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Abstract

Animal flight performance has been studied using models developed for man made aircraft. For an aero-
plane with fixed wings the energetic cost as a function of flight speed can be expressed in terms of weight,
wing span, wing area and body area, where more details are included in proportionality coefficients. Flying
animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates
the effects of wing flapping in the coefficients. However, in practice these effects have been ignored.

In this paper the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic
power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency
and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating
flights over a large parameter range using an optimal vortex wake method combined with a low level blade
element method.

The results imply that previously assumed acceptable values for the induced power factor might be
strongly underestimated. The results also show the dependence of profile power on wing kinematics. The
expressions introduced in this paper can be used to significantly improve animal flight models.

1 Introduction

In the past animal flight performance has been studied in various ways, often borrowing basic
principles used in the design and operation of aeroplanes and helicopters. To a large extent this
will result in good approximations, as much of the physics is very similar. However, aeroplanes use
separated systems for propulsion and lift production, which results in a model for energy use that
is relatively simple. Helicopters use a mechanism that combines lift and thrust production, which
is more similar to flying animals, but animals use reciprocating wings, rather than rotating wings.
This adds another level of complexity, where besides the wingbeat frequency also the wingbeat
amplitude is of importance for optimisation. The current work involves a theoretical study on the
effects of wingbeat frequency, amplitude and stroke-plane angle, on the aerodynamic efficiency of
animal flapping flight. In addition to providing an accurate aerodynamic characterisation of self-
powered animal flight, the utility of models like the one presented here is fundamental to understand
adaptive flight behaviours in wild animals, ranging from display, foraging, food transport and
migration[1]. For example, the power-speed relationship predicts alternative ‘optimal’ flight speeds
that should be selected depending on the ecological context, and observations support the notion
that birds and bats are capable of selecting an appropriate context-related flight speed in broad
agreement with predictions[2, 3].

Aerodynamic power is commonly separated into components with different underlying mech-
anisms:

Paero = Pind + Ppro + Pbody, (1)

following the practice for aeroplanes[4]. Induced power, Pind, is due to the active acceleration of
mass flow in order to produce a force opposing weight and drag (for fixed wing aircraft, the induced
power due to thrust production is considered separately as part of engine efficiency). Profile power
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Ppro is due to the local drag on the wings, and body power Pbody due to drag on the body. In
1968 Pennycuick applied this model to estimate flight performance in birds[5]. An actuator disk
model was used to obtain induced power, while blade-element theory, using quasi-steady aerofoil
properties, was used to compute profile power. The energetic model was then expressed in terms
of weight, wingspan, body frontal area, air density and air speed as a general model for bird and
bat flight. For each component there is a modifying factor, which includes all effects not accounted
for by these measurable variables. These factors have been adjusted over the years following field
observations of flight speeds [6, 7] and wind tunnel experiments [8]. The effects of wing kinematics
should thus be implicitly incorporated in these correction factors. However, little effort has gone
into systematically quantifying the effects of reciprocating wings.

The effects of wing kinematics have been studied before and several alternative flight models
have been developed. The flapping wings are simulated at different levels of detail. A blade-element
approach, similar to [5], was used by Parslew and Crowther [9] to optimize wing kinematics of a
pigeon for minimal power. Rayner[10] used a continuous vortex lifting line model for forward
flight, accounting for unsteadiness due to flapping and wake deformation. Phlips et al.[11] used
a similar lifting line model, but with an active down-stroke and an inactive up-stroke. Hall and
Hall[12] developed a method involving a sheet of continuously varying vorticity shed from the
flapping wings. This generalized vortex wake method allows for a continuous transition between
wake topologies, resembling those observed in wind tunnel studies on birds[13]. The output of the
Hall and Hall model is the ideal distribution of circulation over the shed wake for minimum power
for a prescribed cyclic wake geometry. This ideal circulation distribution relates to the ideal lift
distribution over the wing, which for steady planar wings is the familiar elliptical distribution [14].
Salehipour and Willis [15] used this vortex wake method to investigate an extended parameter
space for animal flight, varying reduced frequency, stroke amplitude, thrust and lift. They found
that wingbeat kinematics, specifically amplitude and frequency, could be optimized for minimum
power. These studies all show that wing kinematics affect the power requirements for flight.

The aim of the current work is to formulate explicit expressions that describe the effects of
flapping wings on the different components of aerodynamic power in forward flight (equation 1).
These expressions are generally applicable to flying vertebrates, i.e. birds and bats, that use a span
reduction during the upstroke. Using the Hall and Hall model [12] a set of solutions was produced
for different combinations of thrust ratio, reduced frequencies and stroke-plane angles, where the
wingbeat amplitude was optimized for minimum induced power (Section 2). We then used non-
linear regressions to express the effects of wing flapping on the drag and power components as
functions of those three parameters (Section 3). Finally the expressions are applied to an example
to illustrate the implications of the model (Section 4).

2 Wake optimisation

The approach we used for computing aerodynamic power is modified from the Hall and Hall
model [12]. In the current section we will first briefly describe the method of finding the optimal
circulation distribution for a prescribed wake geometry. This is followed by a description of the
wake geometry and how it is optimized.

