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Overview
This work is about solving systems of polynomial equa-

tions arising in many geometric vision problems.

Problem: State-of-the-art polynomial methods use

Gröbner basis techniques, but are still numerically

unstable in many cases or slow.

We previously proposed to make a change of

basis in C[x]/I to improve the conditioning of the

Gröbner basis computation [BJÅ07]. This was done

using a large and expensive SVD decomposition.

A new efficient algorithm: Based on a clarifi-

cation of the chain of matrix operations needed to

compute the Gröbner basis, we are able to (i) fac-

torize a typically much smaller sub matrix and (ii)

substitute the expensive SVD factorization with the

cheaper QR-factorization with column pivoting. This

yields a simultaneus factorization and numerically

sound choice of monomial basis for C[x]/I .

Contribution:
•A simplified derivation of how to change basis.

•A new strategy for how to change basis using fast

and numerically stable QR factorization with col-

umn pivoting.

Problem Statement
Find the complete set of solutions to a system of equations on the following form

c11x
α1 + c12x

α2 + . . . + c1nx
αn = 0,

...
cm1x

α1 + cm2x
α2 + . . . + cmnx

αn = 0,
(1)

where xα1, . . . ,xαn are a given set of monomials with xαk = x
αk1
1 · · · · · xαknp . Ensure

high numerical accuracy in the process.

Motivation
•Polynomial equations arise in e.g. minimal cases of structure from mo-

tion and in global optimisation.

•Numerical stability of existing solvers in many cases poor.

•The Gröbner basis technique for equation solving not yet fully under-
stood.

1 Equation 1 Variable

x3 + 4x2 +
x − 6 = 0

1 Equation
1 variable

0 0 6
1 0 −1
0 1 −4


Companion

matrix

x1 = 1
x2 = −2
x3 = −3

Solutions

A B

A. Copy polynomial coefficients into the companion matrix. B. The eigenvalues of
the companion matrix are the solutions.

m Equations n Variables

25xy − 15x − 20y + 12
x2 + y2 − 1 = 0

2 Equations
2 variables

125y3−75y2−45y+27 = 0
25xy − 15x− 20y + 12 = 0

x2 + y2 − 1 = 0

Gröbner basis

1
125


0 −60 65 −63

125 100 100 45
125 75 75 45
0 125 −125 175


Action matrix

x1 = −4/5, y1 = 3/5
x2 = 4/5, y2 = −3/5
x3 = 4/5, y3 = 3/5

Solutions

A

B

C

A. Generalized gaussian elimination. B. Copy elements from the Gröbner basis to
form a generalized companion matrix. C. The eigenvalues and eigenvectors of the

action matrix yield the solutions.

Gröbner Bases Using Matrix
Factorization

Buchberger’s algorithm computes a Gröbner basis, but to make it numerically stable
we make use of the following

INSIGHT: Computing a Gröbner basis ≈
solving an underdetermined linear system.

and reformulate it using matrices. Equation 1 can be written using matrix notation as

C

 xα1

...
xαn

 = 0. (2)

With this, we can use a variation of the Buchberger algorithm working in two phases:
(i) add a large number of new equations by multiplying the original equations with a
hand-selected set of monomials, (ii) use numerical linear algebra to express higher order
monomials in terms of a set of lower order monomials (the basis for C[x]/I).

Our contribution concerns the second phase and can be outlined like so:

Pose with Hybrid Features

•Pose estimation with unknown focal length and mixed 2D and 3D fea-
ture data. [JBKÅ07]

•Minimal case: 3 correspondences to known 3D points, 1 correspondence
to a known camera.

• 4 unknowns, 36 solutions.

•Maximum total degree 6.

•After expansion: 980 equations in 873 monomials, total degree 10.

•For this problem we had to use truncation of the Gröbner basis to get
a working solver. See paper for details.
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Figure 1: Relative error in focal
length for pose estimation with un-
known focal length (mixed 2D and 3D
feature data)

Three View Triangulation

•Optimal L2-triangulation by calculation of all stationary points
[SSN05].

• 3 unknowns, 50 solutions.

• 3 equations with total degree 6.

•After expansion: 225 equations in 209 monomials with total degree 9.
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Standard
SVD
QR Figure 2: Histogram over the error

in 3D placement of the unknown point
obtained using optimal three view tri-
angulation.

Code available at: www.maths.lth.se/vision/downloads

Speed Comparison

Method Time per call / ms Relative time
SVD 41.685 1
QR 10.937 0.262

Standard 8.025 0.193

Table 1: Time consumed in the solver part for the problem of three view trian-
gulation. The comparison is made for the three different methods. The time is an
average over 1000 calls.
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