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A general expression for the distribution of the fluctuating 2�-pole moment M� of a spherical sample
of dielectric material is derived on the basis of dielectric theory combined with statistical mechanics.
The formulas are compared with results from computer simulations of a weakly coupled
Stockmayer fluid and the agreement is shown to be excellent. Furthermore, we calculate the size of
the coupling, quantified through the free energy of solvation Asolv, of the fluctuating electric
moments to a surrounding dielectric medium. It turns out that the contribution to Asolv from each
fluctuating electric moment actually increases with increasing order � of the moment, resulting in
a formally infinite free energy of solvation. We also present a correction to Asolv for molecular
media, which shows that the molecular nature of the surrounding medium effectively suppresses the
divergence in the solvation free energy. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3100312�

I. INTRODUCTION

The investigation of structural and thermodynamical
properties of liquids composed of molecular dipoles is a
problem of long-standing interest due to both the high abun-
dance of such liquids in nature and their interesting thermo-
dynamic properties. In particular, a lot of effort has been put
into understanding the dielectric properties of polar fluids
and developing theoretical and computational methods for
calculating their static dielectric constant �.1,2 The use of
computer simulation methods to calculate dielectric proper-
ties of polar liquids has proven highly demanding due to the
long-ranged nature of the dipole-dipole interaction. A num-
ber of different computational methods has been suggested to
overcome these problems; two of the most popular are the
Ewald summation method3 and the reaction field �RF�
approach.4 In the former method, the central simulation box
is duplicated in all directions to form an infinite lattice em-
bedded either in vacuum or in a conducting environment that
solvates the dipole moment of the simulating box, so-called
tin-foil boundary conditions.5 In the RF method, each par-
ticle explicitly interacts with all neighbor particles within a
cutoff radius Rc, as well as with the reaction field ER, given
by Onsager’s6 formula

ER =
2�� − 1�

�2� + 1�Rc
3MS, �1�

where MS is the total dipole of the cutoff sphere and � is the
dielectric constant of the surrounding dielectric.

The most common method to calculate � from computer
simulations of dipolar fluids is to use the fluctuations of the
total dipole moment M of the simulation box. Formulas re-
lating the mean-square dipole moment �M2� to � have been

derived by Neumann7 for a number of different boundary
conditions. Furthermore, Kusalik8 derived expressions for
the probability distribution P�M� for dielectric media. To our
knowledge, however, no study of how the fluctuating multi-
pole moments of higher order reflect the dielectric properties
of the liquid has been made. In the present paper, we will
derive a general expression for the distribution of the 2�-pole
moment M� of a dielectric sphere. Furthermore, we will cal-
culate the electrostatic coupling between these fluctuating
moments and the fluctuating potential of a surrounding di-
electric medium using an approach similar to that used by
Karlström and Halle9 to calculate solvation free energies.

II. THEORY

A. Induced multipole moments in a dielectric medium

In the following section, we will solve a standard dielec-
tric boundary value problem to obtain the induced multipole
moments in a dielectric sphere subject to an external electric
potential. The methodology is identical to that described in,
for example, Ref. 6 and the derivation is included here to
provide a suitable background and to highlight the underly-
ing approximations and assumptions.

We consider a dielectric sphere with radius R and dielec-
tric constant � surrounded by vacuum ��=1�. We then apply
an external electric potential given by

�ext = − �
�=1

�

A�r�P��cos �� �2�

onto the dielectric sphere, where P��cos �� is the � : th order
Legendre polynomial and A� is an arbitrary constant. The
electric potential of the system is then divided into two parts,
�1�r ,�� and �2�r ,��, representing the electric potential out-
side �r�R� and inside �r�R� the sphere, respectively. Sincea�Electronic mail: joakim.stenhammar@fkem1.lu.se.
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the space inside as well as outside the sphere does not con-
tain any charges, we can solve Laplace’s equation,

�� = 0, �3�

independently for �1 and �2. In the case of rotational sym-
metry about the z-axis, the general solution to Laplace’s
equation is given by6

� = �
m=0

� �amrm +
bm

rm+1	Pm�cos �� , �4�

where am and bm are arbitrary constants. It is now a straight-
forward task to identify the proper coefficients in Eq. �4�
using the standard boundary conditions

