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Abstract

A stable numerical algorithm is presented for an elastostatic problem involving a
crack close to and in front of an inclusion interface. The algorithm is adaptive and based
on an integral equation of Fredholm’s second kind. This enables accurate analysis also
of rather difficult situations. Comparison with stress intensity factors of cracks close to
straight infinite bimaterial interfaces are made.

Key words: Bimaterial, crack, interface, stress intensity factor, integral equation of Fred-
holm type

1 Introduction

The analysis of stress states close to straight cracks in front of straight infinite bimaterial
interfaces has received considerable attention in the fracture mechanics community during
the 1990s. The numerical approaches vary: Ahmad [1], Lim and Kim [2], Lim and Lee [3],
Meguid, Tan and Zhu [4] prefer the finite element method. The reported accuracy in their
solutions seems to be on the order of 0.5 per cent. Chen [5], who relies on a singular integral
equation, gets a somewhat poorer accuracy. Wang and St̊ahle [6], on the other hand, stabi-
lize a singular integral equation through a Chebychev transform and achieve a substantial
improvement in accuracy for geometries where the crack is reasonably well separated from
the interface. Unfortunately, their algorithm is not adaptive. The number of expansion
terms needed for a given relative accuracy increases rapidly as the crack approaches the
interface. Further, both the algorithms of Chen [5] and of Wang and St̊ahle [6] are based
on Greens functions especially tailored for a bimaterial with a straight interface. It is not
obvious how their algorithms can be modified to treat more general geometries.

Surprisingly, we have not been able to find any work in the literature analyzing cracks
close to, or terminating at, the interface of an inclusion. Is this a less interesting case? or
is it perhaps considered too difficult? As we shall see in this paper, stress intensity factors
for a crack close to a straight infinite interface and for a crack close to the interface of an
inclusion can be very different even though the material parameters are the same.

Singular integral equations naturally occur when crack problems are modeled using
potential theory. Algorithms based on such equations are often unstable. This is so since

1



singular integral operators, in these contexts, only are invertible under certain conditions.
While an approximate numerical solution can be found on a coarse mesh, the quality of the
solution is likely to decrease as the mesh is refined. Stabilization is needed. Preferably also
adaptivity. In this paper we shall achieve both these goals.

One way to stabilize a singular integral equation is to transform it into an integral
equation of Fredholm’s second kind via an analytic right or left inverse. In previous work
on cracks and inclusions [7], and on interface cracks [8], we constructed analytic inverses
for parts of singular integral operators that describe self-interaction. This is efficient for
cracks and inclusions that are well separated. As cracks and inclusions approach each
other, however, otherwise smooth parts of leading operators that describe crack-inclusion
interaction become ill-behaved and the scheme encounters difficulties. This paper differs
from reference [7] in that an analytic right inverse is found for the entire leading integral
operator, not just for its singular part. While the construction of this larger analytical
inverse is more expensive and involved, it pays off in the sense that much more extreme
cases can be studied.

The paper is organized as follows: A standard singular integral equation (3-4) for an
unknown density Ω is derived from potential theory in Section 2. The leading singular oper-
ator is denoted K. The analytic right inverse to K, denoted K∗, is constructed in Section 3
along with a transformed density ΩII. Substitution of ΩII into the original singular integral
equation gives the Fredholm equation (20). Section 3 ends with some technicalities concern-
ing the numerical evaluation of integral operators. Formulas for extracting stress intensity
factors from the density Ω are given in Section 4. Section 5 discusses the implementation
of the algorithm. The paper ends with numerical examples in Section 6.

