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Abstract

Abstract. This paper examines load balancing issues relating to a distributed
CORBA-based Service Control Point. Two types of load balancing strategies are
explored through simulation studies: (i) a novel ant-based load balancing algo-
rithm, which has been devised specifically for this type of system. This algorithm
is compared to more traditional algorithms, (ii) a method for optimal distribution of
the computational objects composing the service programs. This is based on math-
ematically minimising the expected communication flows between network nodes
and message-level processing costs. The simulation model has been based on the
recently adopted OMG IN/CORBA Interworking specification and the TINA Ser-
vice Session computational object model.

1 Introduction
There is increasing interest in the use of object-oriented Distributed Processing En-
vironments (DPE) as the infrastructure for new telecommunications service platforms
as they promise the benefits of more flexible service design and service deployment,
increased software reuse and increased interconnection capabilities with external re-
sources such as the Internet and private databases. One such technology, the Object
Management Group’s (OMG) Common Object Request Broker Architecture (CORBA),
has already gained acceptance in the industry for use in network management applica-
tions and there have been recent standardisation initiatives for its introduction into the
Intelligent Network (IN) [3]. One of the first evolutionary steps towards the introduc-
tion of CORBA to the IN has been seen as the replacement of the Service Control
Point (SCP) with a CORBA-based distributed system [6]. This approach allows invest-
ment in most of the legacy IN infrastructure to be preserved while bringing to bear the
advantages of CORBA.

Although CORBA promises many technological and business advantages for this
type of application, there are important performance concerns that need to be addressed
so that distributed CORBA-based systems can provide the real-time performance and
reliability characteristics that are required of telecommunications systems. Sharing of
load between the nodes of the distributed system is one important issue that can greatly
impact on overall performance and reliability. This paper examines this issue, taking
into account both processing load due to service related tasks and processing load due
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to inter-node communications, which can be quite significant in CORBA-based sys-
tems. Two solutions to load sharing in this type of environment are examined. (i) The
choice of location of service objects on nodes in the network can greatly effect perfor-
mance. An optimal method is used, which minimises total processing costs. Although
location of service objects provides a basis for combating loading problems, it is static
i.e. determined at design time based on expected service demands and it does not ac-
count for queuing and stochastic effects in the network. (ii) More dynamic methods
are required to cope with variations in the arrival rates of service requests. This pa-
per presents an ant-based load-sharing algorithm along with several simpler algorithms
that are used for benchmarking purposes. Both solutions have been incorporated into a
CORBA-based SCP simulation model and results are presented in this paper.

Section 2 of this paper introduces the recent developments in the area of CORBA in
the Intelligent Network. Section 3 describes the simulation model, which is based on
the IN/CORBA Gateway and the TINA Service Session components and has been im-
plemented using MIL3’s Opnet Modeler. Three test services, Virtual Private Network,
Ringback and Call Forwarding have been simulated. In Section 4, the performance
issues relating to these types of networks are discussed. Section 5 presents an optimal
service object placement method. Section 6 describes the load sharing algorithms that
have been simulated and Section 7 presents simulation results.

2 CORBA-Based IN
Much of the investigation into the application of CORBA to IN systems has been initi-
ated by the Eurescom P508 project [4], the goal of which was to determine the options
for evolving from legacy systems towards TINA. A major result of the project was
that the gradual introduction of a TINA DPE (i.e. CORBA technology enhanced with
real-time capabilities) into the existing IN environment represents a fundamental pre-
requisite for such an evolution. During the course of the P508 project, White Papers
[1] and [2] were produced and submitted to the OMG in order to support the then
emerging activities on IN/CORBA interworking. These White Papers were targeted at
providers of information technology solutions and had the purpose of stimulating their
interest towards telecommunication operator specific needs. They analyse a specific
element of the problem area: the introduction of CORBA into the Intelligent Network.
The central idea put forward is to adopt the OMG CORBA standard, enhancing it to
make it suitable for telecommunications systems, particularly IN. Subsequently, the
work was continued within the Telecommunications Domain Task Force of the OMG,
which has recently produced a standard [3]. This standard focuses on the interworking
of CORBA-based systems with TC-User applications, such as traditional Intelligent
Network and mobile systems.

