Differences in genetic and transcriptional organization of the glpTQ operons between Haemophilus influenzae type b and nontypeable strains

Song, Xin-Ming; Janson, Håkan

Published in:
Journal of Bacteriology

DOI:

2003

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Differences in Genetic and Transcriptional Organization of the glpTQ Operons between *Haemophilus influenzae* Type b and Nontypeable Strains

Xin-Ming Song\(^1\) and Håkan Janson\(^2\)*

Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada,\(^1\) and Department of Medical Microbiology, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden\(^2\)

Received 6 June 2003/Accepted 25 September 2003

The *glpTQ* operon of *Haemophilus influenzae* type b (Hib) and nontypeable *H. influenzae* (NTHi) strains is highly conserved, except for a 1.4-kb *glpTQ* intergenic region that was found in most Hib strains. The presence of this intergenic region results in divergent *glpTQ* transcriptional profiles for Hib and NTHi where Hib strains appear to have evolved an alternative promoter for *glpQ* expression. Based on the intergenic region’s low G+C content, we speculate that this DNA fragment was acquired by lateral transfer.

Haemophilus influenzae is a common pathogen, especially among children, but the clinical manifestations are largely type specific. The encapsulated *H. influenzae* serotype b (Hib) usually causes invasive infections, such as meningitis and septicemia (2), whereas the much more common nonencapsulated, or nontypeable, *H. influenzae* (NTHi) is a major cause of otitis media, sinusitis, and pneumonia (8). General vaccination against Hib has reduced the incidence of Hib infection to a near minimum (10), while attempts to construct a vaccine against the costly NTHi infections have as yet been unsuccessful due to a high genetic heterogeneity among NTHi strains (20). An extensively studied virulence factor and potential vaccine candidate in *H. influenzae* is protein D, a 42-kDa conserved lipoprotein expressed on the bacterial surface (1, 13, 21, 24). An isogenic protein D-negative mutant has been shown to be less effective than its wild-type parental strain in its ability to (i) cause experimental otitis media in rats (14), (ii) cause damage to ciliated human respiratory epithelium (15), and (iii) promote internalization into human monocytic cells (17). The mechanism behind the virulence properties of protein D is unknown but may involve choline decoration of *H. influenzae* lipoooligosaccharides (LOS), since protein D expression allows *H. influenzae* to obtain choline from cocultured host cells and subsequently incorporate this molecule into its LOS (6).

The ability of protein D to promote the incorporation of choline into LOS comes from its glycerophosphodiester phosphodiesterase activity, catalyzing the hydrolysis of glycerophosphodiesters into glycerol-3-phosphate (G3P) and an alcohol (14, 18). The gene encoding protein D (*hpdl*) is homologous to *glpQ* of *Escherichia coli* (16) and other bacteria. The *glpQ* gene belongs to the *glp* regulon that is involved in the utilization of glycerol and of G3P and its precursors as energy sources and to supply precursors for phospholipid biosynthesis. In *E. coli* and *Bacillus subtilis* (19), *glpQ* is transcribed together with *glpT*, which is located upstream of *glpQ* and encodes a G3P per-
M13-u and M13-r (Table 1) by using an Applied Biosystems 377 automatic sequencer. The DNA sequences of glpT and the glpTQ intergenic region of NTHi 772 were determined from a 2.0-kb PCR product amplified with primers glpA-1 and hpd-10 (Table 1) and sequenced with primers specific for the glpT gene of Hib Eagan (25). The DNA sequence upstream of glpT of Hib Eagan was obtained from a PCR amplification using primers glpA-1 and glpT-9 (Table 1).

The glpT sequences of Hib Eagan and NTHi 772 were almost as highly conserved as the previously sequenced glpQ gene (13, 24). The glpT genes from the two strains differed in 15 bp and displayed identical deduced amino acid sequences of the same length. The regulatory region upstream of the NTHi 772 glpT gene was also identical to the corresponding region of Eagan, except that 772 contained one extra base pair located 91 bp upstream of the glpT start codon (Fig. 2). Potential catabolic and transcriptional regulation sites with homology to consensus sequences upstream of glpT in E. coli were also found upstream of glpT in Eagan and 772. They include two catabolic activator protein binding sites (4), two operator sites with the potential of binding to the E. coli glp repressor protein (29), and a sequence homologous to the integration host factor (IHF) (9) (Fig. 2). The binding of IHF to this site may bend the DNA to facilitate the formation of a complex structure that is involved in the inhibition of GlpT expression, mediated by the GlpR repressor in E. coli (28). However, despite the existence of two GlpR homologues, no homologues of ibfA and ibfB (R. A. Weisberg, M. Freundlich, D. Friedman, J. Gardner, N. Goosen, H. Nash, A. Oppenheim, and J. Rouvière-Yaniv, Letter, Mol. Microbiol. 19:642, 1996) have been identified in the H. influenzae Rd genome (7).