2 A standard singular integral equation

Consider now a material consisting of an infinite elastic medium with two dimensional bulk
and shear moduli κ1 and µ1 placed in a cartesian coordinate system. An inclusion with
elastic moduli κ2 and µ2 is centered at the origin. The interface of the inclusion is bonded
and denoted Γbo. Close to the inclusion there is a crack denoted Γcr. The starting point of
Γcr is γs and the endpoint of Γcr is γe. The union of Γbo and Γcr is Γ. The stress at infinity is
σ∞ = (σxx, σyy, σxy). We would like to compute stress fields and stress intensity factors in
the material subject to three different imposed stresses at infinity. These are σ∞

xx = (1, 0, 0),
σ∞

yy = (0, 1, 0), and σ∞

xy = (0, 0, 1).
We will start out with a representation of the Airy stress function based on the upper-

case potentials Φ and Ψ [9] in the form

Φ(z) =
1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
+

α

2
, (1)

and

Ψ(z) = −
1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ̄

(τ − z)
−

1

2πi

∫

Γ

τ̄Ω(τ)ρ(τ)dτ

(τ − z)2
+ β , (2)

where Ω(z) is an unknown density on Γ and ρ(z) is a weight function given by equation (10)
below. Once Φ is assumed to take the form (1), the expression (2) for Ψ enforces continuity
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of traction across Γ. The constants α and β in (1) and (2) represent the forcing terms in our
formulation. For imposed stresses σ∞

xx, σ∞

yy, and σ∞

xy the constants take the values α = 1/2
and β = −1/2, α = 1/2 and β = 1/2, and α = 0 and β = i.

The requirements of continuity of displacement along Γbo and zero traction along Γcr

lead to a singular integral equation

(K + CM3)Ω(z) = −
(

Bα + C
n̄

n
β̄

)

, z ∈ Γ , (3)

accompanied with the closure condition

QΩ = 0 . (4)

Here K is a singular integral operator given by

KΩ(z) = AρΩ(z) +
B

πi

∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
, z ∈ Γ , (5)

M3 is a compact integral operator,

M3Ω(z) =
1

2πi

[
∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)

+
n̄

n

∫

Γ

Ω(τ)ρ(τ)dτ

(τ̄ − z̄)
+

∫

Γ

Ω(τ)ρ(τ)dτ̄

(τ̄ − z̄)
+

n̄

n

∫

Γ

(τ − z)Ω(τ)ρ(τ)dτ̄

(τ̄ − z̄)2

]

, z ∈ Γ , (6)

where n is the normal unit vector, and Q is an operator from Γ into the complex numbers
given by

QΩ =
1

πi

∫

Γ
Ω(τ)ρ(τ)dτ . (7)

The functions A(z), B(z), and C(z) are piece-wise constant and given by

A(z) = 1, z ∈ Γbo, and A(z) = 0, z ∈ Γcr,

B(z) = d1, z ∈ Γbo, and B(z) = 1, z ∈ Γcr,

C(z) = d2, z ∈ Γbo, and C(z) = −1, z ∈ Γcr. (8)

The constants d1 and d2 are given by

d1 =

(

1

κ2
−

1

κ1

)

/

(

1

µ2
+

1

κ2
+

1

µ1
+

1

κ1

)

,

and

d2 =

(

1

µ2
−

1

µ1

)

/

(

1

µ2
+

1

κ2
+

1

µ1
+

1

κ1

)

. (9)

The weight function ρ is given by

ρ(z) = (A − B)(z − γs)
−0.5(z − γe)

−0.5 . (10)

It is worth pointing out that our constants d1 and d2 are simply related to bimaterial
parameters introduced by other investigators. For example, in terms of the parameters a,
b, and c of equation (3.12) in Sherman [10] we have d1 = b/a and d2 = −c/a. In terms of
the parameters α and β in Dundurs [11] we have d1 = β and d2 = α − β.
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3 A Fredholm integral equation

We now intend to rewrite the system (3) and (4) as one Fredholm integral equation of the
second kind. For this we need a few new functions and operators. Let

A∗(z) =
A(z)

A2(z) − B2(z)
, and B∗(z) =

B(z)

A2(z) − B2(z)
. (11)

Let K∗ be an operator whose action on a function f(z) is defined by

K∗f(z) =
A∗(z)f(z)

ρ(z)
−

B∗(z)

πi

∫

Γ

f(τ)dτ

ρ(τ)(τ − z)
. (12)

Let Pcr and Pbo be two projection operators which project onto Γcr and onto Γbo, respec-
tively. Let f be in L2. The following relations are proved using techniques in Paragraphs
107 and 117 of Muskhelishvili [9] in Appendix I of Toya [12] and in Section 4 of Helsing and
Peters [7].

