter system (Figure 1a) with an automatic switching
unit (Griffiths and Barker, 1993).  In order to be able to adequately
model such complex structures with an arbitrary resistivity
distribution, a cell-based inversion technique is commonly used.
This technique subdivides the subsurface into a number of
rectangular cells whose positions and sizes are fixed (Figure 1b).
In this paper, we follow the approach by Sasaki (1992), where the
widths of the cells are set at half the spacing between adjacent
electrodes.  This was found to provide a reasonable compromise
between having good model resolution while ensuring the number
of model cells (and thus the computer time required for the
inversion) is not exceedingly large.  The thickness of the topmost
layer was set at half the median depth of investigation (Edwards,
1977) of the measurements with the shortest spacings, and the
thickness of each subsequent layer was increased by about 10 to
25% because the resolution of the resistivity method decreases
with depth (Loke and Dahlin, 2002).

An inversion routine is then used to determine the resistivity of
the cells that provides a model response that agrees with the
observed data.  A number of inversion techniques (Treitel and
Lines, 2001) have been used in the interpretation of geophysical
data.  These include the least-squares (Inman, 1975), conjugate-
gradient (Rodi and Mackie, 2001), maximum entropy (Bassrei and
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Fig. 1. (a) A typical field arrangement for 2D electrical imaging
surveys. (b) A cell-based model used for 2D resistivity inversion.
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Quezada, 2001), simulated annealing (Sharma and Kaikkonen,
1998), artificial neural networks (Zhang and Zhou, 2002), and
Singular Value Decomposition (Muiuane and Pedersen, 2001)
methods.  A commonly used inversion technique for 2D and 3D
resistivity inversion is the regularised least-squares optimisation
method (Sasaki, 1989; deGroot-Hedlin and Constable, 1990;
Oldenburg and Li, 1994; Loke and Barker, 1996; Li and
Oldenburg, 2000).  This is a versatile method that allows the user
to include available information about the subsurface as
constraints on the inversion procedure, so that it will produce
results that are closest to the actual subsurface geology (Ellis and
Oldenburg, 1994).  The use of the regularised least-squares
optimisation method with two different constraints is discussed in
this paper.

One commonly used version of the regularised least-squares
optimisation method is the smoothness-constrained or L

2
norm

method (deGroot-Hedlin and Constable, 1990).  This method
minimises the sum of squares of the spatial changes in the model
resistivity and the data misfit.  It gives optimal results where the
subsurface geology exhibits a smooth variation, such as the
diffusion boundary of a chemical plume (Barker, 1996).  However,
in cases when a sharp transition in the subsurface resistivity is
expected (such as an igneous dyke), this method tends to smear out
the boundaries.  An alternative method is the blocky or L

1
norm

optimisation method that tends to produce models with regions
that are piecewise constant and separated by sharp boundaries
(Ellis and Oldenburg, 1994).  This might be more consistent with
the known geology in some situations.

The next section gives an outline of the mathematical
formulations used by the L

2
norm and L

1
norm optimisation

methods.  This is followed by results from the inversion of data
from synthetic models and field surveys.

METHODS

The L
2

norm or smoothness-constrained least-squares
optimisation equation (deGroot-Hedlin and Constable, 1990; Ellis
and Oldenburg, 1994) is given by

Ji
T Ji + λiW

T W ∆ri = Ji
Tgi − λiW

T Wr i−1

where g
i
is the data misfit vector containing the difference between

the logarithms of the measured and calculated apparent resistivity
values, ∆r

i
is the change in the model parameters for the ith

iteration and r
i-1

(the logarithm of the model resistivity values) is
the model parameters vector for the previous iteration.  J is the
Jacobian matrix of partial derivatives.  A first-order finite-
difference operator (deGroot-Hedlin and Constable, 1990) is used
for the roughness filter W.  The above equation minimises the
sum-of-squares of the data misfit, as well as the sum-of-squares of
the model roughness.  The damping factor λ determines the
relative importance given to minimising the model roughness.
Starting from a homogeneous earth model, the inversion routine
usually takes about 4 to 6 iterations to converge (Loke and Dahlin,
2002).

Since the standard least-squares method uses the square of the
data misfit, it tends to give greater importance to data points with
larger misfits.  This makes it particularly sensitive to bad data
points (Farquharson and Oldenburg, 1998).  An alternative method
is to minimise the sum of the absolute values of the data misfit, or
an L

1
norm measure of the data misfit (Claerbout and Muir, 1973).

One simple method of implementing an L
1

norm based
optimisation method using the standard least-squares formulation
is the iteratively reweighted least-squares method (Wolke and
Schwetlick, 1988).  The optimisation equation in (1) is modified to

where R
d

and R
m

are weighting matrices introduced so that
different elements of the data misfit and model roughness vectors
are given approximately equal weights in the inversion process.
When the L

1
norm is applied to the model roughness filter, the

inversion method tends to produce models consisting of areas with
piecewise constant resistivity values (Farquharson and Oldenburg,
1998).