The primary goal of the IN/CORBA Interworking standard is to provide interwork-
ing mappings and supporting CORBA services that enable traditional IN systems (such
as a Service Switching Point (SSP)) to interwork with CORBA-based implementations
of IN systems (such as a CORBA-based Service Control Point (SCP). In order to do
this, the standardised interworking mappings produce IDL for a CORBA object model
that provides interfaces to legacy IN systems from the CORBA domain and also pro-
vides interfaces to CORBA-based IN applications from legacy IN systems. In effect,
this object model may be used to build a gateway that provides protocol conversion
and alignment of execution semantics between the IN and CORBA domains, allowing
CORBA-based services to be introduced to the IN.
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Figure 1 below shows the main IDL interfaces defined by the standard and how they
interact to provide an interworking function (gateway) between the IN and CORBA
domains. A more complete description of the standard may be found in [5].

A legacy SSP interacts with a CORBA-based SCP using the IN/CORBA object
model defined in the Interworking specification. The objects shown in grey are CORBA
objects whose interfaces are defined in OMG IDL in accordance with standard. The
Gateway Administration object (GWAdmin) performs the functions of name translation
and object location between the two domains. Messages arriving from a legacy SSP are
addressed to a particular SS.7 Application Entity (AE), identified by a particular AE
title. The GWAdmin provides an interface for translating the AE title to the CORBA
object reference of a Service Interface Factory object, which may create instances of
the appropriate Service Interface Object. This Service Interface Object acts as a proxy
for the CORBA-based SCF. In order to represent the SSP in the CORBA domain, a
SSF Proxy object is required. This object provides an IDL interface for invocation
of INAP operations on the SSF from the CORBA domain and performs the protocol
translation and communication with the SS.7 stack. The SSF Proxy Factory provides a
standardised means of instantiating a SSF Proxy. The Service Interface Object provides
a complementary IDL interface for invocation of INAP operations from the SSF to
the CORBA-based SCP. Protocol translation for these invocations is provided in the
gateway.
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IN/CORBA Gateway CORBA−based SCP

SS7 Stack

Figure 1: Main elements of the IN/CORBA Interworking Gateway

The Service Implementation Objects are not defined by the specification and may
be implemented by some arbitrary set of fine-grained CORBA objects, which provide
the functionality required for service execution. One such model based on the TINA
Service Session, which forms the basis for the simulation studies, is detailed in the next
section.

2.1 TINA-based Computational Objects
With this approach, the IN service logic and data, residing on the CORBA-based SCP,
are modeled as a subset of the computational objects composing the TINA Service Ar-
chitecture. An approach given in [6] is adopted, which defines methods for modeling
IN services executing in a TINA environment. Here it is assumed that all calls orig-
inate and terminate on the IN side so that neither the calling nor called party uses a
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TINA end-system and thus, is not modeled as a TINA user. This is appropriate for the
CORBA-based SCP scenario as all SSPs resides in the IN domain and these are the
only originators of calls. As a result, the IN service capabilities may be encapsulated
entirely within the TINA Service Session COs. That is, the TINA Access Session is
ignored and the COs that provide this functionality are not required. All calls are es-
tablished through the IN Service Switching Function (SSF) under the supervision of
the TINA Service Session Manager (SSM).

With this approach, the service capabilities are modeled within a User Application
(UAP), interacting with an Service Session Manager (SSM), which makes use of a
service specific IN Service Support Object (SSO), e.g. a database containing number
translation tables. As there is no call-party specific access session, the User Agent
(UA) is anonymous and acts on behalf of all IN users. The Provider Agent (PA) is also
generic in this case. Figure 2 below shows the COs required for an implementation of
a Virtual Private Network (VPN) service.

SF

GSEP SSO

UAP

PA UA

SSF SSFP SCFP

SSM

Figure 2: Computational Objects and the interactions required for a VPN Service

Generally, for any service session, on receipt of the initial service request from
the SSF, the SSF Proxy (SSFP) passes the initial call to the UAP via the SCF Proxy
(SCFP), which in turn initiates a corresponding TINA service session via the PA. The
PA interacts with a UA in order to perform a generic access session for service session
establishment. Once the SSM has been created and initialised by the Service Factory
(SF), a control relationship is established between the IN SSF and the TINA SSM.
The interactions between components are thence dependent on the specific service in
execution.

Note that the IN/CORBA Interworking is modeled by considering only the core
objects necessary for communication between the IN and CORBA domains during a
service session i.e. the Proxy objects. The SSF Proxy object accepts INAP operations
from the SSF over SS7 and translates them to CORBA invocations on the SCF Proxy.
The SCF Proxy accepts INAP IDL invocations from the UAP and GSEP, transfers them
to the SSF Proxy object which translates them to the corresponding INAP operations
on the SSF. Proxies for the Intelligent Peripheral (IP) will also exist if required by the
service. IP Proxies act in an identical manner to SSF Proxies.