��1�r→� = − �
�=1

�

A�r�P��cos �� , �5a�

��1�r=R = ��2�r=R, �5b�

� ��1

�r
	

r=R

= �� ��2

�r
	

r=R

, �5c�

��2�r=0 � � . �5d�

The resulting potential functions become

�1�r,�� = − �
�=1

�

A�
r� −
��� − 1�

��� + 1� + 1

R2�+1

r�+1 �P��cos �� ,

�6�

�2�r,�� = − �
�=1

�

A�

�2� + 1�
��� + 1� + 1

r�P��cos �� . �7�

We can now calculate the contribution �1,p to �1 from the
polarization charge distribution of the sphere, i.e.,

�1,p = �1 − �ext = �
�=1

�

A�

��� − 1�
��� + 1� + 1

R2�+1

r�+1 P��cos �� . �8�

�1,p can be identified as the potential originating from a col-
lection of ideal multipoles located at the origin, possessing
the axial 2�-pole moments M� given by

M� = A�

��� − 1�
��� + 1� + 1

R2�+1. �9�

B. Statistical-mechanical calculation of ŠM�‹

We will now use a statistical-mechanical approach to
calculate the expectation value �M�� of M�, which can be
compared to the “classical” value of Eq. �9�. We start by
using the fact that the probability distribution P�M�� in
vacuum of the multipole moment component M� can be de-
scribed by a Gaussian function

P�M�� = ae−�M�
2
, �10�

where a and � are positive constants. It is a straightforward
task to show that a Gaussian distribution is the only distri-

bution consistent with linear response, see for example Ref.
9.

The 2�-pole interacts with the external potential given by
Eq. �2� according to �Appendix A�

Uext
† �M�� = − A�M�. �11�

The resulting reweighted distribution P̂�M�� is thus given by

P̂�M�� = âP�M��e−	Uext
†

, �12�

where 	= �kT�−1, k being Boltzmann’s constant and T the
absolute temperature, and â is a normalization constant. The
resulting expectation value �M�� can now be calculated
through the statistical-mechanical average

�M�� =
�−�

� M�P̂�M��dM�

�−�
� P̂�M��dM�

=
	A�

2�
. �13�

By equating M� and �M�� of Eqs. �9� and �13�, we can iden-
tify the exponent � of Eq. �10� as

� =
	���� + 1� + 1�

2��� − 1�
1

R2�+1 . �14�

This value of � represents the width of the multipole mo-
ment distribution in vacuo.

C. Coupling with a surrounding dielectricum

We will now proceed to a statistical-mechanical calcula-
tion of the distributions of the multipole moments when the
dielectric sphere is immersed in a dielectric medium of the
same dielectric constant �. The probability distribution
P�M�� given by Eqs. �10� and �14� will be reweighted by the
coupling between the sphere and its dielectric surroundings.
For now, we will assume that the dielectric discontinuity has
zero width, i.e., that the dielectric response of the surround-
ings is fully developed at r=R. The case of a dielectric dis-
continuity of nonzero width will be treated briefly in Sec. V.
Using this, the reweighted probability distribution is given
by

P̃�M��  ãe−�̃M�
2

= P�M��e−	U†
, �15�

where

U†�M�� = − 1
2
�M�

2 �16�

is the interaction energy of a 2�-pole with moment M� with
the dielectric surroundings, 
� is the susceptibility of the
surrounding medium, given by9,10


� =
�� + 1��� − 1�
�� + 1�� + �

1

R2�+1 , �17�

and ã is a normalization constant. Using Eq. �10� and Eq.
�15�–�17�, we obtain the exponent �̃, representing the re-
weighted probability distribution,

�̃ = � −
1

2
	
� =

	�2� + 1�2�

2�� − 1����� + 1�� + ��
1

R2�+1 . �18�

It should be noted that the leading �-dependence of Eq. �18�
is different from that of Eq. �14�, indicating that for high

124521-2 Stenhammar et al. J. Chem. Phys. 130, 124521 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



values of � the multipole moment distribution becomes con-
siderably wider when the system is immersed in a dielectric
medium, compared to that in vacuum. Furthermore, for
�=1, Eq. �18� is identical to the expression derived by
Kusalik8 for the dipole moment probability distribution. It
should furthermore be noted that to this point, the only as-
sumptions we made in the derivations of Eqs. �14� and �18�
are �i� that the medium exhibits dielectric behavior and �ii�
that the multipole moment distributions are described by
Gaussian functions.

