Up-regulation of endothelin receptor function and mRNA expression in airway smooth muscle cells following sephadex-induced airway inflammation.

Granström, Bengt; Xu, Cang-Bao; Nilsson, Elisabeth; Bengtsson, Ursula Hultkvist; Edvinsson, Lars

Published in:
Basic & Clinical Pharmacology & Toxicology

DOI:
10.1111/j.1742-7843.2004.pto950109.x

2004

Link to publication

Citation for published version (APA):
Up-Regulation of Endothelin Receptor Function and mRNA Expression in Airway Smooth Muscle Cells Following Sephadex-Induced Airway Inflammation

Bengt W Granström1,2, Cang-Bao Xu1, Elisabet Nilsson1, Ursula Hultkvist Bengtsson3 and Lars Edvinsson1

1Departments of Internal Medicine and 2Paediatrics, Lund University Hospital and 3GITA (GastroIntestinal Therapy Area), AstraZeneca R&D, Lund, Sweden

(Received November 12, 2003; Accepted March 24, 2004)

Abstract: The hypothesis that up-regulation of bronchial constrictor endothelin receptors in airway smooth muscle cells may contribute to hyperreactivity during airway inflammation was tested in the present study by quantitative endothelin receptor mRNA analysis and functional responses in ring segments of rat trachea and bronchi. Real time reverse transcription polymerase chain reaction was used to quantify endothelin receptor expression in rat airway smooth muscle cells following Sephadex-induced inflammation. Compared with controls, Sephadex-induced airway inflammation caused a significant increase (3.9 times P<0.05) of endothelin receptor type B mRNA expression in bronchial smooth muscle cells, but not in tracheal smooth muscle cells. Functional myograph studies of bronchial and tracheal ring segments without epithelium (mechanically denuded) revealed an increase of the maximum contractile effects of endothelin-1 (a dual agonist for both endothelin type A and B receptors) and sarafotoxin 6c (a selective agonist for endothelin B receptors) in bronchial smooth muscle cells in Sephadex-induced inflammation, but not in tracheal smooth muscle cells. The enhanced maximal responses of bronchial smooth muscle cells to endothelin-1 and sarafotoxin 6c in Sephadex-induced inflammation support our molecular findings and hence imply a role for endothelin B receptors in airway hyperreactivity during airway inflammation.

Airway inflammation plays an important role for airway hyperreactivity in asthma bronchiale. Under basal conditions asthmatic patients, with or without inhaled steroids, seem to have normal endothelin-1 levels in the bronchi when measured in induced sputum (Chalmers et al. 1997a). Pro-inflammatory mediators such as tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) released during inflammatory processes are considered to directly activate airway smooth muscle cells to make them more responsive to contractile agents (Hakonarson et al. 2001). Interestingly, TNF-α and IL-1β have been found to promote an increased production of endothelin-1 in cultured airway epithelial cells (Yang et al. 1997). Accordingly, a number of studies have revealed that endothelin-1 levels are significantly elevated in broncho-alveolar lavage fluid and in plasma during asthmatic attacks (Vittori et al. 1992; Michael & Markewitz 1996). Moreover, intratracheal instillation of Sephadex has been shown to create an eosinophilic airway inflammation with increased endothelin-1 levels in broncho-alveolar fluid (Andersson et al. 1996) and that this elevation is preceded by a rapid endothelin-1 mRNA synthesis (Finsnes et al. 1998). These studies have suggested that this peptide plays an important role in the initial phase of an eosinophilic airway inflammation.

The responses to endothelin-1 are mediated through endothelin type A and type B receptors with similar affinity for endothelin A and B receptors. In rat tracheal smooth muscle and peripheral lung endothelin A and B receptors exist in approximately equal numbers (Henry 1993; Goldie et al. 1996) while endothelin B receptors predominate in the human bronchial airway smooth muscle (Goldie et al. 1995). The endothelin A and B receptors are both present on airway smooth muscle cells where they mediate strong contractions, while only endothelin A receptors are present on airway epithelium to induce relaxation via the release of nitric oxide (Naline et al. 1999). If endothelin-1 receptors are up-regulated during pulmonary inflammation such as that seen in blood vessels (White et al. 1999) the functional consequences of the enhanced levels of endothelin-1 would be an amplification of contractility. The present study was designed to examine the hypothesis that endothelin-1 receptors are up-regulated in airway smooth muscle in the early phase of asthma bronchiale. This was tested by using Sephadex-induced inflammation using real-time quantitative reverse transcription polymerase chain reaction to quantify endothelin-1 receptor mRNA levels and a sensitive myograph method to study functional responses of bronchial and tracheal segments to endothelin-1 and sarafotoxin 6c.
The results suggest up-regulation of endothelin-B receptors in bronchial smooth cells.