3 CORBA-Based SCP Simulation Model
This section provides an overview of the distributed CORBA-based SCP model which
has been developed to provide the basis for simulation studies of likely performance
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bottlenecks and for study of suitable strategies for load balancing in this type of envi-
ronment.

In this scenario, the Intelligent Network Service Control Function (SCF) and Ser-
vice Data Function (SDF) are no longer encapsulated within single functional enti-
ties but are decomposed into fine-grained Computational Objects (COs) which use the
CORBA Object Request Broker (ORB) for communication. These objects communi-
cate with entities in the legacy Intelligent Network via the IN/CORBA Gateway. Thus,
the service logic programs and data that normally reside at the SCP and SDP are dis-
tributed across a multi-node network. Figure 3 shows the general network configura-
tion of the CORBA-based SCP scenario and how it interconnects to a legacy Intelligent
Network.

Nodes

GW GW

SS. 7

SSP1 SSPM IP1 IPNe

CORBA
Service

Figure 3: Network Scenario for CORBA-based SCP

The scenario under study consists of a network of ten CORBA Service Nodes and
two IN/CORBA Gateway Nodes. Gateway Nodes may communicate with all CORBA
Service Nodes and all Service Nodes may communicate with each other i.e. the Gate-
way Nodes and Service Nodes form a fully connected network which is connected
to the SS.7 Network at the Gateway Nodes. The network connection scenario in the
CORBA domain is intended to represent machines interconnected over a local area
network. The number of Service Nodes has been chosen so that adequate processing
power is available to replace the processing power provided by a legacy SCP. It is as-
sumed that individual Service Nodes have considerably less processing capacity than
a legacy SCP and that service execution requires considerably more processing due
to distribution. It is assumed that two Gateway nodes are required so that there is an
element of fault tolerance within the system. The Gateway Nodes execute the function-
ality required for interworking between SSPs, IPs and the CORBA-based SCF, which
is a distributed application executing on the CORBA Service Nodes. It is assumed that
the Gateway function consists of the standard IN/CORBA interworking components
described in Section 2. Thus, each Gateway Node executes CORBA Proxy objects,
which provide an interface for invocation of IN operations on the SSP and IP from
objects in the CORBA domain. The Gateway Nodes also execute the functionality that
translates incoming messages from the legacy IN entities to CORBA invocations on
SCF Proxies, which reside in the CORBA Service Node network. All other COs re-
quired to complete service execution reside on the CORBA Service Nodes. The legacy
IN entities (SCP and IP) and the SS7 network are not modeled explicitly but are viewed
as the source and sink of messages arriving to and departing from the Gateway Nodes.
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3.1 Execution Model
The processing time for a service is decomposed into processing times for the set of
messages passed between COs that are required to complete service execution. Each
message passed between two COs has associated with it a CORBA marshaling (proto-
col encoding) time on the client-side node, a CORBA demarshaling (protocol decod-
ing) time on the server-side node plus a processing time for completion of some service
specific task on both the client and server side nodes.

DISTRIBUTED
Client COServer COClient CO ORB ORB Server CONetwork

T

T

T

T

T

T

cp

co

sp

sp

cp

so

NON−DISTRIBUTED

Figure 4: Execution times for messages passed between COs. In the right hand fig-
ure, two COs are executing on different processors (i.e. COs are distributed). The
processing times TCP (service processing time) and TCO (marshalling time) give the
total processing time at the client node associated with this message. Similarly, TSO

(demarshalling time) and TSP give the total processing time at the server node. In the
left hand figure both COs are executing on the same processor so the total processing
time is given by TCP and TSP .

Marshaling, demarshaling and processing times remain constant for a particular
message over all sessions of a service. If the communicating COs are located on the
same node, the marshalling and demarshalling times are not included in the overall
processing time for the message as CORBA is not required for communication.

The marshalling and demarshalling times used for simulation are based on times
measured on a commercial ORB (Visibroker 3.3 running on a Sparc Ultra 5). The IDL
used for determining timing measurements is based on the IN/CORBA specification
and the TINA Ret Reference Point specification so that each message has associated
with it the appropriate marshaling and demarshalling times. Processing times for actual
service related tasks are based on the processing times for the service executing on a
legacy SCP.