The L
1

norm is used for the data misfit in all of the following
tests.  This is to reduce the effect of bad data points in the field data
sets.  According to Farquharson and Oldenburg (1998), and other
authors (Claerbout and Muir, 1973; Menke, 1989; Press et al.,
1992; Parker, 1994), this method is less sensitive to outliers in the
data particularly when used with the regularised least-squares
optimisation method.  For each data set, the inversion is carried out
using the L

2
(smooth) inversion method as well as the L

1
(blocky)

norm inversion method for the model roughness filter. 

RESULTS

Tests with synthetic models

The first test model consists of a long rectangular prism with a
resistivity of 100 Ω⋅m embedded in a homogenous medium with a
resistivity of 10 Ω⋅m.  Figure 2a shows the apparent resistivity
pseudosection for the Wenner alpha array (Acworth and Griffiths,
1985).  The models produced by the smooth and blocky inversion
methods, together with the outline of the high resistivity prism, are
shown in Figures 2b and 2c.  The smooth inversion model (Figure
2b) shows a typical smeared-out image with a gradational
boundary between the prism and the surrounding medium.  The
model resistivity values undershoot the true values reaching a
minimum of 6.8 Ω⋅m below the prism (compared to the true value
of 10 Ω⋅m), and overshoot to a maximum value of 136 Ω⋅m at the
centre of the prism (compared to the true value of 100 Ω⋅m).  This
is the consequence of forcing the inversion method to seek a model
with a smooth variation of the model resistivity values where in
reality there is a sharp transition at the edges of the prism.  The

Ji
TRdJi + λiW

TRmW ∆ri = Ji
TRdgi − λiW

TRmWri−1
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Fig. 2. (a) Wenner (alpha) array apparent resistivity pseudosection for
a 100 Ω⋅⋅m rectangular prism embedded in a 10 Ω⋅⋅m medium.  Models
produced by the (b) smooth and (c) blocky inversion methods.  The
outline of the prism is shown in (b) and (c) for comparison.
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blocky inversion model (Figure 2c) gives a maximum resistivity of
101 Ω⋅m within the prism and a minimum of 7.1 Ω⋅m in the
surrounding medium.  This is in better agreement with the true
model.  It also exhibits a much more uniform distribution of the
resistivity values in both regions compared to the smooth inversion
model.  Figure 3a shows a plot of the resistivity values for the row
of model cells between the depths of 1.4 and 1.8 metres that pass
through centre of the prism.  The smooth inversion model shows
significant overshoots near the edges of the prism, and slight
oscillations outside the prism.  This is a typical result when the
smooth inversion method is applied to a model with sharp
boundaries (Farquharson and Oldenburg, 1998).  For example,
Olayinka and Yaramanci (2000) report that for some models the
smooth inversion method can produce resistivity values of about
twice the true value.  Figure 3a also clearly shows that the blocky
inversion method produces resistivity values that are closer to the
true situation.  It is able to reproduce the sharp increase in the
resistivity values at the edges of the prism.

In order to study the effects of noise on the inversion results,
Gaussian random noise (Press et al., 1992) with an amplitude of
3% was added to the apparent resistivity data.  This noise level is
similar to that observed in many surveys carried out with modern
multi-electrode resistivity surveying equipment (Dahlin, 1996).
The resulting pseudosection (Figure 4a) shows slight distortions
compared to the original pseudosection in Figure 2a.  The smooth
and blocky inversion models are shown in Figures 4b and 4c.  The
model obtained at the first iteration with a data misfit value that is
below the noise level is used for this comparison.  The smooth
inversion model (Figure 4b) shows a high resistivity zone with
smooth boundaries that is similar to the inversion model (Figure
2b) without the added noise, except that the high resistivity zone is
spread out over a wider region.  In comparison, the blocky
inversion model shows a more compact shape that is closer to the
original prism.  However, the highest resistivity value in the blocky
inversion model is about 80 Ω⋅m, which is below the true value of
100 Ω⋅m. 

Figure 5 shows the results when the noise level is increased to
10%.  The resulting pseudosection (Figure 5a) shows significant
distortions.  Despite the high noise level, both the smooth and
blocky inversion methods are able to recover the high resistivity
zone in the region of the prism.  The shape of the high resistivity
zone in the blocky inversion model (Figure 5c) is again closer to
the true shape of the prism with significantly sharper boundaries
compared to the smooth inversion model (Figure 5b).  The main
effect of the noise appears to be a reduction in the contrast between
the highest model resistivity values obtained by the inversion
methods in the region of the prism and the surrounding medium.