2.1 Aerodynamic power optimisation for a given geometry

The optimal wake method optimizes the distribution of circulation on a predefined wake geometry,
as shown in figure 1. This can be interpreted as a sheet of vortex rings shed at each location the
wing passes through the air. The strength (circulation) of each vortex ring is contained in the
vector Γ. Then an influence matrix Kind is constructed, describing the induced velocity due to
each vortex ring on control points related to all other vortex rings. This matrix is computed using
the Biot-Savart law for a unit strength vortex for each ring using the prescribed geometry of the
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Fig. 1: Definitions describing the wake geometry. Marked selection of the wake mesh is the part that is under
consideration for the computation. The other wakes are copies with the same circulation distribution which
influence the velocity field of the marked wake. The insert shows a side view, clarifying the definition of the
stroke-plane angle ϕ. The angle ϑ (t) is within the stroke-plane.
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For vortex ring j, nj is the normal to the enclosed plane and Aj its area. The velocity contribu-
tion of vortex ring i on the control point (centroid) in vortex ring j is indicated by Vi,j . For the
computation of Kind the wake is repeated upstream and downstream of the wake under consider-
ation, representing succeeding and preceding wingbeats. Formally the wake needs to be repeated
to infinity both upstream and downstream, but tests for convergence indicated the largest error
on the induced power for using only 4 repeated wakes on each side was ~0.5%. With matrix Kind

the induced power can be computed, Pind = 1
2
ρfΓ

T
KindΓ, where ρ is the air density and f is

the wingbeat frequency. The distribution Γ is still unknown, but it has to satisfy the constraint
that the wake should correspond to a prescribed aerodynamic force. This force can be expressed
as F = ρfBΓ, where the vector F contains the thrust force T , a side force Fy, and a lift force L.
Matrix B essentially contains the vortex ring area and orientation:

B = −
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Assuming a solution exists for which induced power is minimal, this minimum can be found by
finding a vector Γ for which ∂Pind/∂Γ = 0. As also the force constraint has to be satisfied, the
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equation that is minimized is formulated as

Π =
1
2
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where FR is the required force vector to be produced and λ is a Lagrange multiplier. By setting
the derivatives with respect to Γ and λ to zero, the solution
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−1(

0
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)

(2)

is found. This solution is specific to the prescribed wake geometry, and therefore dependent on flap
angle ϑ (t), stroke-plane angle ϕ, the wingspan b (t) and the travelled distance per wingbeat U/f ,
with U being the flight speed (Figure 1). The ratio between wingspan and travelled distance is
found in the reduced frequency kf = 2πfb/U , which is therefore a useful parameter to characterize
the wake. The solutions for thrust (T ) and lift (L) are linearly independent. This means that the
solutions can also be characterized by the thrust ratio T/L.

In successive work on the Hall and Hall model [16], the model was extended to include profile
drag. Aerofoil viscous drag may be approximated by the equation dvis = 1

2
ρV 2c

(
CDv,0 + CDv,2C2

ℓ

)
,

where V is the local velocity, c the local chord, CDv,0 the zero lift drag coefficient, CDv,2 the lift
dependent drag coefficient and Cℓ the sectional lift coefficient. This is referred to as viscous drag, as
the coefficients are Reynolds number dependent. The lift coefficient can be expressed as Cℓ = 2Γ

V c ,
which makes it possible to include the lift dependent viscous drag in equation 2 by extending the
influence matrix

Kvis = Kind + 4CDv,2 diag
(

Aj

cj

)

, (3)

where cj is the chord length of the wing at the span position corresponding to vortex ring j. By
using this formulation lift dependent viscous drag is taken into account during the optimisation of
the circulation distribution. The modified circulation distribution also affects the induced power
and induced drag, but because this change is due to adding viscous properties it will be counted
as lift dependent viscous power, i.e.

Pv,2 =
1
2

ρfΓ
T
visKvisΓvis − 1

2
ρfΓ

T
indKindΓind,

where Γvis is the optimal circulation distribution including the viscous model, and Γind the solution
of the inviscid model.

Several studies have measured the drag of birds [17, 18, 19, 20], bats [21] or their wings [22,
23, 24, 25]. However, few studies have explicitly described the profile drag polar. In the viscous
Hall and Hall model [16] a value of CDv,2 = 0.012 was taken from empirical measurements on
a NACA 4412 aerofoil for a Reynolds number of 6 × 106. This Reynolds number is too high to
be representative for animal flight [4]. In the work of Salehipour and Willis [15] values for CDv,2

were estimated based on numerical computations on a NACA 0006 aerofoil. Over a range of
Reynolds numbers 103 < Re < 105, values varied between 0.01 to 0.05 depending on which angle
of attack was chosen for the quadratic fit. In the computations for the current work we use a value
CDv,2 = 0.03, which is in the middle of the above range (The resulting drag polar also compares
well with experimental data from [20]; see ESM S1).