An asynchronous invocation mechanism is assumed, such as the CORBA Messag-
ing Service. Thus, a CO making a CORBA method call does not block the process
while waiting for a response from the server side. As a result, it is also assumed that all
CORBA objects on a node execute in a single thread of execution and that the servers
are modeled as a single FIFO job queue.

It is assumed that delays in network transmitter queues and transmission times on
the network are negligible compared to delays due to marshalling and demarshalling of
CORBA method calls between nodes. Experiments have shown that marshalling and
demarshalling times for the IDL used for this model are typically an order of magnitude
greater than transmission times over IP on a fast network, such as 100Mbps Ethernet.
It is also assumed that the order of messages is preserved in the network and that there
is no message loss.
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(25) Continue

(1) InitialDP
(2) InitialDP

(3) InitialDP

(5)start_service
(6) create_session

(7) initialize
(6a) []

(9) query

(19)[query_result]
(11) connect

(13) Connect
(12) Connect

(14) Connect

(16) RequestReportBCSMEvent
(17) RRBCSME

(18)RRBCSME

User Interaction A1

SSOGatewaySSF SCF Proxy UAP GSEP PA UA SF SSM

(5a) []
(4a) []

(4) start_service

(15) monitor_callee_answer

(8) initial_message

User Interaction A2

(19) ERMCSM
(20) ERBCSM

(21) ERBCSM

(26) Continue

(27) Disconnect
(28) TDisconnect

(29) TDisconnect
(30) callee_disconnected

(32) Release Call
(33) Release Call

(34) Release Call

(36) end_session_notification

(35) end_session_notification

(31) release_call

(23) continue_call

(22) callee_answered

(24) Continue

Figure 5: Message Sequence Chart for Test Service A

3.2 Test Services
Three different test services have been chosen to execute on the CORBA-based SCP in
order to study the performance issues:

• Service A Virtual Private Network

• Service B Ringback

• Service C Restricted Access Call Forwarding

The COs required for Service A and their intercommunications are shown in Fig-
ure 5 (above) Service B and Service C have been similarly defined. The duration of
User Interaction A1 (phone ringing) is drawn separately for each service session from
a negative exponential distribution with a mean of 5 seconds. The duration of User
Interaction A2 (Conversation period) is drawn separately for each service session from
a negative exponential distribution with a mean of 100 seconds. It is assumed that ser-
vice users never abandon ongoing service sessions and thus the messaging for handling
these cases does not need to be defined.
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4 Performance Issues
One of the most important benefits of distributed computing is the ability to split com-
putational tasks among multiple processors. However, the distribution of software ob-
jects across different physical nodes can cause severe performance problems such as
synchronisation of memory or databases, as well as much inter-object communication
between nodes, which creates a large computational overhead. Thus, it is important to
be aware of how the distribution of software objects affects performance. This section
first describes some areas where performance issues are likely to appear, then discusses
three related areas that can be taken into account to reduce these problems.

4.1 Problems
The performance of a telecommunications system is important for several reasons.
Firstly, the users of the system have several expectations, such as fast system response
times and reliability. Secondly, the network operators require their systems to operate
as efficiently and cost effectively as possible.

One major factor in the real time performance of a CORBA-based system is the
processing overhead caused by inter-node communication. Typically the transmission
times of a message are very low when compared to the time required by protocol wrap-
ping and unwrapping (marshalling and unmarshalling in CORBA) at the sending and
receiving node. Thus, too much, or simply inefficient distribution of objects on physi-
cal nodes can easily cause overload due to protocol overhead alone.

The characteristics of traffic within the CORBA-based SCP are different from the
traffic in normal non-telecom CORBA-applications. The real-time characteristic of
teletraffic is more "now or never" than normal traffic which has more stricter rules
for finishing a task than finishing it within a given time frame. The "now or never"
property of teletraffic allows us to block incoming calls if they would result in degraded
performance for the already accepted ones.

4.2 Problem Solutions
Solving the performance problem requires several different techniques and strategies.
Below is a list of three different areas where large performance gains are likely to be
found.

1. Object distribution: This concerns the placement of objects on different nodes.
Different configurations can cause very different communication patterns and,
as communication is very computationally expensive, we want to make sure that
we have no more communication than is necessary. While object distribution can
be static, meaning that objects stay where they were placed at design time, it is
possible to move objects around during run time and thus dynamic distribution
schemes are possible. One must note here, however, that since moving objects
around is a computationally intensive operation it is not likely to be feasible
solution to solve short-term traffic transients.