The second synthetic model uses a prism of the same width as
the first model, but with a boundary layer of 33 Ω⋅m between the
central zone of 100 Ω⋅m and the surrounding medium of 10 Ω⋅m
(Figure 6).  This model has a more gradual change of the resistivity
values across the boundary of the prism.  The smooth inversion
model (Figure 6b) shows a slightly better agreement with the
actual model within the prism.  It has a minimum value of 7.2 Ω⋅m
below the prism and a maximum value of 101 Ω⋅m at the centre of
the prism.  Figure 3b shows a plot of the resistivity values for the
row of model cells between the depths of 1.4 and 1.8 metres that
pass through the centre of the prism.  It shows that the smooth
inversion model has resistivity values that are in better agreement
with the true model in the central high resistivity zone.  The blocky
inversion model has a minimum value of 7.8 Ω⋅m outside the
prism, but a maximum of only 78 Ω⋅m within the prism.  This is
probably because the blocky inversion model attempts to produce
a model with a uniform resistivity variation within the entire prism
(Figure 6c) while the true model has two resistivity zones.  The

true model does not have completely smooth or completely sharp
resistivity boundaries, so neither method gives a clearly superior
model.  This is probably the situation encountered in most field
surveys, where both smooth and sharp boundaries are present.

Field data example 1: Bauchi, Nigeria

The first example is from a groundwater survey in the Bauchi
area of Northern Nigeria by Acworth (1981).  Crystalline basement
rocks occur widely in this region and groundwater is frequently
found in the weathered layer.  The depth of weathered material is
greater in areas where fractures occur in the bedrock, and thus such
fractures are good targets for groundwater.  The resistivity survey
was carried out together with an electromagnetic profiling survey
using a Geonics EM34-3 system (Acworth, 2001).  The data
shown in Figure 7a is from one of the survey lines, using the
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Fig. 3. (a) A plot of the resistivity of the row of model cells between
depths of 1.4 and 1.8 metres for the prism model with a sharp
boundary of Figure 2.  (b) A similar plot for the prism model with a
boundary layer of Figure 6.
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Wenner gamma electrode array (Acworth and Griffiths, 1985), that
cross a prominent fracture zone.  The inversion models are shown
in the form of contoured sections that help in visualising the
geological structures.  The thickness of the low resistivity
weathered layer (with resistivity values of usually less than 200
Ω⋅m) is generally about 10 to 20 metres.  There is a narrow vertical
low resistivity zone with a width of less than 20 metres below the
200-metre mark that is probably a fracture zone in the bedrock
(Figures 7b and 7c).  The smooth inversion model (Figure 7b)
shows a low resistivity zone with smooth and sloping boundaries
on both sides.  The low resistivity zone has sharper and steeper
boundaries in the blocky inversion model (Figure 7c).  This model
also has more-uniform resistivity values within the fracture zone
(approximately between the 180-metre and 230-metre marks, and
below a depth of 20 metres).  A borehole that was placed at the
175-metre mark had yields that were lower than expected, possibly
because it lies just at the edge of the fracture zone.  In this
example, the blocky inversion method is more useful in
determining the exact location of the boundaries of the fracture
zone.  The placement of the well was largely based on resistivity

and EM profiling data, and before 2D resistivity inversion software
and fast microcomputers were widely available.  There is a
prominent low resistivity zone with resistivity values of less than
50 Ω⋅m in the overburden above the fracture zone that could have
shifted the EM anomaly to the left of the fracture zone.

Field data example 2: Östra Odarslöv, Sweden

The second example is from Östra Odarslöv, a few kilometres
north of Lund, Sweden.  The site is characterised by Quaternary till
resting on Silurian shale with dolerite intrusions.  Depth to the
bedrock in the vicinity varies between 1.4 metres and 2.6 metres,
according to drilling records.  The topography is very gentle and
reflects the bedrock topography, judged by the drilling results and
visual impressions in the Östra Odarslöv quarry, situated
immediately east of the test line.  Drill-cores show grey shale
throughout the drilled depths (15.6 m and 25.1 m respectively),
with some calcite veins and pyritic zones.  A dolerite dyke
(approximately 20 metres wide) was visible in the quarry before it
was filled with building rubble some years ago.  Furthermore, a
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Fig. 4. (a) Wenner (alpha) array apparent resistivity pseudosection for
a 100 Ω⋅⋅m rectangular prism embedded in a 10 Ω⋅⋅m medium with 3%
random noise added.  Models produced by the (b) smooth and (c)
blocky inversion methods. 

Fig. 5. (a) Wenner (alpha) array apparent resistivity pseudosection for
a 100 Ω⋅⋅m rectangular prism embedded in a 10 Ω⋅⋅m medium with 10%
random noise added.  Models produced by the (b) smooth and (c)
blocky inversion methods. 