Materials and Methods

Animals. Male Sprague Dawley rats (body weight 200–250 g, M&B, Denmark) were acclimatized for one week under standardized temperature (21–22 °C), humidity (50–60%) and light (12:12 light:dark) conditions in the animal department at AstraZeneca in Lund. Intratracheal Sephadex installations were performed under brief enflurane (Efrane®, Abbott Scandinavia AB, Sweden) anesthesia. Briefly, Sephadex G-200 (Pharmacia, Sweden) was suspended in sterile saline and given as an intratracheal instillation in the dose 5 mg ml⁻¹, 1 ml kg⁻¹ body weight, while control animals received sterile saline, 1 ml kg⁻¹ body weight. Twenty-four hours after intratracheal Sephadex instillation the animals were killed with an overdose of pentobarbital (ACO, Sweden). The method using Sephadex to achieve an eosinophilic inflammation is the same procedure as has been described before (Andersson et al. 1992 & 1995) and done in the same laboratory. Macroscopically inflammatory changes were easily seen and the lung weight was higher. The trachea and bronchi were isolated for myograph studies and real-time quantitative reverse transcription polymerase chain reaction (PCR). The protocol was approved by the animal ethics committee at Lund University.

mRNA quantification.

Total RNA isolation and reverse transcription. Tracheal and bronchial smooth muscle cell layers were isolated under a light microscope on ice and rinsed with cold phosphate buffered saline (PBS) (GibcoBRL, USA) several times. The tissues were homogenized in the TRizol reagent (GibcoBRL, USA) for extraction of total mRNA. Reverse transcription (RT) of total RNA to cDNA was carried out using the Gene Amp RT kit (PE Applied Biosystems, USA) in a Perkin-Elmer 2400 PCR machine at 42 °C for 30 min.

Quantification of the expression of endothelin type A (ETₐ) and endothelin type B (ETₜ) receptor mRNA.

The real-time quantitative RT-PCR was performed with the GeneAmp SYBR Green PCR kit (PE Applied Biosystems, USA) in a Perkin-Elmer real-time PCR machine (GeneAmp 5700 sequence detection system). The system automatically monitors the binding of a fluorescent dye to double-strand DNA by real-time detection of the fluorescence during each cycle of PCR amplification. Specific primers for rat ETₐ and ETₜ receptors were designed as below:

ETₐ receptor forward: 5’-ATT GCC CTC AGC GAA CAC-3’
reverse: 5’-CAA CAA AGG AGA AAG CCG GCC GTC-3’
ETₜ receptor forward: 5’-GAT ACG ACA ACT TCC GCT CCA-3’
reverse: 5’-GTC CAC GAT GAG GAC AAT GAG-3’

The housekeeping gene, Elongation factor-1 (EF-1), mRNA continuously expressed to a constant amount in the cells, was compared to the housekeeping gene β-actin in a pilot study by real-time PCR (data not shown). EF-1 was used as a reference in this study, but both were equally well constant in the tests. Rat EF-1 primers were designed as below:

EF-1 forward: 5’-GCA AGC CCA TGT GTG TTG AA-3’
reverse: 5’-TGA TGA CAC CCA CAG CAA CTG-3’

The PCR reaction was performed in a 50 µl volume and started at a temperature of 50 °C for 2 min., 95 °C for 10 min. and the following 40 PCR cycles with 95 °C for 15 sec. and 60 °C for 1 min. Dissociation curves were run after the real-time PCR, and no non-specific amplification was detected in the present study. All primers were designed using the Primer Express 2.0 software (PE Applied Biosystems, USA) and synthesized by GibcoBRL Custom Primers (Life Technologies, Inc., USA). The PCR products of ETₐ (64 bp), ETₜ (86 bp) and EF-1 (96 bp) were visualized with agarose gel electrophoresis.

To evaluate the amount of ETₐ or ETₜ receptor mRNA in a sample, EF-1 mRNA was assessed in the same sample simultaneously. The cycle threshold values of EF-1 mRNA was used as a reference to quantify the relative amount of ETₐ or ETₜ receptor mRNA. The relative amount of mRNA was calculated with the cycle threshold values of ETₐ or ETₜ receptor mRNA in relation to the cycle threshold values of EF-1 mRNA in the sample.