2. Load Balancing: When a object distribution has been decided upon, there must
be some kind of mechanism that directs the object remote procedure calls if there
are multiple nodes that offer the same object type. It is the purpose of the load
sharing mechanism to direct these procedure calls so that they, if possible, keep
some nodes from being overloaded while others are almost idle. Load sharing is
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difficult since the object and node which we chose might have favorable condi-
tions at the decision time, but these conditions can change quickly and we must
therefore take some account of future load as well.

3. Load control: When load sharing is not enough to handle the offered amount
of traffic, then some kind of load control mechanism is necessary. Load control
is not usually used in distributed systems, since the traffic must get through if
the application is to work. As it was said earlier, this is not necessarily true in
a telecommunications environment, where it is more important to finish some
work in time rather than to finish all work long overdue.

This paper is concerned with solutions 1 and 2. Future work will explore solution
3.

4.3 Measuring Performance
Measuring performance in this type of environment can be difficult due to the very
flexible nature of the application. Below are a number of possible considerations which
have been used in the past for evaluating the effectiveness of performance controls:

1. Throughput: A traditional comparison, throughput measures the number of fin-
ished service requests per time unit.

2. Scalability: Scalability is very important for an algorithm, since we want our
algorithms to work for any network size.

3. Transient survival: Due to the high reliability requirements on telecommunica-
tion networks, the algorithms must be able to quickly adapt to changing condi-
tions such as traffic peaks or node failures, which might cause rapidly changing
traffic patterns.

4. Algorithm Complexity: Since the system is very complex to start with, we want
the algorithms to be simple and easily implemented. Also, simple algorithms
tend to be fast and have little overhead.

In this paper we have chosen to use two simple measurements for evaluation of our
performance controls:

1. Mean Service Completion Time: This is an important factor for a realtime system.
It also gives an indication of the level of queueing delays in the network.

2. Maximum Load: This is the mean load on the highest loaded node in the network
and gives an indication of the effectiveness of the load balance amongst network
nodes.

5 Optimised Computational Object Distribution
The choice of location for service objects on nodes in the network can greatly effect
performance. If objects requiring large amounts of processing are clustered on a small
number of nodes then queues lengths increase on these nodes or worst, an overload can
occur. Conversely, if objects are distributed too much then large amounts of unnec-
essary protocol processing is incurred which lengthens the service time. This section
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describes an optimal method that allows processing capacity in the network to used
efficiently under normal loading conditions. The problem is stated below.

With the exception of the Proxies, there is no restriction on assignment of COs
to CORBA Service Nodes. The SCF and IP Proxies reside only on the two Gateway
Nodes, as these objects need to communicate directly with the SS.7 stack. It is assumed
that an instance of a service, initiated through an SCF Proxy on a particular node, may
use only SCF and IP proxies on that same node for the duration of the service execution.
All other COs may be duplicated across many nodes. However, COs are assumed to
be atomic i.e. may not be decomposed and distributed between nodes. The assignment
of these COs to network nodes is determined by minimising the total processing cost
on all nodes given the expected user demands from the two Gateway nodes for each
service and given the maximum load allowed on each of the Gateway and CORBA
Service nodes. This approach is similar to that found in [7] where the communications
costs between COs are to be minimised.

The problem may be formulated as a Linear Programming problem in the form
given in Equation (1). The variable for minimisation (vector x) denotes the processing
costs associated with the total traffic flow during a service session between each com-
municating component pair, relative to the processing cost due to the traffic offered to
the SSF Proxy CO by the SSF for that service. Note that it is assumed in the formula-
tion of problem that copies of all COs reside on all nodes. If in the solution, the costs
associated with a particular CO copy on a particular node are all zero, then that CO
need not exist on the node.

In the objective function, C is simply the unit matrix as it is required that all pro-
cessing costs in the network are minimised and that all costs are of equal importance.
This form of the objective function determines that the problem is linear.