D. Free energy of solvation

Using the reweighted probability distribution P̃�M�� of
Eq. �15�, we may now calculate the free energy A�

solv associ-
ated with the interaction between the fluctuating 2�-pole and
the surrounding dielectric. Integrating using Eqs. �15� and
�16�, and the subsequent use of Eqs. �17� and �18� yields

	A�
solv =

�−�
� U†�M��P̃�M��dM�

�−�
� P̃�M��dM�

= −
1

4


�

�̃

= −
��� + 1��� − 1�2

2�2� + 1�2�
. �19�

Since a 2�-pole has 2�+1 independent components, the total
solvation free energy is given by

Asolv = �
�=1

�

�2� + 1�A�
solv. �20�

Values of A�
solv for some values of � are given in Table I, the

value for �=1 being identical with that derived in Ref. 9. In
Table I, we also present values of �2�+1�A�

solv, i.e., the total
contribution from all 2�+1 independent components of the
2�-pole. There are three interesting features that can be noted
about the values of Table I, namely, that �i� the free energy of
solvation is independent of the size R of the sphere, �ii� for
��1, Asolv is large compared to kT, and �iii� its magnitude
increases with �, which implies that this “multipole expan-
sion” of the free energy Asolv diverges. We will try to shed
some more light on this fact in Sec. V.

E. Multipole fluctuations of randomly oriented
molecular dipoles

We will now derive an expression for the mean-square
2�-pole moment of a spherical and homogenous molecular

system composed of randomly oriented ideal dipoles. The
mean-square 2�-pole moment �M�

2� of the sphere expanded
about its center is given by the integral

�M�
2� = ��

V

 1

4
�

��

M�
2d���dV , �21�

where M� is the 2�-pole moment of a dipole with the mag-
nitude � and orientation �� located at r in the spherical
volume V with the radius R and where � is the number den-
sity of the dipoles. Using the formalism of Appendix B, one
arrives at the result

�M�
2� =

4��2

3

�

�2� + 1�
R2�+1. �22�

This relation can also be obtained by inserting the Debye
relation6

� = 1 +
4

3

��2

kT
�23�

into Eq. �14� for �, taking the limit �→0, and then calcu-
lating

�M�
2� = �2��−1. �24�

III. MODEL AND METHODS

A. Model

For the simulation studies, we consider a model system
composed of N particles in a cubic volume V at a tempera-
ture T. The potential energy U of the system is assumed to be
pairwise additive according to

U = �
i=1

N−1

�
j=i+1

N

uij�rij� . �25�

The interaction between molecules i and j, uij, is composed
of a Lennard-Jones �LJ� and a dipole-dipole potential �also
referred to as a Stockmayer potential� according to

uij�rij� = uij
LJ�rij� + uij

dip�rij� , �26�

with

uij
LJ�rij� = 4�
� �

rij
	12

− � �

rij
	6� , �27�

uij
dip�rij� =

1

4�0

�i · � j

rij
3 −

3��i · rij��� j · rij�
rij

5 � , �28�

where the size parameter � and interaction parameter � char-
acterize the LJ interaction, �i denotes the dipole vector of
particle i, rij is the vector between particle i and j, and
rij = �rij�.

In this study, we used the LJ parameters �=2.8863 Å
and �=1.970 23 kJ mol−1. The magnitude of the molecular
dipole moments equals �=0.105 84 e Å and the number
density was held fixed at �=0.038 446 Å−3 �corresponding
to 0.2 a.u.�. The temperature was kept constant at
T=315.8 K. In reduced units, the system can be character-
ized by the quantities ��=��3=0.9244, T�=kT /�=1.333, and

TABLE I. Values of A�
solv as calculated from Eq. �19� for ��1.