In the glpTQ intergenic region, both Hib strains contained practically identical 1,428-bp sequences, except that HK695 contained one more tetrameric repeat (TTTA) in addition to the five repeats present in Eagan. The repeats were localized in a putative open reading frame (ORF) of 414 bp in HK695, designated ORF1 for these Hib strains (Fig. 1). The lack of one tetramer in Eagan caused a frameshift that led to a stop codon after 228 bp and resulted in two smaller ORFs (Fig. 1). Most tetrameric DNA repeats in H. influenzae have been associated with the regulation of potential virulence factors such as iron acquisition factors, adhesion molecules, and LOS biosynthesis (11, 27), but the function of ORF1 is unknown. Another putative 390-bp ORF (ORF2) of the Hib glpTQ intergenic region was found immediately upstream of glpQ (Fig. 1). The glpTQ intergenic region of the two Hib strains was highly homologous to the corresponding region of H. influenzae Rd (7). Two ORFs with unknown functions, HI0687 and HI0688, correspond to ORF1 and ORF2 of the Hib strains with the exception that HI0687 of H. influenzae Rd exhibits a larger size than ORF1 (Fig. 1). The G+C contents of the 1.4-kb glpTQ intergenic region of the Hib strains was approximately 26%, which is much lower than the average of 38% for the glpT and glpQ genes and 39% for the H. influenzae Rd genome in general. Although no typical insertion-like sequences were found in this region, the 1.4-kb fragment might have been acquired by lateral transfer from an organism with a lower G+C content. The glpTQ intergenic region of NTHi 772 was only 103 bp long, out of which the first 52 bp was homologous to the glpTQ intergenic regions of the Hib strains Eagan and HK695. This homologous part contains an inverted repeat sequence with the ability to form a typical hairpin loop structure exhibiting a lowest free energy value of −9.8 kcal/mol (23) that may function as a potential transcription terminator for glpT expression. A similar conserved inverted repeat sequence was also identified immediately downstream of the glpQ stop codon in both Hib and NTHi strains (Fig. 1). This potential glpQ transcriptional terminator exhibited a lowest free energy value of −16.8 kcal/mol (23).

