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Abstract. An algorithm is presented for the multiple crack problem in planar
linear elastostatics. The algorithm has three important properties: it is stable, it is
adaptive, and its complexity is linear. This means that high accuracy can be achieved
and that large-scale problems can be treated. In a numerical example stress fields are
accurately computed in a mechanically loaded material containing 10,000 randomly
oriented cracks. The computing time is about two and a half hours on a regular
workstation.
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effective elastic moduli, large-scale calculation, GMRES, fast multipole method

1. Introduction

The problem of constructing algorithms for computing the stress field in
a mechanically loaded, linearly elastic, two-dimensional material with
multiple cracks and inclusions has recently attracted much attention
in this journal. The typical algorithm presented falls into either of two
categories: moderately accurate algorithms based on singular integral
equations, and approximate algorithms based on singular integral equa-
tions. The moderately accurate algorithms often can not handle more
than a few cracks or inclusions, see, for example, Chen (1997), Wang
and Chau (1997), Pan (1997), Xueli and Tzuchiang (1996a), and Chang
and Mear (1995). Approximate algorithms can handle more cracks, but
at the cost of low accuracy, especially when cracks are close to each
other, see, for example, Freij-Ayoub, Dyskin, and Galybin (1997), and
Brencich and Carpinteri (1996).

There are, in our opinion, three main reasons why many algorithms
for multiple crack problems only achieve limited success: The first
reason is that they are based on singular integral equations. Singular
integral operators often have spectral properties that result in unstable
algorithms. The accuracy will eventually decrease due to numerical
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cancellation as the discretization is refined. The second reason is that
the algorithms have poor adaptive properties. Uniform discretization is
often required. The third reason is that the algorithms are solved with
methods which have cubic complexity. As the number of discretization
points are doubled the computing cost increases by a factor of eight.
Gaussian elimination for solving full systems of linear equations is an
example of an algorithm with cubic complexity.

In this paper we present an adaptive algorithm for the multiple crack
problem which is stable and which has linear complexity. The algorithm
is based on an integral equation of Fredholm’s second kind derived
in Helsing and Peters (1999). Integral equations of Fredholm’s second
kind are excellent building blocks in stable numerical algorithms. Upon
discretization of the integral equations with a Nyström scheme we get
a system of linear equations which is solved iteratively with the GM-
RES iterative solver (Saad and Schultz, 1986) and accelerated with the
fast multipole method (Rokhlin, 1985; Greengard and Rokhlin, 1987;
Carrier, Greengard, and Rokhlin, 1988). The fast multipole method is
a “matrix-free” approach to matrix-vector multiplication. It can per-
form matrix-vector multiplication in O(N) operations, where N is the
dimension of the matrix. Adaptivity is incorporated into the algorithm
in the manner described in Helsing (1996).

We wish to stress that there is no new theoretical development in this
paper per se. The novelty lies in the combination and implementation
of algorithms, equations, and ideas that have been presented in the
literature on applied mathematics during the last fifteen years. We
believe it is of value to unite and incarnate these ideas in an efficient
numerical code and to present it to the fracture mechanics community.

2. A Fredholm integral equation

Consider now a material consisting of an infinite medium with two-
dimensional elastic moduli κ and µ. The material is periodic. In a unit
cell there are a number N of cracks. We denote the cracks in the unit
cell by Γj, j = 1, . . . , N . The union of all cracks in the plane is Γ. The
starting point and the endpoint of crack Γj , the so-called crack tips,
are denoted γj

s and γj
e . The average strain in the material is denoted

ǭ = (ǭxx, ǭyy, ǭxy), and the average stress is denoted σ̄ = (σ̄xx, σ̄yy, σ̄xy).
We would like to solve the elastostatic equation in the material subject
to three different imposed average strains, namely ǭI = (1, 0, 0), ǭII =
(0, 1, 0), and ǭIII = (0, 0, 1).

We will start out with a representation of the stress field based on
the uppercase potentials Φ and Ψ (Muskhelishvili, 1953; Theocaris and
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Ioakimidis, 1997) in the following form

Φ(z) =
1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
+

α

2
, (1)

and

Ψ(z) = − 1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ̄

(τ − z)
− 1

2πi

∫

Γ

τ̄Ω(τ)ρ(τ)dτ

(τ − z)2
+ β , (2)

where Ω(z) is an unknown density on Γ and ρ(z) is a weight function
which on crack Γj is given by

ρ(z) = ((z − γj
s )(z − γj

e ))
−

1

2 . (3)

REMARK 2.1. The uppercase potentials Φ and Ψ of (1,2) of are
related to the Airy stress function U via

U = ℜe{z̄φ + χ} , Φ = φ′ , Ψ = χ′′ .