Zero-lift drag is independent of the distribution of circulation and therefore not taken into
account in the wake optimisation (equation 2), but its contribution to the power consumption will
be estimated from the wake geometry. The zero-lift drag coefficient strongly depends on the local
Reynolds number, Rec = V c/ν, with ν the kinematic viscosity. The state of the boundary layer,
i.e. the position of turbulent transition and possibly separation, will have an effect, but this is
ignored in the current work. For an approximation we assume fully laminar attached flow and use
Blasius’ flat plate boundary layer solution[14, 26]:

CDv,0 =
2.66√
Rec

. (4)
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The zero lift drag component of the aerodynamic power is computed as

Pv,0 =
1
2

ρf
∑

cCDv,0 |V|2 A,

with |V| = ds/dt representing the geometric speed of the wing section, where (ds)2 = (dx)2 +
(dy)2 + (dz)2.

To complete the viscous model a chord distribution along the wingspan is required. There is a
great variety of wing shapes among birds and bats, some having rather rectangular wings, while
others have more pointed wings. In the current work we use an elliptical chord distribution

c (y′)
cmax

=
(
1 − 4y′2

) 1
2 (5)

where y′ = y
b and cmax is the maximum chord such that b

∫ 1/2

−1/2
c (y′) dy′ = S, S being the wing

area. It should be noted that this drag model suggests potentially beneficial effects of wing shape
depending on the situation, as seen when exposing all the chord dependencies in the viscous drag
equation,

dvis = 1.33ρ
√

νV 3
√

c + 2ρCDv,2Γ2 1
c

. (6)

For high tip speeds a pointed tip will decrease zero lift drag, while for high wing tip loadings a
broader wing tip will decrease lift dependent drag.

The amount of thrust a bird has to produce for steady flight is, apart from body drag (Dbody),
depending on the drag force on the wing itself, i.e. induced drag and profile drag. These forces
are evaluated locally and the components along the flight direction are summed. We compute the
local induced drag as the local induced power divided by the local (geometric) velocity, so that

Dind =
1
2

ρfΓ
T diag

(
1

|V|
dx

ds

)

KiΓ. (7)

Similarly, we compute zero lift viscous drag as

Dv,0 =
1
2

ρf
∑

cCDv,0 |V|2 A

(
1

|V|
dx

ds

)

, (8)

and lift dependent viscous drag as

Dv,2 =
1
2

ρfΓ
T
v diag

(
1

|V|
dx

ds

)

KvΓv − Dind. (9)

Thrust required for steady forward flight is the sum of these components, T = Dind +Dv,0 +Dv,2 +
Dbody.

2.2 Optimisation of the wake geometry

The wake geometry represents the shape of the vortex sheet as it separates from the trailing edge of
the wings and convects with the freestream flow. Here it is assumed that the induced flow does not
significantly displace or deform the wake, which requires that the flight speed needs to be sufficiently
large relative to the induced velocity. We assume a sinusoidal flapping motion, with equal upstroke
and downstroke duration. The downstroke duration is known to vary between species [27, 28, 29]
and with flight speed, , but is generally close to 50% [30, 31, 32, 33, 34, 35]. We leave the possible
effects of varying downstroke time to future investigations. We used NU ×Nb = 41×40 points (flight
direction and span direction) for the nodes of a triangular mesh (each triangle representing a vortex
ring), with coordinates from 0 to U/f in flight direction and −b/2 to b/2 in span direction. Then
a wing retraction transform was applied to the locations of the points. Birds and bats partially
retract their wings during the upstroke [36]. In the current work wing retraction is modelled as

b =

{

bmax τ < 0.5 (downstroke)

bmin + bmax−bmin

2
(1 + cos 4πτ) τ ≥ 0.5 (upstroke)
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Tab. 1: Sample ranges for thrust ratio T/L, reduced frequency kf , flight speed U and lift production L/W .

T/L kf U (m/s) L/W

min 0 1 3 0.2
max 0.3 6 20 3

with bmin = bmax cos θ. Here bmax is the maximum wingspan of the animal, θ the amplitude of
the flapping motion and τ the normalized time variable running from 0 at the beginning of the
downstroke, to 1 at the end of the upstroke. This transform ensures a smooth gradient from
gliding flight with no upstroke wing retraction to large amplitude flapping flight with maximum
wing retraction. Next the wake mesh was transformed by rotating the wing ϑ (τ) = θ cos 2πτ
around the body axis. Note here that θ represents the maximum excursion from the centre, rather
than the peak-to-peak amplitude often reported in studies of animal flight kinematics. A third
transform tilts the stroke-plane an angle ϕ around the spanwise axis. Note that the angle ϕ is
measured from the plane perpendicular to the flight direction, rather than the horizontal plane
often reported in studies of animal flight kinematics (e.g. [37, 27, 29]), and that the angle is positive
when the downstroke has a forward component (Figure 1).

A jackdaw (Corvus monedula) was chosen as a bird model, having a wingspan b = 0.60 m, a
wing area S = 0.059 m2 and a body mass of 0.180 kg[38]. The inviscid solution is characterized by
reduced frequency and thrust ratio only, so the specific bird species has no influence on the optim-
isation. For the components due to zero-lift viscous drag, the solutions are non-dimensionalized
as explained in section 3, thereby removing the influence of bird species. Only the lift dependent
viscous drag could be affected by the choice of species, specifically as a function of the aspect
ratio, as the optimal circulation distribution (equation 3) depends on the absolute chord length.
However, this effect was found to be negligible (ESM S2, showing the sensitivity of the model to
changes in CDv,2/c ).