Construction of a 1.4-kb mutant in H. influenzae. Reverse PCR with a Pwo PCR kit (Roche Diagnostics) was used to amplify the fragment flanking the 1.4-kb intergenic region of pXME10 with primers Hibup-3 and Hibup-4 (Table 1), resulting in a 1.2-kb deletion of the 1.4-kb intergenic region. The PCR product was ligated to the 1.3-kb kanamycin resistance (Km') cassette excised from pUC4K (Amersham Pharmacia Biotech) with HinClI, and the ligation mixture was transformed into E. coli DH5α. Following the excision of the vector backbone by BamHI-SphI cleavage, the 3.5-kb linear DNA fragment was transformed into Eagan for homologous recombination (14). The chromosomal DNA of five Km’ colonies was examined by Southern hybridization with digoxigenin (Roche Diagnostics)-labeled probes. The glpT and glpQ probes were labeled by PCR using a pXME10-derived nested deletion and
The lack of P3 in Hib Eagan was unexpected since potential bands were detected in Hib Eagan (P1, P2, and P4) (Fig. 2). P1 to P4, corresponding to potential transcriptional start positions by using antisense Primer extension analysis (22) was applied to identify ORFs. Characterization of promoter positions of the glpTQ operons. Primer extension analysis (22) was applied to identify potential transcriptional start positions by using antisense DNA primers (Table 1) that bound just downstream of the respective start codons. Primers were labeled with [γ-32P]ATP by T4 polynucleotide kinase (Amersham Pharmacia Biotech) and were used for the extension of 40 μg of total RNA, prepared with an RNeasy kit (QIAGEN) from cultures grown in supplemented brain heart infusion broth. Labeled products were analyzed on a 6% polyacrylamide gel containing 7 M urea in a Sequi-Gen sequencing cell (Bio-Rad Laboratories). The signal in the gel was measured either by exposure to X-ray film or by a PhosphorImager and analyzed with ImageQuant software (Molecular Dynamics). A total of four bands, designated P1 to P4, corresponding to potential transcriptional start positions of glpT were detected in NTHi 772, whereas only three bands were detected in Hib Eagan (P1, P2, and P4) (Fig. 2). The lack of P3 in Hib Eagan was unexpected since potential −10 and −35 promoter sequences were found in both strains. The existence of one more promoter (P3) in 772 suggests that the regulation conditions and expression levels of glpT might differ for NTHi and Hib strains. This hypothesis was supported by the observation that glpT of NTHi 772 that was cloned into the pACYC184-based vector pSU18 (3) failed to complement the G3P uptake levels in the Hib Eagan glpT rec-1 double mutant ETM22r2 (unpublished data), although both strains contain almost identical glpT genes. We further analyzed the total RNA of ETM22r2 that had been transformed with pXMS1 (25), carrying Eagan glpT plus a partial regulatory region ending 156 bp upstream of the glpT start codon cloned into pSU18. Only one band corresponding to position P1 was found (data not shown), although the P2 site and its putative −10 promoter sequence plus the region where a −35 consensus sequence normally is found (Fig. 2) was included in pXMS1. This result suggests that the P1 site may be essential for glpT transcription in Eagan since pXMS1 is able to complement the glpT mutant ETM22r2 to a higher level of GlpT expression than that of the wild-type strain, Eagan (25).

TABLE 1. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide sequencea</th>
<th>Commentsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>glpA-1</td>
<td>5′-TTGCGGatCCACCGATAATGATCAC-3′</td>
<td>Reverse primer annealing to nt 85–60 of Rd glpA, used for amplification and sequencing</td>
</tr>
<tr>
<td>hpd-9</td>
<td>5′-ATGCGetGCaGTTTTGAAATGGTCGCA-3′</td>
<td>Reverse primer annealing to nt 29–6 of Eagan glpT, used for amplification, sequencing, and primer extension</td>
</tr>
<tr>
<td>Hibup-1</td>
<td>5′-AAAAAAGGCIGcaGGAAATTGCTTATGC-3′</td>
<td>Forward primer annealing to nt 8–35 of downstream glpT stop codon of Eagan, used for RT-PCR</td>
</tr>
<tr>
<td>Hibup-2</td>
<td>5′-CCTATCAagaGGTTAATGACATTTG-3′</td>
<td>Reverse primer annealing to nt 264–234 of downstream ORF1 stop codon of HK695, used for RT-PCR</td>
</tr>
<tr>
<td>Hibup-3</td>
<td>5′-AAAGGGCACTAAGCAATTTGCCAGCCTTTTAAAG-3′</td>
<td>Reverse primer annealing to nt 41–5 of downstream glpT stop codon of Eagan, used for construction of 1.4-kb mutant</td>
</tr>
<tr>
<td>Hibup-4</td>
<td>5′-TGCTGGAAATGATTATAAAT-3′</td>
<td>Forward primer annealing to nt 98–117 of Eagan ORF2, used for construction of 1.4-kb mutant and RT-PCR</td>
</tr>
<tr>
<td>Hibup-5</td>
<td>5′-AATGGGTTAGATTCTATTA-3′</td>
<td>Forward primer annealing to nt 41–63 of Eagan ORF1, used for RT-PCR</td>
</tr>
<tr>
<td>Hibup-6</td>
<td>5′-AATCTCGAGATTTTCTAACA-3′</td>
<td>Reverse primer annealing to nt 130–107 of Eagan ORF1, used for primer extension</td>
</tr>
<tr>
<td>Hibup-7</td>
<td>5′-GGCATAGCAGATTTCCAAGATAC-3′</td>
<td>Reverse primer annealing to nt 328–303 of HK695 ORF1, used for RT-PCR</td>
</tr>
<tr>
<td>Hibup-8</td>
<td>5′-TTCCTGGAATAATTTAATGT-3′</td>
<td>Reverse primer annealing to nt 267–246 of Eagan ORF2, used for RT-PCR</td>
</tr>
<tr>
<td>Hibup-10</td>
<td>5′-CTCAGTTTCCCCCAATATCTAATT-3′</td>
<td>Reverse primer annealing to nt 35–8 of Eagan ORF2, used for primer extension</td>
</tr>
<tr>
<td>Hibup-11</td>
<td>5′-ATTTTgATcCTTATTATCTTCTGTA-3′</td>
<td>Reverse primer annealing to nt 185–156 of Eagan ORF2, used for primer extension</td>
</tr>
<tr>
<td>hpd-10</td>
<td>5′-CCTGCgATCGCCAGCTGCTAATA-3′</td>
<td>Reverse primer annealing to nt 52–28 of glpQ, used for amplification and primer extension</td>
</tr>
<tr>
<td>M13-u</td>
<td>5′-GTTTTCCAGTCACGAC-3′</td>
<td>M13 universal primer for pBluescript II vectors, used for sequencing</td>
</tr>
<tr>
<td>M13-r</td>
<td>5′-AACAGCTTAGACCATG-3′</td>
<td>M13 reverse primer for pBluescript II vectors, used for sequencing</td>
</tr>
</tbody>
</table>