Fig. 6. (a) Apparent resistivity pseudosection for a 100 Ω⋅⋅m rectangular
prism embedded in a 10 Ω⋅⋅m medium with a 33 Ω⋅⋅m boundary layer.
Models produced by the (b) smooth and (c) blocky inversion methods.
The outline of the prism and boundary layer is shown in (b) and (c) for
comparison.

Fig. 7. Results from a survey using the Wenner gamma array in the
Bauchi area, Nigeria.  (a) Apparent resistivity pseudosection.  The
inversion model obtained with the (b) smooth and (c) blocky inversion
methods.  Note the location of the borehole at the 175-metre ark.
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slight change in the topographic slope can be seen where the
profile crosses the dolerite dyke (Dahlin 1996).  Figure 8a shows
the apparent resistivity pseudosection where the survey line (using
the Wenner alpha array) crosses the dyke.  In the smooth inversion
model (Figure 8b), the high resistivity dyke below the 90-metre
mark has smooth boundaries.  The model resistivity values
increase from about 50 Ω⋅m just outside the dyke to a maximum
of about 1200 Ω⋅m in the centre of the dyke.  This feature is similar
to the model obtained with the smooth inversion method for the
high resistivity prism (Figures 2b and 3a) where it underestimates
the resistivity outside the prism and overestimates it within the
prism.  In comparison, the blocky inversion method produces a
model (Figure 8c) with more-uniform resistivity values within the
dyke (of about 800 Ω⋅m) as well as just outside the dyke boundary
(of about 100 Ω⋅m).  The dyke also has sharper and straighter
boundaries.  This is more consistent with the known geology.

Field data example 3: Magusi River, Canada

The third example is from a resistivity and I.P. survey over the
Magusi River massive sulphide ore body in Canada.  The ore body
is surrounded by igneous and metamorphic country rocks, with an
overburden of about 15 metres.  The dipole-dipole array was used,
with dipole lengths of 30.5 metres (100 feet), 61.0 metres (200
feet), and 91.4 metres (300 feet) (Edwards, 1977).  For each dipole
length, measurements were made with values of 1 to 4 for the
dipole separation factor.  The I.P. measurements were given as
metal factor values.  The resulting resistivity and I.P.
pseudosections have a very complex distribution of the data points
due to the overlap of arrays of different lengths(Figure 9a).  The
original metal factor values given by Edwards (1977) were divided
by two to conform to the more modern definition of this parameter
(Witherly and Vyselaar, 1990).  In the inversion models, the ore
body shows up as a low resistivity body of less than 10 Ω⋅m
(Figures 9b and 9c) with high metal factor values of more than 500
msec/Ω⋅m (Figures 9e and 9f) near the middle of the survey line.
The low resistivity zone in the blocky inversion resistivity model
has sharper boundaries with the surrounding rocks compared to the
smooth inversion model (Figures 9b and 9c).  The I.P. model given
by both inversion methods shows very high metal factor values at
the location of the ore body, and negligible values elsewhere
(Figures 9e and 9f).

CONCLUSIONS

Two alternative formulations of the regularised least-squares
optimisation method have been examined.  The L

2
norm

smoothness-constrained least-squares optimisation method tends
to produce models with a smooth spatial variation in resistivity
values.  This method is more suitable where the true subsurface
geology exhibits a gradual change in the electrical properties.
However, when it is used in areas with sharp boundaries between
approximately homogeneous regions, it tends to smear out the
boundaries and give resistivity values that are too low or too high.
For such situations, the L

1
norm or blocky inversion method is

more suitable.  Some of the poor results reported with smoothness-
constrained least-squares optimisation method (Olayinka and
Yaramanci, 2000; Jackson et al., 2001) are probably due to the use
of an inappropriate constraint, i.e., the use of an L

2
norm instead of

an L
1

norm constraint in areas with sharp boundaries.  The
regularised least-squares optimisation method with a cell-based
model is sufficiently flexible to represent almost any subsurface
structure with an arbitrarily resistivity distribution, and it also
allows the user to incorporate known geological information about
the survey area.  While modern computers and software have made
the interpretation of 2D and even 3D electrical imaging data (Loke
and Barker, 1996) much easier and more accurate than previously
possible, it is the responsibility of the interpreter to select the

appropriate computational tool based on the known subsurface
geology.
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Fig. 8. Results from a survey using the Wenner alpha array across the
Odarslöv dyke, Sweden.  (a) Apparent resistivity pseudosection.  The
inversion model obtained with the (b) smooth and (c) blocky inversion
methods.

Fig. 9. The Magusi River (Canada) survey with (a) the apparent
resistivity pseudosection and the (b) smooth and (c) blocky inversion
models.  (d) The apparent I.P. pseudosection and the (e) smooth and (f)
blocky inversion models.
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