Functional studies. Circular segments were cut from trachea and bronchi. Each segment was denuded of its epithelium using a metal thread of 1 mm in diameter and a surface as a fine graded file to avoid confounding dilatory effects (Hadj Kaddour et al. 1995). They were then mounted on two L-shaped metal prongs. One prong was connected to a force displacement transducer attached to a computer for continuous registration of isometric tension and the other to a displacement device. The segments were then immersed in a small (2.5 ml) temperature-controlled (37 °C) tissue baths containing a bicarbonate based buffer solution (see below). The solution was equilibrated with 5% CO₂ in O₂, resulting in a pH of 7.4. Initially the tracheal and bronchial segments were allowed to stabilize for 60 min. under a tension of 2 mN and 1 mN, respectively. The tone was chosen on the basis of pretension-contraction curves in Ca⁺⁺ free and Ca⁺⁺ containing solution as published before (Höggestätt et al. 1983) and now modified for tracheal and bronchial ring segments (data not shown). The contractile ability of each segment was first examined by exposure to a potassium rich (60 mM) buffer solution (for composition, see below), which caused maximum effect at this concentration (data not shown). When maximum contraction was reached within a minute, the potassium solution was washed out with the buffer solution. Only after two strong (>1 mN) reproducible contractions (variation <10%) had elicited the individual segments were used for further studies. The contraction induced by K⁺-solution (60 mM) was used as contractility reference and maximum was defined as 100%. Endothelin-1 or sarafotoxin 6c was added to achieve cumulative concentration-response curves. The segments were allowed to stabilize at each contraction level before a higher concentration was added. Comparing experiments between epithelium-denuded and epithelium-intact segments proved that the ability to contract concerning potassium and acetylcholine was not influenced or harmed by denudation (data not shown). The maximal contractile force was also tested at the end of each experiment using acetylcholine (10⁻³ mM).

After the eosinophilic inflammation had been established (24 hr), the contractile effects of endothelin-1 and sarafotoxin 6c were studied at two levels of the rat airways, trachea and bronchi. All segments could be used in this study, i.e. no segment was damaged through removal of epithelium or from the Sephadex-induced inflammation. The result of the removal of epithelial cells was controlled by histological investigation after the experiments (haematoxylin-eosin staining), and also used to confirm the inflammation (Andersson et al. 1992).

Solutions. (A) Standard buffer solution (mM): NaCl 119, KCl 4.6, CaCl₂ 1.5, MgCl₂ 1.2, NaHCO₃ 15, NaH₂PO₄ 1.2, and glucose 5.5.
(B) 60 mM K⁺ buffer solution: as above, but substituting equimolar amounts of NaCl with KCl.

Drugs. Sarafotoxin 6c and endothelin-1 were obtained from Auspep (Parkville, Australia) and acetylcholine from Sigma (St. Louis, MO, USA). These agents were dissolved and further diluted in saline containing 0.1% bovine serum albumin (Beringwerke, Marburg, Germany) to avoid adhesion of peptides to vials.

Analysis. Contractile responses in the segments are expressed as a percentage of the contraction induced by 60 mM K⁺. Emax values refer to the maximum contractile effect of an agonist. The pEC₅₀ value (the negative logarithm of the molar concentration that pro-
duced half-maximum contraction) was calculated from the straight-line equation between the concentration above and below the midpoint of the concentration-response curve.

Statistics. Unpaired t-test was used for molecular studies and two-way ANOVA with Bonferroni post-test was used for functional responses to compare control and Sephadex groups. A P-value of <0.05 was regarded as significant.

Results

Real-time RT-PCR standard curves.

To make real-time RT-PCR standard curves for endothelin receptor mRNA, cDNA from reverse transcription of total RNA was diluted with the PCR buffer in three sequential log concentrations (1:0, 1:10 and 1:100). The log concentrations that relate to the PCR CT-values were found to be optimal. The PCR products of endothelin type A (64 bp), type B (86 bp) and endothelin-1 (96 bp) were visualized with agarose gel (2%) electrophoresis and corresponded to their predicted size (fig. 1A).

Endothelin receptor mRNA expression.

Endothelin receptor mRNA was assessed by the real-time RT-PCR of tracheal and bronchial smooth muscle in control and in Sephadex-induced inflammation rats (fig. 1B). The endothelin type B-receptor mRNA expression of bronchial smooth muscle increased 3.9 times in Sephadex-induced airway inflammation (P<0.05). No difference was seen in tracheal smooth muscle during induced inflammation. There was no alteration in endothelin type A-receptor mRNA expression (fig. 1B).

Airway smooth muscle responses to endothelin-1 and sarafotoxin 6c.

To examine if the molecular findings had been translated into functional receptors, tracheal and bronchial smooth muscle responses to concentration-dependent applications of endothelin-1 and sarafotoxin 6c were assessed in myograph studies (fig. 2A–D).