For a fixed stroke-plane angle the flapping amplitude θ was optimized for 200 randomized com-
binations of thrust ratio, reduced frequency, flight speed and lift production, over ranges specified
in Table 1. A thrust ratio T/L = 0 corresponds to non-flapping flight, while T/L = 0.3 is about
twice the maximum expected value at cruising speed as computed using the Pennycuick model for
a database of 220 birds [4, (fig.13.11,p.370)]. From that same data, one could find that birds are
expected to fly with a reduced frequency of 2 to 3 at the minimum power speed, so that the range
1 < kf < 6 covers a speed range from half the minimum power speed to twice the minimum power
speed (assuming a constant flapping frequency). As the computations are performed in absolute
dimensions, flight speed U was varied over a range plausible for the model bird, independent of
reduced frequency. This forces variation in absolute flapping frequency. Finally the lift production
is varied relative to the typical bird weight, so to cover scenarios in which the bird is carrying
variable loads (e.g. fat stores or prey).

The wake geometry was optimized for minimal induced power, even though one would expect
an animal to minimize total power. However, at lower speeds induced power will be dominant
for most birds and bats. At high speeds, when viscous power components become dominant, the
additional velocity component due to flapping will be relatively small for the expected wingbeat
frequencies. With the effect on the viscous power components being small (see also figure 8) and
induced power species independent, optimising for induced power will produce a more generally
applicable model. For each optimisation an initial estimate for θ was used (θ = 45◦). In the second
iteration the amplitude was increased by five degrees, and in the third an amplitude five degrees
below the initial estimate was chosen. For the next iterations a quadratic polynomial was fitted to
the three trials with the lowest power, of which the analytical minimum would serve as the next
estimate. The search was limited to 0 < θ < 90◦, the lower limit being non-flapping flight while at
the upper limit the two wings touch at maximal excursion. The convergence tolerance was set to 1
degree. For each converged solution, the obtained amplitude θ and the resulting force components
(Dind, Dv,0 and Dv,2) and power components (Pind, Pv,0 and Pv,2) were stored for analysis. The
optimisation was repeated for different stroke-plane angles from 0◦ to 50◦ in steps of 10◦, using
the same 200 combinations of thrust ratio, weight support, reduced frequency, and flight speed.
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3 Relating optimal flapping flight to non-flapping flight

The objective of this study is to characterize the effects of the reciprocating wings of flying animals,
which we do by relating the optimized flapping wake data to their non-flapping equivalents (i.e.
the limit T/L = 0).

The optimal flapping amplitude depends on the thrust ratio T/L and reduced frequency kf .
Then the expected dependency of the drag and power components on flapping amplitude can be
substituted by a dependency on T/L and kf . All the functions used for the non-linear regressions
are based on observation of the data. This means that the relations fit the data very well, but they
are not based on any formal derivations. The obtained relations should therefore be interpreted
as interpolating functions applicable to forward flapping flight within the ranges of kf and T/L
specified in table 1. The approximating functions were fitted to the data using the nlinfit()

function from the statistics toolbox for Matlab R2013a (8.1.0.604), using bisquare robust fitting.
For the drag and power components the robust fitting weights of each component were combined
as ŵ = (wDind

· wDv0
· wDv2

· wPind
· wPv0

· wPv2
)1/6 and the data refitted, so that each observation

was treated equally for every component.
In the following section the optimized amplitude θ is expressed in terms of T/L, kf and ϕ. In

the second section, the derivation of the non-dimensionalized drag components is described and the
approximating functions are explained, followed by a similar analysis for the power components.
The last section shortly describes the effects of stroke-plane angle.

3.1 Optimized flapping amplitude

To our knowledge there is no known analytical relation between optimal flapping amplitude, thrust
ratio and reduced frequency, so a function was designed to fit the data from the optimisation
procedure (section 22.2). Flapping amplitude is limited to 90◦. By using a tangent transform on
the flapping amplitude, the transformed data can take any positive value. When we plot tan θ
for a single stroke-plane against thrust ratio T/L and reduced frequency kf the data points are
on a single surface, which corresponds to the previously made statement that the inviscid wake is
characterized by these two variables. More specifically, tan θ appears to be inversely proportional
to the reduced frequency. Plotting tan θ against T/Lkf collapsed all data points onto a curve,
which could be approximated by the function tan θ = p1/2 (T/Lkf)1/r + p1T/Lkf + p4 (T/Lkf)4.
Fitting the resulting model to the data then revealed that for higher reduced frequencies the actual
amplitudes were under predicted. Allowing the function to produce amplitudes of more than 90◦,
resulted a better fit. This suggests that in certain conditions the predicted optimal amplitude are
not physically possible, though those conditions are outside the parameter ranges of Table 1. The
fitting model used is

θ = (1 + qkf ) arctan

(

p1/2

(
T/L

kf

) 1
r

+ p1

(
T/L

kf

)

+ p4

(
T/L

kf

)4
)

. (10)