REMARK 2.2. The constants α and β in (1) and (2) represent the
forcing terms in our formulation. The two constants take the values κ
and −µ for strain ǭI, the values κ and µ for strain ǭII, and the values 0
and 2iµ for strain ǭIII.

It has been proven rigorously by Helsing and Peters (1999) that,
using the above representation, the elastostatic partial differential equa-
tion can be rewritten as the following integral equation of Fredholm’s
second kind

(

I + M∗

4 (M0
1 − M3)

)

Ω(z) = M∗

4

( n̄

n
β̄ − α

)

, z ∈ Γ . (4)

Here I is the identity operator, M∗

4 is a singular and bounded integral
operator, M0

1 and M3 are compact integral operators, and n is the
normal unit vector, see Helsing and Peters for details.

3. Effective elastic moduli

The stress- and strain fields in the material and stress intensity factors
(SIF) at the crack tips can easily be evaluated once equation (4) is
solved for Ω. The so-called “effective elastic moduli” are other quan-
tities that can be easily evaluated as a function of Ω. Effective elastic
moduli are particularly simple to define and compute in the setting of
a doubly periodic material with a square unit cell of unit area. The
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effective moduli of a material can be defined through the following
relations between average stress and average strain





σ̄xx

σ̄yy√
2σ̄xy



 =





c∗1 c∗2 c∗3
c∗2 c∗4 c∗5
c∗3 c∗5 c∗6









ǭxx

ǭyy√
2ǭxy



 . (5)

4. A stable and fast algorithm

We have implemented equation (4) as recommended by Helsing and
Peters (1999) with two important modifications.

The first modification has to do with the quadrature rule. In Helsing
and Peters we used 31st order accurate Gauss-Legendre quadrature
on internal quadrature panels and 31st order accurate Gauss-Jacobi
quadrature on panels containing crack-tips. In the present implemen-
tation we still use 31st order accurate Gauss-Legendre quadrature on
internal quadrature panels, but we use 15th order accurate product
integration on the panels containing crack-tips. The difference in per-
formance turn out to be minor. The reason for this has to do with
a certain interpolation we were forced to do in Helsing and Peters
which partially reduced the order of the quadrature. The advantage
of product integration is that we can use the same relative spacing be-
tween quadrature points on all panels. This simplifies the programming
considerably.

The second modification has to do with the iterative solution of the
system of linear equations which result after discretizing (4). In Hels-
ing and Peters (1999) we explicitly formed the matrices corresponding
to M0

1 , M3, and M∗

4 . This procedure resulted in an algorithm with
quadratic complexity and we could not handle systems involving more
than approximately 20 cracks and inclusions. In this paper we take
advantage of the fast multipole method (Rokhlin, 1985; Greengard
and Rokhlin, 1987; Carrier, Greengard, and Rokhlin, 1988) which is
“matrix free”. This gives an algorithm with linear complexity. The
fast multipole method was adapted to problems in linear elasticity by
Greengard and Helsing (1998).

5. Verification of the algorithm

In the next section we shall solve equation (4) on a geometry involving
10,000 randomly oriented cracks. Upon solving the equation we shall
compute effective elastic moduli and present results that we claim are
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Figure 1. A unit cell of unit side length consisting of 4 cracks of length 0.5.

accurate to nine digits. There is no benchmark result for a geometry of
this complexity to compare with. How can we be sure that the results
are correct? The question can be split up into three parts.

1. Are our equations correct?

2. Are the equations implemented correctly in the computer code?

3. Is the accuracy claimed for the large-scale computation correct?

One way of answering the first two questions is by comparing results
from our code to analytical and numerical solutions to simpler problems
made by previous investigators. The problems of a single straight crack
and of a circular arc shaped crack in an infinite elastic medium have
analytical solutions (Muskhelishvili, 1953). We use computed values for
stress intensity factors as a measure of correctness since the concept of
effective property does not apply to this type of “free-space” problems.
For various lengths, opening angles, and loads on the straight and
on the circular arc shaped crack we reproduce the analytically known
values for stress intensity factors to at least twelve digits of accuracy.