When Sephadex treated segments was compared to control segments, we found no change in contractile force from 60 mM K⁺ buffer solution, neither in the tracheal, nor in the bronchial segments. The maximal contractile force was also tested using acetylcholine (10⁻³ mM) at the end of each experiment and the results were equal in the two groups compared (table 2).

In tracheal smooth muscle, there was no increase in the responses to endothelin-1 or sarafotoxin 6c following Se-

<table>
<thead>
<tr>
<th></th>
<th>Trachea</th>
<th>Bronchi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximal contraction</td>
<td>pEC50</td>
</tr>
<tr>
<td>Endothelin-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (n=7)</td>
<td>115.8±6.6</td>
<td>7.5±0.04</td>
</tr>
<tr>
<td>Sephadex (n=7)</td>
<td>121.7±4.8</td>
<td>7.7±0.06</td>
</tr>
<tr>
<td>Sarafotoxin 6c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (n=7)</td>
<td>85.2±3.3</td>
<td>8.5±0.07</td>
</tr>
<tr>
<td>Sephadex (n=7)</td>
<td>86.1±4.5</td>
<td>8.3±0.08</td>
</tr>
</tbody>
</table>

n=number of rats. *P<0.05.
phadex-induced inflammation compared to control at any concentration tested (fig. 2A and 2B).

In bronchial smooth muscle there was a significant increase (P<0.05) in contractile responses to both endothelin-1 and sarafotoxin 6c following Sephadex-induced inflammation (table 1 and fig. 2C and D), however the pEC$_{50}$ values of endothelin-1 and sarafotoxin 6c in bronchial and tracheal smooth muscle following Sephadex-induced inflammation did not significantly differ from control.

Discussion

The present study has shown that Sephadex-induced inflammation for 24 hr up-regulates both the endothelin type

Fig. 2. Rat tracheal (A,B) and bronchial (C,D) smooth muscle cell responses to concentration-dependent application of endothelin-1 (A,C) and sarafotoxin 6c (B,D) following Sephadex-induced inflammation (filled symbol) compared to control (open symbol). Each data point was derived from 7 rats. Mean values with S.E.M. are given. Two way ANOVA with Bonferroni post-test analysis was performed to compare endothelin-1 or sarafotoxin 6c induced contraction in the two groups; *P<0.05.
In the present study, the epithelium was removed in all segments. Removing the epithelium influences the contractile process and may affect factors such as nitric oxide when endothelin-1 binds to endothelin type B receptors (Fukuroda et al. 1994). The clearance of endothelin-1 through the endothelin type B receptors is impaired in the epithelium during asthmatic inflammation (Chalmers et al. 1992). This damaged physical barrier could be one mechanism for enhanced access of endothelin-1 to underlying bronchial smooth muscle cells.

Two other processes that also could be impaired in the epithelium during asthmatic inflammation are changes in the characteristics we have performed antagonist experiments before this study, both in tracheal and bronchial segments, using FR 139317 and BQ 788 to block endothelin type A and endothelin type B receptors, respectively (unpublished results) as well as experiments on the isolated lung preparation (Granström et al. 2004). The experiments confirmed the observations from many other studies (Henry 1993). Thus, the increased responses to sarafotoxin 6c and endothelin-1 in bronchial tissue can be explained by up-regulation of endothelin type B receptors. During the eosinophilic inflammatory process the raised level of endothelin-1 probably causes a raised consumption of endothelin B receptors, i.e. a raised turnover, explaining varying results in different studies. The mechanism behind the upregulation of endothelin type B receptors, a de novo synthesis, in airways is not known but the phenomenon has been studied in detail for blood vessels. De novo transcription and translation (Möller et al. 1997 & 1998), via protein kinase C (Uddman et al. 2002) and mitogen-activated protein kinases (Henriksson et al. 2003; Uddman et al. 2003) have been shown. Puta-
tively, a similar regulatory mechanism could take place in bronchi but this requires further analysis. Another mechanisms for regulation of endothelin-receptors in airway inflammation may hypothetically occur via cytokines such as tumour necrosis factor-α and interleukin-1α. Our group has demonstrated that such a phenomenon can occur in vascular smooth muscle cells (Leseth et al. 1999; Uddman et al. 1999). During airway inflammation cytokines derived from inflammatory cells could induce both increased levels of endothelin-1 and up-regulation of endothelin type B receptors, which synergistically enhance contractility of the airway smooth muscle.

Acknowledgements
This work was supported by grants from the Swedish Research Council (project no. 05958) and the Heart and Lung Foundation.

References