To take into account the stroke-plane angle, the coefficients q, p1/2, p1 and p4 were assumed to
be quadratic polynomials of ϕ̂ = tan ϕ: pi (ϕ̂) = pi,0 + pi,1ϕ̂ + pi,2ϕ̂2. The fitted coefficients of
which the 95% confidence bounds deviate more than 10% from the estimate were removed, (p1/2,1,
p1/2,2, p1,2 and p4,2), and the model was refitted. The removal of these coefficients narrowed the
confidence bounds of the remaining coefficients and reduced the overall magnitude of the residuals.
The final fitting coefficients are shown in Table 2. This fit approaches 95% of the data points
to within the set convergence tolerance of 1 degree for the stroke amplitude optimisation. The
remaining 5% of the data points are dominated by the highest stroke-plane angles (ϕ = 50◦ has
66% of all residuals larger than 1 degree, ϕ = 40◦ has 25%) and on average deviate 2.4 degrees
from the fitted model. Figure 2 shows the fitted model as a function of reduced frequency and
stroke-plane angle for different thrust ratios, indicating how increased thrust requirements require
higher flapping amplitudes while increasing frequency allows for smaller amplitudes. Tilting the
stroke-plane backward (increasing ϕ) requires larger stroke amplitudes, which intuitively makes
sense as a compensation for the reduced vertical displacement of the wing in order to maintain
thrust.
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Fig. 2: Optimized stroke amplitude θ as a function of reduced frequency kf , stroke-plane angle ϕ (from black
0◦ to grey 50◦), for thrust ratios T/L = 0.01 (dotted), T/L = 0.1 (solid) and T/L = 0.3 (dashed).

Tab. 2: Overview of the fitted coefficients for the wingbeat amplitude corresponding to equation 10 (mean
± 95% CI), with the rows indicating the quadratic polynomial coefficients for the model coefficient in each
column. The empty places indicate coefficients not included in the final model.

p1/2 p1 p4 q r

1 1.277 ± 0.048 6.214 ± 0.125 227.8 ± 12.7 0.0107 ± 0.0008 2.620 ± 0.047
ϕ̂ - - - 0.0565 ± 0.0014 -
ϕ̂2 - 3.631 ± 0.082 1481 ± 42 −0.0169 ± 0.0011 -

3.2 Drag components and thrust

In the wake optimisation, induced drag Dind, zero lift viscous drag Dv,0 and lift dependent viscous
drag Dv,2 were computed (equations 7, 8 and 9). Each component has a corresponding expression
for non-flapping flight (limit of T/L = 0). Induced drag is expressed as

D′

ind =
L2

πb2
(

1
2
ρU2

) , (11)

which is a familiar expression from fixed wing aerodynamics for an ideally loaded planar wing.
The non-dimensionalized induced drag data was then approximated with

Dind

D′

ind

= 1 +
(

p0

1
kf

+ p1

)
T

L
. (12)

The non-flapping solution for zero lift drag is D′

v,0 = 1
2
ρU2

∫ b/2

−b/2
cCDv,0dy (with CD,v,0 from

equation 4). For the wing shape described by equation 5 expression evaluates to approximately

D′

v,0 = 1.33ρ
√

νU3bS. (13)

The zero lift data could be described by the function

Dv,0

D′

v,0

= 1 +

(

pDv0

0 + pDv0

1 kf + pDv0

2

1
k2

f

)

T

L
. (14)

The non-flapping solution for lift dependent viscous drag can be expressed as D′

v,2 =
1
2
ρU2

∫ b/2

−b/2
cCDv,2C2

ℓ dy, which evaluates to approximately D′

v,2 = 2CDv,2L2/ρU2S. Note here
the similarity to induced drag

D′

v,2 = CDv,2πARD′

ind, (15)
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Tab. 3: Fitted coefficients for the drag components corresponding to equations 12, 14 and 16, with polynomial
coefficients as defined by equation 17 (mean ± 95% CI). The empty places indicate coefficients not included in
the final model.

Dind Dv,0 Dv,2

p0,0 9.250 ± 0.026 −0.590 ± 0.017 9.298 ± 0.041
p0,1 - - -
p0,2 2.931 ± 0.058 −1.145 ± 0.015 1.301 ± 0.058
p1,0 - 0.239 ± 0.004 −0.659 ± 0.016
p1,1 −1.969 ± 0.022 0.197 ± 0.005 −1.521 ± 0.023
p1,2 - 0.446 ± 0.006 -
p2,0 n.a. −0.715 ± 0.038 n.a.

with AR = b2/S being the aspect ratio. Because of the similarity to induced drag, the approxim-
ating model is similar to equation 12,

Dv,2

D′

v,2

= 1 +
(

pDv2

0

1
kf

+ pDv2

1

)
T

L
. (16)

Now all drag components are expressed as D
D′

= 1 + fD (kf ) T
L , which results in good fits for each

separate stroke-plane angle. As only fD changes with stroke-plane angle, it can be expressed as

fD (kf , ϕ) =
(

D

D′
− 1
)

L

T
.

Assuming the coefficients p0 and p1 are quadratic functions of ϕ̂ = tan ϕ,

pi (ϕ̂) = pi,0 + pi,1ϕ̂ + pi,2ϕ̂2, (17)

the model for each drag component now has 6 coefficients to fit to the simulated data points.
As with the procedure for the stroke amplitude, we removed the polynomial coefficients with low
confidence. The fitted coefficients for each component are shown in Table 3 and the fitted functions
fD (kf , ϕ) are visualized in figure 3.