*a Lowercase letters indicate nucleotides substituted for the creation of restriction sites.

b nt, nucleotide.
It also indicates that the signal at the P2 site in primer extension analysis may be a degradation product of a \textit{glpT} mRNA initiated from the upstream promoter site P4. Since ETM22r2 is a \textit{glpT} mutant that was created by the selection of spontaneous fosfomycin-resistant Hib Eagan clones (25), it is likely that the P4 promoter site probably exists in ETM22r2. No signal from P4 could be detected in ETM22r2(pXMS1), which may be due to the fact that this potential signal is too weak in comparison to the P1 signal from the medium-copy-number plasmid pXMS1. When potential promoter sites for \textit{glpQ} were analyzed, only one band was identified 28 bp upstream of the \textit{glpQ} start codon in Hib Eagan as well as in \textit{E. coli} (pXME10), which contains \textit{glpQ} from Eagan. A primer extension product was found 64 bp upstream of the \textit{glpQ} start codon in NTHi 772 and from \textit{E. coli} (pHIC348), which contains \textit{glpQ} from 772 (data not shown). The transcriptional start of Hib Eagan ORF1 in the \textit{glpTQ} intergenic region was mapped to 59 bp upstream of the \textit{glpQ} start codon in NTHi 772 and from \textit{E. coli} (pHIC348), which contains \textit{glpQ} from 772 (data not shown). The transcriptional start of Hib Eagan ORF1 in the \textit{glpTQ} intergenic region was mapped to 59 bp upstream of the \textit{ORF1} start codon in Hib Eagan and \textit{E. coli} harboring pXME10 (data not shown). The \textit{glpT} transcription patterns of the Eagan 1.4-kb mutant Ekm1, in which the loop structure was destroyed during mutant construction (Fig. 1 and 4), were located at 85 and 89 bp, respectively, downstream of the \textit{ORF2} start codon. Two Ekm1 transcripts (2.7 and 3.9 kb) were found hybridizing to the \textit{glpT} probe. It is likely that the 2.7-kb band is a combination of the 1.4-kb \textit{glpT} and the 1.3-kb Kmr cassette and that the 3.9-kb fragment is the 2.7-kb band plus the downstream 1.1-kb \textit{glpQ} transcript. In addition to these findings, the northern hybridization experiments revealed that the \textit{glpQ} gene of NTHi 772 is partially cotranscribed with \textit{glpT}. No variation in mRNA lengths due to alternative transcriptional start points was detected by Northern blot analysis.
to the 1.1-kb \textit{glpQ} transcript, the 3.9-kb fragment was also found when the same blot was reprobed with a \textit{glpQ} probe, suggesting that \textit{glpT} transcription could continue downstream once the loop structure was removed. However, the practically identical loop structure downstream of 772 \textit{glpT} only partially terminated \textit{glpT} transcription because a cotranscribed \textit{glpTQ} transcript was found in this strain. We therefore conclude that a complete interruption of the \textit{glpTQ} cotranscript requires the existence of the 1.4-kb \textit{glpTQ} intergenic region.