K∗PcrB = B∗(z − 0.5γs − 0.5γe) − A∗d1(1 − d1)ρ
−1 , (13)

K∗PboB = A∗d1(1 − d1)ρ
−1 , (14)

QB∗ = 1, (15)

Q ◦ K∗f = 0, (16)

K ◦ K∗ = I, (17)

K∗ ◦ K = I − B∗ ◦ Q. (18)

We now introduce the representation

Ω = K∗(CΩII − Bα) . (19)

The system given by (3) and (4) is equivalent with the following single integral equation of
Fredholm’s second kind

(I + M3 ◦ K∗C)ΩII(z) = M3K
∗Bα −

n̄

n
β̄, z ∈ Γ . (20)

We need the following result for the numerical evaluation of the operators of this equation:
Let f be a smooth function. Then

K∗Bf(z) = fB∗(z − 0.5γs − 0.5γe) −
B∗(z)

πi

∫

Γ

B(τ)(f(τ) − f(z))dτ

ρ(τ)(τ − z)
, (21)

and
K∗Cf(z) = K∗

I Cf(z) + fA∗(d1 + d2)(1 − d1)ρ
−1 , (22)

where

K∗

I Cf(z) = −fB∗(z − 0.5γs − 0.5γe) −
B∗(z)

πi

∫

Γ

C(τ)(f(τ) − f(z))dτ

ρ(τ)(τ − z)
. (23)
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4 Stress intensity factors

The density Ω(z)ρ(z) has a one over square root singularity at the tips of an open crack.
The complex valued stress intensity factor FI + iFII at the crack-tip γs can be defined as

FI + iFII =
i
√

2π

g
lim
z→γs

Ω(z)ρ(z)
√

δs(z) , (24)

and at the crack-tip γe

FI + iFII = −
i
√

2π

g
lim

z→γe

Ω(z)ρ(z)
√

δs(z) . (25)

Here δs(z) is arclength measured from the closest crack-tip and g is a normalization factor
which varies with different authors.

5 A stable algorithm

We have implemented the main equation (20) as a 1500 line FORTRAN program using a
Nyström scheme with adaptive composite quadrature as described in Helsing [13]. With
a Nyström scheme we mean that the density ΩII is represented with its values at quadra-
ture points and that the integral equation should be satisfied at those same quadrature
points. On quadrature panels that do not contain crack-tips we use 16-point Gauss-Legendre
quadrature. On quadrature panels that do contain crack-tips we use a 16-point quadrature
rule based on interpolation with weighted polynomials. The linear system of equations
is solved with the GMRES iterative solver [14] and the iterations are terminated when
the residual is less than 10−14. In the numerical examples below we start with 192 uni-
formly distributed discretization points, solve, refine adaptively, and solve again until the
convergence of the stress intensity factors stops. This typically happens at the order of
1000 discretization points. We also performed series of massively overresolved calculations
where we started with around 1000 uniformly distributed discretization points and repeated
the adaptive process until convergence stopped, which then happened at the order of 2000
points. The converged values for stress intensity factors presented in the next section have
been confirmed by regular as well as by massively overresolved calculations. The GMRES
solver typically converges to the desired accuracy in 20 iterations.

6 Numerical examples

In a simple numerical example we let the inclusion at the origin be a disk with radius R.
We let the crack be straight, have length 2a and be placed on the x-axis at a distance c
away from the disk interface. In this way γs is at x = R + c and γe is at x = R + c + 2a. A
uniform stress σ∞

yy applied at infinity. See Figure 1. The normalization factor g of equations
(24-25) is chosen as g = σ∞

yy

√
πa. The elastic moduli are chosen so that d1 = −0.20775 and

d2 = −0.70309. This corresponds to the moduli of the aluminum-epoxy bimaterial treated
by Wang and St̊ahle [6].
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Figure 1: A straight crack of length 2a placed a distance c away from an elastic disk with radius