The animal flaps its wings with the purpose of generating thrust, which in steady forward
flight has to counter aerodynamic drag. The total drag on an animal can be expressed as the
sum of the body drag and the drag on the wings, so that the thrust required for steady flight is
T = Dbody + Dind + Dv,0 + Dv,2. With the approximations introduced above, equations 12, 14 and
16, all being linear functions of thrust, the following equation for the required thrust ratio is found,

T

L
=

D′

v,0 + (1 + CDv,2πAR) D′

ind + Dbody

L − fDv,0
(kf , ϕ) D′

v,0 −
(
fDind

(kf , ϕ) + fDv,2
(kf , ϕ) CDv,2πAR

)
D′

ind

. (18)

The numerator is the total drag for non-flapping flight, while the effects on the required thrust due
to flapping are in the denominator.

3.3 Power components

In steady flight models the required aerodynamic power is obtained by multiplying the drag with
the flight speed, P = DU . However, to find the aerodynamic power for flapping flight it is not
sufficient to multiply the required thrust found from equation 18 with the flight speed, because
this thrust is only the wingbeat averaged force along the direction of flight. Within the wingbeat
work is also done perpendicular to this direction. Therefore, in a similar manner as with the drag
components, we non-dimensionalized the power components by their non-flapping equivalents, and
examined their relation to reduced frequency and thrust ratio.

The general behaviour of the non-dimensionalized power components is very similar to their
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Tab. 4: Fitted coefficients for the power components corresponding to equations 19, 20 and 21, with polynomial
coefficients as defined by equation 17 (Mean ± 95% CI).

Pind Pv,0 Pv,2

p0,0 7.517 ± 0.078 −1.101 ± 0.014 8.851 ± 0.065
p0,1 - - -
p0,2 4.913 ± 0.128 −1.183 ± 0.022 2.807 ± 0.099
p1,0 2.573 ± 0.058 0.512 ± 0.004 1.354 ± 0.050
p1,1 −1.259 ± 0.048 0.227 ± 0.007 −0.943 ± 0.033
p1,2 - 0.431 ± 0.008 -
p2,0 n.a. - n.a.

r 1.135 ± 0.025 n.a. 1.201 ± 0.022

drag counterparts, so that similar models can be used

Pind

P ′

ind

= 1 +

(

p0

1
kr

f

+ p1

)

T

L
, (19)

Pv,0

P ′

v,0

= 1 +

(

p0 + p1kf + p2

1
k2

f

)

T

L
, (20)

Pv,2

P ′

v,2

= 1 +

(

p0

1
kr

f

+ p1

)

T

L
. (21)

Note here that equations 19 and 21 have an additional power coefficient r, which notably improved
the fit for low reduced frequencies. Again only the factor in front of the thrust ratio is a function
of stroke-plane angle and reduced frequency

fP (kf , ϕ) =
(

P

P ′
− 1
)

L

T
.

The coefficients p0 and p1 are again modelled as quadratic polynomials of ϕ̂ = tan ϕ. The fitted
coefficients are given in Table 4 and the fitted functions fP are visualized in figure 3. For all
components it seems that fD is less than fP , i.e. that the penalty due to flapping is more severe
on the power than on the drag.

Equation 18 can be used in equations 19, 20 and 21, which combine with Pbody = DbodyU to
total aerodynamic power

Ptot

P ′

tot

=
(

Pind

P ′

ind

)
D′

ind

T ′
+

(

Pv,0

P ′

v,0

)

D′

v,0

T ′
+

(

Pv,2

P ′

v,2

)

D′

v,2

T ′
+

Dbody

T ′
. (22)

Here the total power is non-dimensionalized by the non-flapping total power. Every term (P/P ′)
is a function of reduced frequency kf , stroke-plane angle ϕ and thrust ratio T/L. Of these, T/L is
itself a function of kf , ϕ, and the non-flapping drag components D′. Note that the reciprocal of
equation 22 is equivalent to the definition of propulsive efficiency commonly used as a performance
measure for the propulsion system of fixed wing aircraft, i.e.

η = T U/P

=
P ′

tot

Ptot

.

3.4 Optimising stroke-plane angle

Equation 22 is a function of the non-flapping drag components and two kinematic parameters:
stroke-plane angle ϕ and the flapping frequency in the form of reduced frequency kf . From figure
3 it can be observed that the stroke-plane angle affects lift dependent components different from
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the lift independent components. Figure 4a illustrates the optimal stroke-plane angle (dfD/dϕ = 0
and dfP /dϕ = 0) in the case where induced drag is dominant, D′

ind ≫ D′

v0, D′

v2, as a function of
reduced frequency. For a constant flapping frequency, reduced frequency is inversely proportional
to the flight speed, so the lower the speed, the more horizontal becomes the stroke-plane.