As we failed to detect any signals by using ORF1 or ORF2 probes in Northern hybridization (data not shown), RNA transcripts of the 1.4-kb intergenic region of Eagan were further characterized with reverse transcription (RT)-PCR by using Ready-To-Go beads (Amersham Pharmacia Biotech) and different combinations of RT-PCR primers (Table 1). An RNA transcript that covered the entire ORF1 and the ORF1-ORF2 intergenic region was identified, whereas another was found covering most parts of ORF2 (Fig. 1), corresponding to the potential promoter positions found 85 to 89 bp within ORF2 in our primer extension assay. This latter ORF2 transcript appeared to be cotranscribed with the downstream \textit{glpQ}. This result is in contrast to the 1.1-kb \textit{glpQ} transcript previously identified by Northern hybridization and to the potential promoter positions of \textit{glpQ} obtained by the primer extension assay, but as we could detect the transcriptional signal only by RT-PCR and not by Northern blotting, it is assumed that the transcription level of this alternative \textit{glpQ} promoter situated within ORF2 is low. ORF2 may act as a transcriptional regulatory region for \textit{glpQ} in Hib, since it is located immediately upstream of the \textit{glpQ} coding region, separated by only 11 bp. No apparent catabolic regulation sequence homologues were found in this region. We could not find any putative catabolic regulation sites upstream of NTHi 772 \textit{glpQ} either, but its putative promoter, found in the primer extension analysis, is located at practically the same position as the potential promoter of ORF1 in Hib Eagan. We therefore speculate that Hib strains that contain the 1.4-kb fragment between \textit{glpT} and \textit{glpQ} have evolved an alternative promoter region for \textit{glpQ} transcription and that the old \textit{glpQ} promoter now serves as a promoter for ORF1. The transcriptional level of Hib ORF1 appears to be low, since an ORF1 mRNA was detected only by RT-PCR analysis, whereas an NTHi 772 \textit{glpQ} mRNA was detectable by Northern blot analysis. The promoters are located 1 bp apart within the potential transcriptional terminator loop for \textit{glpT} (Fig. 1), but it is unlikely that this difference would be the explanation for the observed differences in transcriptional levels between these promoters. The regulation of the Eagan \textit{glpQ} gene is unknown because it transcribed independently of \textit{glpT}, whereas the regulation of the \textit{glpQ} gene in NTHi 772 might be dependent upon the cotranscribed upstream \textit{glpT} gene.

Overall, this study shows the effect the presence of the 1.4-kb \textit{glpTQ} intergenic region that exists only in Hib and other encapsulated \textit{H. influenzae} strains has on \textit{glpT} and \textit{glpQ} transcription in these strains compared with their transcription in NTHi 772. For NTHi strains, the \textit{glpQ} gene (encoding the virulence factor protein D) was in part cotranscribed and possibly coregulated with the upstream \textit{glpT} gene, encoding G3P per-
meas, and in part transcribed by a promoter that is situated within a hairpin loop structure. In Hib strains, the same promoter appears to transcribe at least one unique ORF (ORF1) that may have the ability to phase vary its expression due to the variation of the number of tetramer repeats situated within the ORF. It would be very interesting to further study and determine how the regulation of genes in the glpTQ region of NTHi strains differs from that in Hib strains and to investigate what role the ORFs in the 1.4-kb intergenic region of Hib strains have in pathogenesis.

Nucleotide sequence accession numbers. The entire DNA sequences of the glpT gene of NTHi 772, as well as the 1.4-kb glpTQ intergenic region of Hib Eagan and HK695 (26), were determined in this study and submitted to GenBank under the following accession numbers: for the 1.4-kb intergenic region determined in this study and submitted to GenBank under the accession numbers for the 1.4-kb intergenic region of Hib Eagan and HK695 (26), were determined in this study and submitted to GenBank under the following accession numbers: for the 1.4-kb intergenic region of Eagan, accession no. AF132899; for the 1.4-kb intergenic region of HK695, accession no. AF132900; and for glpT of NTHi 772, accession no. AF132901.

We thank Arne Forsgren for generous support and critical review, Christel Ekman for DNA sequencing, and Elisabeth Glatz of the Department of Microbiology and Andreas Hillarp of the Department of Clinical Chemistry, Lund University, for technical assistance in the DNA analyses.

This work was supported by grants from the Alfred Österlund Foundation, the Malmo Medical Services Foundation, and the Forsmans Foundation.

REFERENCES