� 	A�
solv �2�+1�	A�

solv

1 −� /9 −� /3
2 −3� /25 −3� /5
3 −6� /49 −6� /7
4 −10� /81 −10� /9
]

� −� /8 −�
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��=� / �4�0��3�1/2=0.5732. These physical parameters of
the system are identical to those used in Ref. 11.

B. Simulation aspects

The properties of the model systems were determined by
performing molecular dynamics �MD� simulations at con-
stant number of particles, volume, and temperature. The par-
ticles were enclosed in a cubic box with length
L=63.833 Å and periodical boundary conditions were ap-
plied. The number of particles in the system equaled
N=10 000.

The long-range dipole-dipole interactions were treated
using the Ewald summation adapted to dipolar systems3 us-
ing conducting boundary conditions. This approach formally
involves an infinite periodic system where the dipole-dipole
interaction energy is divided into several terms. An Ewald
convergence parameter �=3.2 /Rcut was used in conjunction
with the spherical cutoff distance Rcut=19 Å in real space
and the spherical cutoff ncut=11 in reciprocal space. The LJ
interactions were subjected to the same spherical cutoff as
the dipole-dipole interaction in real space.

The MD simulations were performed using the velocity
Verlet algorithm with the orientations described by quater-
nions using a time step �t=0.001 ps, corresponding to a
reduced time step �t�=�t / �m�2 /��1/2=0.0011, where the
mass m=18 g mol−1 has been used. The particles were
treated as spherical tops with the components of the moment
of inertia Ixx= Iyy = Izz=1 g Å2 mol−1. Each simulation in-
volved 105 time steps, hence extending over tsim=100 ps or
115 reduced time units. The approach of Berendsen et al.12

of coupling the system to an external bath to preserve the
temperature was used, with a time coupling constant of
100�t. This weak coupling only suppresses the potential en-
ergy drift and does not affect the dynamics of the system.
The integrated Monte Carlo/molecular dynamics/Brownian
dynamics simulation package MOLSIM �Ref. 13� for molecu-
lar systems was employed throughout.

C. Fluctuating multipole moment analyses

The magnitude of the fluctuating multipole moments M�

was evaluated after every 100th time step using Eq. �B1�.
For each evaluated configuration, the value of M�, �=1, 2, 3,
and 4 was sampled for spheres of radii R=10, 15, and 20 Å.
Every particle was taken as the origin of a sphere of each of
the three radii, meaning that for each value of R, 10 000
values of M� were sampled for each configuration. The val-
ues of �̃ were then obtained by fitting a Gaussian function to
the probability distributions obtained.

To obtain a reasonable value of � for calculating the
theoretical values of �̃ according to Eq. �18�, Neumann’s7

formula

� = 1 +
4

3

�M2�
VkT

, �29�

relating � to the mean-square dipole moment �M2� of the
entire simulation box for a system treated using Ewald sum-
mation with conducting boundaries was used.

IV. RESULTS

In Table II, we present values of the mean-square multi-
pole moment �M�

2�= �2�̃�−1, where �̃ has been calculated
from Eq. �18� using the value �=2.3��0.1� obtained from
Eq. �29�. These values are compared to the corresponding
values determined from molecular dynamics simulations of a
weakly dipolar Stockmayer fluid, whose details are described
in Sec. III. Furthermore, in Fig. 1 the simulated probability
distribution for the quadrupole moment ��=2� for a sphere
with R=20 Å is compared to the results of Eqs. �14�, �18�,
and �22�.

V. DISCUSSION AND FUTURE PERSPECTIVES

A. Comparison between theoretical and simulation
data

As can be seen from Fig. 1, the simulated probability
distribution very accurately obeys the predicted Gaussian be-

TABLE II. Calculated and simulated reduced mean-square multipole mo-
ments R−�2�+1��M�

2� for different moments � and radii R. Calculated values
were obtained from Eq. �18� using �=2.3 obtained from �M�

2�calc= �2�̃�−1

and Eq. �29�. Estimated relative uncertainties are �7% for the theoretical
values and �1% for the simulated values.