On the other hand, when the zero lift drag component is dominant, D′

v0 ≫ D′

ind, D′

v2, figure
4b shows only a maximum for dfD/dϕ = 0 and dfP /dϕ = 0 within the range of 0 ≤ ϕ ≤ 50◦.
This plot implies tilting the stroke-plane forward (ϕ < 0) allows for lower values of fDv0

and
fPv0

. Even though the non-lift producing case, which this limit implies, has not been simulated,
intuitively the tendency towards a forward tilted stroke-plane makes sense, considering its similarity
to breaststroke swimming (i.e. drag based thrust).

A flying bird or bat will be between these limiting cases, so at this stage one can only argue that
the actual optimal stroke-plane angle for any species will be less than that required for minimising
induced drag (dashed line in figure 4a). Finding the specific optimal stroke-plane angle requires
evaluating the relative contributions of each non-flapping drag component, which will differ across
species.

4 Jackdaw example

To illustrate the implications of equations 12 to 16 and 19 to 21, again the jackdaw is used [38]. We
start with determining the non-flapping drag components, the sum of which determines the base
level of thrust that needs to be produced, as depicted in figure 5. These drag components are then
used in equation 22 and 18. For a given flight speed and frequency the stroke-plane angle can now be
optimized. In figure 6 this is done for the jackdaw flying with a wingbeat frequency of 6.4 Hz, which
is a reference frequency derived from the allometric relation fref = m3/8g1/2b−23/24S−1/3ρ−3/8

[39, 4]. The optimal stroke-plane angle gets more horizontal for low flight speeds, which corresponds
with observations of slow flying animals [27, 35]. Here it should be noted that this horizontal
orientation in this model is not because it increases the angle of attack of the wings, but purely
related to increasing the horizontal component of the airflow over the wings. At high flight speeds
the optimal stroke-plane angle is approximately vertical. For speeds above 17 m/s an actual
optimum (dη/dϕ = 0) does not exist for positive ϕ, but considering the large separation between
the contours of equal efficiency, the penalty for using any other stroke-plane angle is very small.

In section 2 it was also noted that the model is only applicable to fast forward flight. In
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divided by flapping thrust ηT = T ′/T , indicating how thrust efficiency increases with wingbeat frequency and
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helicopter theory the lower limit is often set to twice the induced velocity in hover [40]. In the
current model this limit is in most cases implicitly enforced by the upper limit on thrust ratio.
The induced velocity is related to induced drag by vi/V = Dind/L. From Glauert’s interpolation
of induced velocity for slow flight one can derive

vi

vih

=





(

1
4

(
V

vih

)4

+ 1

)1/2

− 1
2

(
V

vih

)2





1/2

,

where vih is the induced velocity in hover [41]. This means that at V/vih = 2 the induced drag
to lift ratio is Dind/L ≈ 0.24. When adding profile drag it is very unlikely that the required
thrust ratio will remain below 0.3 at this low speed, so that the assumption of fast forward flight
is implicitly justified by the upper limit on thrust ratio.

As indicated by equation 18, the drag will be slightly increased due to the flapping of the
wings. For a range of flapping frequencies, figure 5 shows the extent of this increase. Focussing on
frequencies above the reference frequency of 6.4 Hz, it appears the deviations from the non-flapping
thrust requirement are minor. The effects are more clear when looking at the thrust efficiency,
which for the reference frequency is lowest around 0.85. For higher frequencies it seems the efficiency
is almost speed independent with a value around 95%. Another interesting observation from these
plots is the behaviour at low speeds. The thrust efficiency seems to increase above unity, which at
first might seem wrong. However, the efficiency is taken relative to the non-flapping case. In slow
flight, with a tilted stroke-plane, the beating of the wing temporarily increases the airspeed over
the wing, which reduces the induced drag. If then during the recovery stroke, less lift is produced,
also here there will be less induced drag, compared to the non-flapping situation.

Figure 7 shows propulsive efficiency, ηP = T ′U/P , visualized for a range of wingbeat frequencies,
together with the corresponding optimized stroke-plane angles and wingbeat amplitudes. Higher
wingbeat frequencies generally increase efficiency, but the relative gain in efficiency decreases with
increasing frequency. Also, the relative benefit of higher frequency decreases with increasing flight
speed. Figure 7 also shows how high propulsive efficiency is related to lower wingbeat amplitudes.
However, here it should be kept in mind that this concerns the optimized amplitude, i.e. reducing
the amplitude without changing frequency and stroke-plane angle will inevitably result in a lower
efficiency.

Considering again the reference wingbeat frequency of 6.4 Hz, the jackdaw flies with a propulsive
efficiency of 80% around 10 m/s increasing to over 90% for speeds above 15 m/s. In this range
the optimal wingbeat amplitude would be around 35 degrees. At 10 m/s the stroke-plane angle
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would be tilted 20 degrees from vertical and tilted more vertical for higher speeds. The power
curve corresponding to this frequency is shown in figure 7b. Also the non-flapping power curve is
shown, illustrating how the flapping increases the power requirement. The speed dependency of the
propulsive efficiency causes the speed for minimum power to increase compared to the non-flapping
curve.