R in an infinite elastic material. The crack starts at the tip γs and ends at the tip γe. A uniform

stress σ∞

yy is applied at infinity.
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Table 1: Stress intensity factor FI and q2 for a straight crack of length 2a separated a
distance c from a circular inclusion of radius R centered at the origin. The crack lies along
the x-axis. A uniform stress σ∞

yy is applied at infinity. The elastic moduli, d1 = −0.20775
and d2 = −0.70309, correspond to an aluminum inclusion in an epoxy matrix.

a/R c/a FI(γs) q2 FI(γe)

1 0.01 0.26095394929 0.54998029733 0.8958760871255
1 0.001 0.1733317621 0.5303383567 0.8935785663583
1 0.0001 0.119456159 0.530609550 0.8933373890490
1 0.00001 0.08230243 0.53072653 0.8933127617873
1 0.000001 0.05669172 0.5307248 0.8933102749727
1 0.0000001 0.0390505 0.530723 0.893310025149
0.1 0.01 0.05153341931 0.10861060103 0.3621801535193
0.1 0.001 0.0351308779 0.1074889670 0.3602450541708
0.1 0.0001 0.024227319 0.107614770 0.3600498094337

An interesting parameter in this context is λ given by

cos(πλ) −
2d2(1 − λ)2

1 − d1
+

d1 + d2 − d2
1

1 − d2
1

= 0 . (26)

The stress singularity ahead of the tip of a crack perpendicular to and terminating at an
interface is of the order r−λ, where r is the distance to the crack-tip [15]. In the present
example we have λ = 0.33810837120263.

The stress intensity factor FI at the crack tip γs will “approach zero due to the strong
block from the stiff material aluminum” [6] as the separation distance c decreases. Wang
and St̊ahle [6] suggest a “fitting equation” for the crack close to a straight infinite bimaterial
interface

FI(γs) ≈ q1

(

c

a

)(0.5−λ)+0.5(0.5−λ)2

, (27)

where q1 is a constant. According to Figure 2 in their paper this fitting equation seems
reasonable in the interval 0.001 ≤ c/a ≤ 0.01.

For our setup we propose a parameter q2 defined by

q2 = FI(γs)

(

c

a

)(λ−0.5)

. (28)

The parameter q2 approaches a constant as c/a → 0. The difference between the magnitude
of the exponents in equation (27) and equation (28) is about eight per cent for the aluminum-
epoxy composite. Values of FI(γs) and q2 for various combinations of the ratios a/R and
c/a are displayed in Table 1. As we can see, q2 of equation (28) converges quite rapidly
for c/a < 0.01. We also observe that the ratio a/R does influence the value of FI(γs) and
FI(γe) considerably. When the crack is in front of and perpendicular to a straight infinite
bimaterial interface there is just one geometric parameter, namely c/a.

In a second, more strongly inhomogeneous, example we choose the elastic moduli so
that d1 = 0.22678 and d2 = 0.75778. This gives λ = 0.92574923570657 and corresponds to
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Table 2: Stress intensity factor FI and q2 for a straight crack of length 2a separated a
distance c from a circular inclusion of radius R centered at the origin. The crack lies along
the x-axis. A uniform stress σ∞

yy is applied at infinity. The elastic moduli, d1 = 0.22678 and
d2 = 0.75778 correspond to an epoxy inclusion in a boron matrix.

a/R c/a FI(γs) q2 FI(γe)

1 0.01 4.13573205889 0.582175497540 1.318521763103
1 0.001 8.6120023268 0.45483767552 1.359174492211
1 0.0001 19.56613723 0.3877110263 1.37870481228
1 0.00001 47.0744264 0.349976480 1.3894226129
1 0.000001 117.30692 0.32721125 1.395853648
1 0.0000001 298.8340 0.3127414 1.39993675

the moduli of the epoxy-boron bimaterial also treated by Wang and St̊ahle [6]. According
to Figure 3 in their paper the fitting equation (27) seems reasonable in the interval 0.003 ≤
c/a ≤ 0.03. Values of FI(γs) and q2 for various combinations of the ratios a/R and c/a are
displayed in Table 2. The numbers illustrate, again, that equation (28) is asymptotically
correct.
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