�
R

�Å�
R−�2�+1��M�

2�calc

�10−4 e2 Å−1�
R−�2�+1��M�

2�sim

�10−4 e2 Å−1� �M�
2�sim / �M�

2�calc

1 10 6.65 6.49 0.98
1 15 6.65 6.61 1.00
1 20 6.65 6.79 1.02
2 10 7.62 7.36 0.96
2 15 7.62 7.32 0.96
2 20 7.62 7.28 0.96
3 10 7.98 7.74 0.97
3 15 7.98 7.74 0.97
3 20 7.98 7.80 0.98
4 10 8.18 7.99 0.98
4 15 8.18 7.94 0.97
4 20 8.18 7.97 0.97

-100 0 100

M
2

[eÅ
2
]

P(
M

2)

Eq. (14)
Eq. (18)
Eq. (22)
Simulated

FIG. 1. �Color online� Probability distribution of the quadrupole moment for
a sphere of radius R=20 Å obtained from Eqs. �14�, �18�, and �22� as well
as from simulation.
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havior. Furthermore, the quantitative correspondence be-
tween the simulated and the theoretical curves is very good.
The theoretical curve obtained from Eq. �14� is clearly the
one which shows the least correspondence with the simu-
lated data. This fact should be expected, since Eq. �14� gives
the exponent for a sphere in vacuum, whereas the simulated
data correspond to a solvated sphere. The reason that the
correspondence between the curves obtained from simulation
and from Eq. �18�, obtained from dielectric theory, is not
perfect is mainly due to the uncertainty in the value of � used
for the calculation of �̃. Nevertheless, the values of Table II
show correspondence well within the estimated uncertainties
between the theoretical and simulated values of �̃ for all
simulated values of � and R, further indicating that the be-
havior of the system is indeed very close to being dielectric.
As expected, the curve obtained using Eq. �22� provides ex-
cellent correspondence with the simulated data, since the
simulated system is only weakly dipolar and the particles are
therefore expected to adopt in practice fully random orienta-
tions.

B. Solvation free energies

The seemingly disturbing fact that Eq. �20� diverges in-
dependently of the value of R can be explained by the devia-
tion from dielectric behavior when �→�. All liquids are
composed of discrete units �atoms or molecules� and one
effect of this discreteness of the medium is that the width of
the dielectric “discontinuity” has to be given a positive
value. This means that the radius R of Eq. �17� should be
slightly larger than R of Eq. �14�. In other words, the formula
for 
� of Eq. �17� should instead be written as


�,� =
�� + 1��� − 1�
�� + 1�� + �

1

�R + ��2�+1 . �30�

This effect comes from the fact that, due to the finite size of
the molecules, the reaction field of the surrounding medium
cannot be applied directly at the boundary between the inner
sphere and the surroundings. The displacement �, at which
the response of the medium has been fully developed, should
therefore be of the order of a molecular radius, and thus the
value �=0 corresponds to a system composed of infinitely
small molecules. It turns out that replacing 
� with 
�,� leads
to an effective damping of the higher order terms. Further-
more, this damping becomes less effective as the value of R
increases, which means that the magnitude of Asolv increases
as the size of the sphere increases, just as expected. A nu-
merical calculation, using �=100 and �=1 Å gives a total
free energy of solvation of �−0.4 kT per particle in the
outermost layer �2 Å� of the sphere, whereas �=0.5 Å yields
a free energy of �−1.7 kT per particle. This “surface free
energy” should be interpreted as the electrostatic interaction
free energy over the imaginary spherical surface separating
the inner sphere from its dielectric surroundings. The value is
hardly affected as the value of R is varied between 1 nm and
1 dm. Furthermore, the values of Asolv are very reasonable,
indicating that this effect is indeed the dominant factor be-
hind the suppression of the higher order terms of Asolv.

Even though the mechanism described above is success-
ful in removing the divergence of Asolv for real liquids, two
rather remarkable facts still remain, namely, that �i� the free
energy of solvation of a perfectly dielectric sphere of finite
size in a medium of the same dielectric constant is infinite
and �ii� the importance of the higher order multipoles �i.e.,
��1� regarding the energetics of the system is larger than
that of the dipole. The latter fact should have a profound
effect on the simulation techniques used to model the long-
range behavior of systems containing charges or dipoles,
e.g., Ewald summation and RF techniques. In the latter ap-
proach, the liquid outside the cutoff radius is regarded as a
dielectric medium, which responds to the total dipole mo-
ment of the primary system. Considering the results of the
present paper, one may expect this to be a rather bad ap-
proximation, since in fact only the smallest contribution to
the interaction free energy is included. Given the importance
of the fluctuating electric moments of higher order that we
demonstrated in the present paper, the neglect of these effects
should be expected to have a significant impact on the struc-
ture of the system.