For reference the power curve as computed by Flight 1.25 (Pennycuick’s model) is also shown.
Below the minimum power speed, Pennycuick’s model is between the flapping and the non-flapping
curve. At higher speeds it predicts much lower power requirements. A notable effect of this is the
higher maximum range speed (minimal P/U). Both the non-flapping and the flapping curve predict
much lower maximum range speeds. This might be related to concerns raised by field observations
where birds generally fly slower than expected [7]. Field observations of jackdaw flight speeds
(A. Hedenström and S. Åkesson 2014, unpublished data) indicate a preferred flight speed between
11.6 m/s and 14.3 m/s (95% confidence interval for the corrected mean observed flight speed) for
level flying individual birds (ESM S3). For this specific bird the Pennycuick model predicts a
maximum range speed of 15.9 m/s, which is outside of this confidence interval, while the model
we developed in this work predicts this characteristic speed at 12.1 m/s, which is well within the
observed range.

As a final consideration, the effect of flapping can be examined for each power component
separately. Figure 8 shows the power factors (Pind/P ′

ind),
(
Pv,0/P ′

v,0

)
and

(
Pv,2/P ′

v,2

)
from equation

22. The induced power factor, which in the Pennycuick model is denoted by the symbol k, has been
a subject of debate. Early estimates of this parameter were in the range of 1.1 to 1.2, commonly
used for helicopters. Recently a value as low as 0.9 has been suggested, to match the Pennycuick
model with field observations [7]. As can be observed from figure 8, all of these estimates might be
very optimistic, as for the jackdaw reference frequency the induced power factor never goes below
1.4. Even for the extremely high wingbeat frequency of 15 Hz the parameter only approaches
the previous worst case estimate of 1.2. In figure 8d-f the contribution due to flapping is shown
relative to the total non-flapping power. This shows that around the minimum power speed the
reference frequency of 6.4 Hz would result in roughly 30% increase of aerodynamic power solely
due to the increased induced power, demonstrating the importance of estimating this parameter
correctly. The zero lift power factor increases strongly for decreasing speed. This is a result of
the normalisation with the non-flapping power component that is very small, while the flapping
wings are experiencing a higher level of viscous drag. Looking at the relative contribution due to
flapping (Figure 8e), it follows that the effects of flapping on the zero lift power are relatively small.
This supports the arguments in section 22.2 for optimising induced power only. The lift dependent
viscous power factor is very similar in behaviour to the inviscid induced power factor, though
slightly lower. The relative effect on the total power curve is less than half that of the induced
power factor, which makes sense considering that for this bird the non-flapping lift dependent
viscous power is approximately 57% of the induced power (equation 15).

5 Concluding remarks

We developed a model for the aerodynamic cost of vertebrate flight that incorporates the main
effects of flapping wings. For a range of combinations of thrust ratio, reduced frequency and stroke-
plane angle, the wingbeat amplitude θ was optimized for minimum power, using a numerical vortex
wake model. The results were converted into an explicit general model, represented by equation
22. Our model provides potential explanations to divergence between the model that is commonly
used to estimate flight power in flying vertebrates [5, 4] and observations [7].

The Hall and Hall model [12] computes the energetically most efficient distribution of circulation
for a given wake geometry. This results in an ideal solution, equivalent to that for fixed wing lifting
line theory. In all subsequent computations it is assumed that a bird or bat wing will be able to
produce this ideal wake. However, it may occur that the wake prescribes a lift coefficient that
is not physically attainable for the aerofoil. Additionally, when the required lift coefficient would
be realistic for the aerofoil, it may still require a geometric angle that is not within the range of
motions of the wing. Figure 9a-c show the distribution of lift coefficient along the span throughout
the wingbeat at three different speeds: 5 m/s, 10 m/s and 15 m/s, estimated for the example
of a jackdaw of section 4 (see S4 for details). At 5 m/s large lift coefficients are prescribed for
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the body region and the inner wing, exceeding the maximum lift coefficient for many aerofoils
(though unsteady mechanisms could increase the maximum lift coefficient [42]). This suggests the
bird may not be able to produce this optimal load distribution and it has to resort to alternative
distributions, which inevitably has to result in increased induced power. However, the model does
not take into account the additional lifting tail surface, usually maximally spread in slow flight,
which would reduce the required lift coefficient at the inner wing. To achieve the prescribed lift
distribution along the wing at this low speed a considerable amount of wing twist is required, as
illustrated in figure 9d, but bird wings are flexible and wing tip reversal is not uncommon among
birds at low speeds [43]. Around the minimum power speed (10 m/s) the maximum lift coefficient
is below the stall value of most aerofoils and the range of required wing twist is reduced (figure
9b,e). This trend is continued with increasing speed (figure 9c,f).
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Fig. 9: Lift coefficients (left column) and wing twist (right column) relative to the flight path for the jackdaw
example.

On a similar note the effect of wake roll-up has not been taken into account. Even before the
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wake leaves the wing it starts to roll-up into the tip vortices, which could alter the realized lift
distribution. Fixed wing aircraft frequently use wing tip devices, which are designed to improve
the efficiency of the wing [44]. The separated outer primaries of bird wings have been suggested to
serve a similar purpose [45, 46, 47]. In fixed wing aerodynamics, these deviations are dealt with by
introducing a span efficiency factor. A similar factor should be expected for flapping flight, though
its value could be much more variable compared to its fixed wing equivalent. A consideration in
future models could thus be to quantify these effects in real animals and include them in the model.
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