

Overview

This work is about solving systems of polynomial equations arising in many geometric vision problems.

unstable in many cases or slow.

We previously proposed to make a change of basis in $\mathbb{C}[\mathbf{x}]/I$ to improve the conditioning of the Gröbner basis computation [BJÅ07]. This was done using a large and expensive SVD decomposition.

A new efficient algorithm: Based on a clarification of the chain of matrix operations needed to compute the Gröbner basis, we are able to (i) factorize a typically much smaller sub matrix and (ii) substitute the expensive SVD factorization with the cheaper QR-factorization with column pivoting. This yields a simultaneus factorization and numerically sound choice of monomial basis for $\mathbb{C}[\mathbf{x}]/I$.

Contribution:

- umn pivoting.

Problem Statement

Find the complete set of solutions to a system of equations on the following form $c_{11}\mathbf{x}^{\alpha_1} + c_{12}\mathbf{x}^{\alpha_2} + \ldots + c_{1n}\mathbf{x}^{\alpha_n} = 0,$

where $\mathbf{x}^{\alpha_1}, \ldots, \mathbf{x}^{\alpha_n}$ are a given set of monomials with $\mathbf{x}^{\alpha_k} = x_1^{\alpha_{k1}} \cdots x_p^{\alpha_{kn}}$. Ensure high numerical accuracy in the process.

- tion and in global optimisation.
- stood.

A Column-Pivoting Based Strategy for Monomial Ordering in Numerical Gröbner Basis Calculations

Martin Byröd, Klas Josephson and Kalle Åström Centre for Mathematical Sciences, Lund University, Lund, Sweden

Problem: State-of-the-art polynomial methods use Gröbner basis techniques, but are still numerically

• A simplified derivation of how to change basis.

• A new strategy for how to change basis using fast and numerically stable QR factorization with col-

(1)

 $c_{m1}\mathbf{x}^{\alpha_1} + c_{m2}\mathbf{x}^{\alpha_2} + \ldots + c_{mn}\mathbf{x}^{\alpha_n} = 0,$

Motivation

• Polynomial equations arise in *e.g.* minimal cases of structure from mo-

• Numerical stability of existing solvers in many cases poor.

• The Gröbner basis technique for equation solving not yet fully under-

(2)

(i) add a large number of new equations by multiplying the original equations with a hand-selected set of monomials, (ii) use numerical linear algebra to express higher order monomials in terms of a set of lower order monomials (the basis for $\mathbb{C}[\mathbf{x}]/I$).

Pose with Hybrid Features

- Pose estimation with unknown focal length and mixed 2D and 3D feature data. [JBKÅ07]
- Minimal case: 3 correspondences to known 3D points, 1 correspondence to a known camera.
- 4 unknowns, 36 solutions.
- Maximum total degree 6.
- After expansion: 980 equations in 873 monomials, total degree 10.
- For this problem we had to use truncation of the Gröbner basis to get a working solver. See paper for details.

FIGURE 1: Relative error in focal length for pose estimation with unknown focal length (mixed 2D and 3D feature data)

The 10th European Conferenceon Computer Vision October 12-18, 2008, Marseille, France

Three View Triangulation

- Optimal L_2 -triangulation by calculation of all stationary points [SSN05].
- \bullet 3 unknowns, 50 solutions.
- 3 equations with total degree 6.
- After expansion: 225 equations in 209 monomials with total degree 9.

FIGURE 2: Histogram over the error in 3D placement of the unknown point obtained using optimal three view triangulation.

Code available at: www.maths.lth.se/vision/downloads

Speed Comparison

Method	Time per call / ms	Relative time
SVD	41.685	1
QR	10.937	0.262
Standard	8.025	0.193

TABLE 1: Time consumed in the solver part for the problem of three view triangulation. The comparison is made for the three different methods. The time is an average over 1000 calls.

References

- [BJÅ07] M. Byröd, K. Josephson, and K. Åström. Improving numerical accuracy of gröbner basis polynomial equation solvers. In Proc. 11th Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, 2007.
- [CLO07] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer, 2007.
- [JBKÅ07] K. Josephson, M. Byröd, F. Kahl, and K. Åström. Image-based localization using hybrid feature correspondences. In *The second international ISPRS* workshop BenCOS 2007, Towards Benchmarking Automated Calibration, Orientation, and Surface Reconstruction from Images, 2007.
- [SSN05] H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is three-view triangulation really? In Proc. Int. Conf. on Computer Vision, pages 686–693, Beijing, China, 2005.