C. Future perspectives

In the simulations described in the present study, we
have deliberately chosen to study a system which should
clearly be expected to exhibit dielectric properties even on
relatively short length scales. For this reason, we chose to
model a Stockmayer fluid with a small reduced dipole mo-
ment ����0.6�. Furthermore, the radii of the spheres for
which we sampled the fluctuating multipole moments were
considerably smaller than L /2 of the simulation box to avoid
any effects from the conducting boundaries. These choices
were made to be able to effectively assess the validity of the
equations derived in this paper. In forthcoming papers, how-
ever, we intend to use these formulae to investigate strongly
coupled Stockmayer fluids, and particularly, in which ways,
if any, the behavior of these deviate from dielectric behavior.
Using the tools developed in this study, we hope to be able to
reveal interesting facts about the physical behavior of dipolar
fluids, as well as highlighting some of the strengths and
drawbacks of using different simulation methods for these
systems.
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APPENDIX A: INTERACTION BETWEEN A CHARGE
DISTRIBUTION AND AN EXTERNAL POTENTIAL

The interaction energy Uext between a general charge
distribution ��r� in a volume V and an external electric po-
tential ��r� is given by
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Uext = �
V

��r���r�dr . �A1�

The potential ��r� is now expanded around a point inside V
according to

��r�  �
�=0

�

�
m=−�

�

��mr�C�m
� ��� , �A2�

where C�m represents Racah’s un-normalized spherical har-
monics and ��m are expansion coefficients. Insertion of Eq.
�A2� in Eq. �A1� gives the following expression for Uext:

Uext = �
�=0

�

�
m=−�

�

��m�
V

��r�r�C�m
� ���dr . �A3�

With the definition

Q�m  �
V

��r�r�C�m���dr �A4�

of the spherical multipole moment Q�m, we get

Uext = �
�=0

�

�
m=−�

�

��mQ�m
� . �A5�

Applying this formula to the case of an axial field for which
��m=0 for m�0, using the identity C�0= P� and making the
identification ��0=−A�, it follows that the interaction �free�
energy between the polarization 2�-pole and the external po-
tential in our particular case is given by

Uext
† �M�� = − A�M�. �A6�

APPENDIX B: DERIVATION OF EQ. „22…

We will here derive Eq. �22� expressing the mean-square
2�-pole moment of a spherical system of randomly oriented
molecular dipoles. The contribution to the axial 2�-pole mo-
ment M� from an ideal dipole ��� ,��� located at
r�r ,���r ,� ,�� is given by

M� = � · ��r�P��cos ��� , �B1�

where P� is the Legendre polynomial of � : th order. Inserting
the following relation:14

�m�r�P��cos ��� = �− 1��+m���2� − 1��2� + 1��1/2

��� − 1 � 1

m 0 − m
	r�−1C�−1,m, �B2�

where index m� �−1,0 ,1� represents vector components in
the standard basis, into Eq. �21�, one obtains after some ma-
nipulations

�M�
2� =

�

4
���2� − 1��2� + 1��

��
V

r2�−2 �

m=−1

1

�
m�=−1

1

�− 1�m+m��� − 1 � 1

m 0 − m
	

� �� − 1 � 1

m� 0 − m�
	C�−1,mC�−1,m�

�

��
��

�m
� �m�d���dV . �B3�

Using the standard integrals

�
��

�m
� �m�d�� =

4

3
�2�mm� �B4�

and

�
�

C�−1,mC�−1,m�
� d� =

4

2� − 1
�mm�, �B5�

as well as carrying out the integration over r, the following
expression is obtained:

�M�
2� =

4��2

3
�R2�+1 �

m=−1

1 �� − 1 � 1

m 0 − m
	2

. �B6�

Inserting explicit expressions for the 3j-symbols,14 we arrive
at the final result

�M�
2� =

4��2

3

�

�2� + 1�
R2�+1. �B7�
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