Two less trivial problems involving two well-separated straight cracks
under uniform stress and shear were presented by (Xueli and Tzuchi-
ang, 1996a; Xueli and Tzuchiang, 1996b). These results are also easy
to reproduce. We give two examples. For the geometry and load of
Xueli and Tzuchiang (1996a) the authors report K1 = 0.9751386 at
“crack tip A”. We get convergence to K1 = 0.9751386767248. For
the geometry and load of Xueli and Tzuchiang (1996b) the authors
report K2 = 0.1793005 at “crack tip C”. We get convergence to K2 =
0.179300563605.
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We would also like to check that we have implemented the formu-
las for extracting the effective properties correctly. Unfortunately, we
have not been able to find any benchmark results involving cracks on
periodic domains. We therefore proceed in the following roundabout
way: Four cracks of length 0.5 are placed in a square unit cell of unit
side length, see Figure 1. The positions of the centers of the cracks,
zi, are z1 = (0.29, 0.21), z2 = (−0.18, 0.17), z3 = (0.23,−0.16), and
z4 = (−0.22,−0.14). The rotations of the cracks relative to the hor-
izontal axis, αi, are α1 = 1.6, α2 = 0.9, α3 = 0.7, and α4 = 3.1.
The elastic moduli are chosen as κ = 0.5 and µ = 0.5. Our algo-
rithm gives c∗1 = 0.496089506389, c∗2 = −0.020315089385, c∗3 =
0.124564112473, c∗4 = 0.471847932232, c∗5 = 0.132897407867, and
c∗6 = 0.482593206859. The cracked material is now approximated with
a two-component composite material where the cracks are replaced by
very soft inclusions in the shape of thin ellipses. The effective moduli
of the composite is computed with the algorithm of Greengard and
Helsing (1998) for ellipses with aspect ratio 16, 32, and 64. The degree
of inhomogeneity of the composite is 107. Assuming that the moduli of
the composite material approaches that of the cracked material as one
over the aspect ratio, three-point Richardson extrapolation gives the ef-
fective elastic moduli c∗1 = 0.496082, c∗2 = −0.020313, c∗3 = 0.124558,
c∗4 = 0.471854, c∗5 = 0.132894, and c∗6 = 0.482587. We conclude that
the two algorithms give consistent results for effective elastic moduli.

It remains to defend the accuracy claimed. We argue as follows:
Integral operators in equations of Fredholm’s second kind are of the
type “identity plus compact operator”. Their spectra are bounded and
the singular values of the matrices resulting from their discretization
rapidly accumulate at unity. Therefore second kind Fredholm integral
equations can be solved iteratively to high accuracy. The number of
iterations needed is small. The achievable accuracy, after refinement of
the mesh, is limited only by the condition number of the underlying
physical problem times the relative error with which the geometry is
described in the floating point representation used. In the computations
done below we see precisely this: upon mesh refinement the computed
values for effective properties converge digit by digit until a certain
limit, beyond which nothing more happens. For the 10,000 crack ge-
ometry this limit is nine digits. Naturally, when the geometry becomes
extremely overresolved it could happen that accumulated roundoff error
will propagate into the significant digits or even that certain discretiza-
tion points no longer are distinct in the floating point representation.
Then the algorithm breaks down.
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Figure 2. A unit cell consisting of 10,000 randomly oriented cracks centered at evenly

spaced gridpoints. The crack length is equal to the distance between nearest-neighbor

grid points.

6. A large-scale numerical example

As an example of a large-scale computation we take the square array of
10,000 randomly oriented cracks depicted in Figure 2. The cracks have
length 1/100 and their centers are placed on a square grid where the
nearest-neighbor gridpoints are separated by a distance of 1/100. Each
crack is assigned a random rotation. While most cracks are reasonably
well separated, some crack-tips are very close to touching. The two-
dimensional elastic moduli are chosen as κ = 0.5 and µ = 0.5. The
three average strains ǭI, ǭII, and ǭIII were imposed in three different
calculations.

Three quadrature panels were initially placed on each crack, cor-
responding to 480,000 discretization points. Seven stages of iterative
refinement were then used, each adding another 20,000 discretization
points. The GMRES iterations were terminated when the residual was
less than 10−(4+m), where m is the stage of refinement. The conver-
gence typically required 12 + 3m iterations. The three first stages were
completed in about 150 minutes per applied load on a SUN Ultra 10
workstation giving about five accurate digits for the effective moduli.
After seven stages of refinement the effective elastic moduli had con-
verged to c∗1 = 0.447553348, c∗2 = −0.060763888, c∗3 = −0.000803211,
c∗4 = 0.449781434, c∗5 = −0.000728138, and c∗6 = 0.448130115. The
memory requirement was about 600 Megabytes for the largest and most
accurate calculation.

FRAC4662.tex; 4/08/1999; 11:39; p.7



8 Johan Helsing

7. Discussion

We have implemented an algorithm for the multiple crack problem in
planar linear elastostatics. We believe that our algorithm, as of today,
is the leading algorithm in terms of three basic properties: stability,
adaptivity, and complexity. As a numerical piece of evidence we pre-
sented a highly accurate solution to a crack problem which is more
than a thousand times larger than those typically used as numerical
examples in the literature.

One may ask why fast and accurate solvers for linear fracture me-
chanics problems are needed. After all, most computational problems
of engineering importance are nonlinear. High accuracy is seldom re-
quired. Our answer to this question is the following: fast linear solvers
are needed as fundamental building blocks in more complex solvers
which, for example, can simulate micro-crack evolution in composite
materials on their way from crack initiation to macroscopic failure, or
treat problems involving plasticity. High accuracy may not be required
in the final answer, but stability is a crucial property – especially when
dealing with nonlinear equations. When we refine the discretization we
must be absolutely confident that the error becomes smaller. Other-
wise the computation is useless. Demonstrated ability to achieve high
accuracy serves as a numerical proof of that an algorithm is stable.

Our algorithm is implemented as a 2400-line FORTRAN program.
It is available from the author upon request.

Acknowledgements

I wish to thank Peter Gudmundson and Fred Nilsson for useful discus-
sions.

References

Brencich, A. and Carpinteri, A. (1996). Interaction of a main crack with ordered
distribution of microcracks: a numerical technique by displacement discontinuity
boundary elements, Int. J. Fracture 76, 373-389.

Carrier, J., Greengard, L., and Rokhlin, V. (1988). A fast adaptive multipole
algorithm for particle simulations, SIAM J. Sci. and Stat. Comput. 9, 669-686.

Chang, C. and Mear, M. E. (1995). A boundary element method for two dimensional
linear elastic analysis, Int. J. Fracture 74, 219-251.

Chen, Y. Z. (1997). Numerical solution of multiple crack problem using hypersingu-
lar integral equation, Int. J. Fracture 88, L9-L14.

FRAC4662.tex; 4/08/1999; 11:39; p.8



Ten thousand randomly oriented cracks 9

Freij-Ayoub, R., Dyskin, A. V., and Galybin, A. N. (1997). The dislocation
approximation for calculating crack interaction, Int. J. Fracture 86, L57-L62.

Greengard, L. and Helsing, J. (1998). On the numerical evaluation of elastostatic
fields in locally isotropic two-dimensional composites, J. Mech. Phys. Solids 46

1441-1462.
Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations, J.

Comput. Phys. 73, 325-348.
Helsing, J. (1996). Thin bridges in isotropic electrostatics, J. Comput. Phys. 127,

142-151.
Helsing, J. and Peters, G. (1999). Integral equation methods and numerical solutions

of crack and inclusion problems in planar elastostatics, SIAM J. Appl. Math. 59

965-982.
Muskhelishvili, N. I. (1953). Some Basic Problems of the Mathematical Theory of

Elasticity, P. Noordhoff Ltd, Groningen.
Pan, E. (1997). A general boundary element analysis of 2-D linear elastic fracture

mechanics, Int. J. Fracture 88, 41-59.
Rokhlin, V. (1985). Rapid solution of integral equations of classical potential theory,

J. Comput. Phys. 60, 187-207.
Saad, Y. and Schultz, M. H. (1986). GMRES: a generalized minimum residual algo-

rithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7,
856-869.

Theocaris, P. S. and Ioakimidis, N. I. (1977). The inclusion problem in plane
elasticity Q. J. Mech. Appl. Math. 30, 437-448.

Wang, Y. B. and Chau, K. T. (1997). A new boundary element for plane elastic
problems involving cracks and holes, Int. J. Fracture 87, 1-20.

Xueli, H. and Tzuchiang, W. (1996a). A general method for solving the problem of
both open and closed multiple cracks, Int. J. Fracture 79, R69-R72.

Xueli, H. and Tzuchiang, W. (1996b). Interacting multiple cracks with complicated
crack surface conditions, Int. J. Fracture 82, R53-R57.

Address for Offprints:

Johan Helsing
Department of Solid Mechanics and NADA
Royal Institute of Technology
SE-100 44 Stockholm, Sweden
Email: helsing@nada.kth.se
Fax: +46-(0)8-4112418

FRAC4662.tex; 4/08/1999; 11:39; p.9



FRAC4662.tex; 4/08/1999; 11:39; p.10