The A matrix and b vector in the constraint inequality are determined by: (i) the
number of units of input traffic load offered by each SSF, for each service. These are
equality constraints; (ii) the relative processing costs between associated component
pairs. These are also equality constraints with each constraint expressing the processing
cost associated with a component pair relative to the processing cost associated with
one other component pair. An adequate number of constraints are required to associate
all components in the service graphs. The relative processing costs are derived by
summing the processing times for all messages passed between each pair of COs during
a service session. When both COs reside on the same node the costs express the sum of
all client and server service processing times for interactions between these COs. When
the COs reside on different nodes then the costs also include ORB processing costs for
both client and server; (iii) the limit on processing capacity for each node. These are
inequality constraints that limit the sum of all costs associated with a node. These
constraints may be set to give a component distribution that is optimal at a particular
operating point, for example, to give a maximum of 40% loading on all the nodes.

minimize CT x (1)
s.t. Ax ≤ b

l ≤ x ≤ u

The bounding inequality is defined to constrain x to be positive. There is no upper
bound on x as the limiting factor is the total processing cost associated with each node,
which is expressed as part of the constraints ((iii) above).
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The solution to this minimisation determines the optimal placement of COs in the
network. That is, if the costs associated with a particular copy of a CO on a node are
all zero, then the CO is removed from that node. Having removed all such null COs,
the remaining COs are optimally placed in the network. The solution also determines
the relative flows between each CO and copies of the COs with which it communi-
cates. That is, the routing probabilities for requests between COs are determined by
the solution. These routing probabilities may be used as the basis for a load balancing
algorithm which aims to minimise overall network load. Such an algorithm is presented
in Section 6.

6 Load Balancing Algorithms
In more tightly coupled systems, generally, two approaches to load balancing have
been taken: an idle processor may request more work from other processors or a busy
processor may send excess work to idle processors. These approaches do not work very
well in CORBA-based distributed systems since it costs too much in terms of protocol
processing to move jobs. In this type of systems, load balancing can be done when
an instance of a service component exists at more than one node. The load balancing
algorithm is required to choose the most suitable node on which the component shall
be executed, given certain data relating to the current state of the network nodes.

The main purpose of our work is to investigate so called ant algorithms, where
mobile agents are used to find the most suitable node, in terms of low load, on which
to execute the required component. To allow evaluation of this strategy, two simple
benchmark algorithms, described below, have also been implemented. In order to de-
scribe the operation of these algorithms, the following notation is introduced. Let R be
the set of all nodes which contains service component r. If the next service component
needed is r we have to choose one of the nodes in R where r will be executed.

6.1 Benchmark Algorithms
The benchmark algorithms have been chosen to allow the lower bounds (or close to the
lower bounds) of the performance measures to be established. These algorithms are not
intended to be viable as a practical solution to the load balancing problem but allow the
ant based algorithms to be evaluated against theoretically near-optimal solutions. The
benchmark algorithms are as follows:

1. Shortest queue: the node in R with the shortest processor queue is chosen. If
nodes with the same queue lengths are found, the lowest numbered node is
chosen. We assume that all nodes have instantaneous knowledge of the queue
lengths in the nodes in R. This assumption obviously renders the algorithm im-
practical. However, the results are expected to give close to the lower bound of
the Service Completion Time as queuing delays at nodes are maintained at a low
level.

2. Random: one node is chosen randomly in R. The probability for choosing a
particular node is derived from the static routing scheme determined by optimi-
sation (see Section 5). This assumption renders the algorithm impractical as it
does not respond to transients and drifts in service mix. However, assuming con-
stant service mix, the algorithm it expected to maintain loading at a near-optimal
level.
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6.2 Ant Algorithms
Ants are simple agents that are sent out by the nodes to probe the load status of all nodes
in the system. An ant is sent away from a node (called the sending node) to another
node (called the receiving node) and then returns to the sending node. The sending and
receiving node may be the same node. In our investigations we have compared three
load status parameters: queue length, load of the receiving node and the roundtrip time.
The load of a node is measured as the proportion of an interval the server is busy. The
length of these intervals is 0.1 seconds. In our model the ants are handled like this:

1. First the ant is created in the sender node. It is put back in the high priority
processor queue of the sender and after queuing it is wrapped into a CORBA
protocol and sent to the receiving node.

2. At the receiving node the ant is queued and its CORBA protocols are unwrapped.
After this it is queued once more and the queue length or load is put into the ant.
Then the ant is queued once more after which it is wrapped into the CORBA
protocols again and sent back to the sending node.

3. When the ant has returned to the sender it is queued in a high priority queue, its
CORBA protocols are unwrapped, it is queued once more after which its load
status information is stored in a load status table as described below.

We assume that each node in the network keeps a load status table with information
about all nodes in the network. When an ant returns to the sender, the load status for
the receiving node is updated in the table.

The values used can be either the receiving node’s queue length, its load or the
roundtrip time of the ant. For all these measures we have that the higher the load status
value, the fever calls should be sent to the node. The load status table is used in this
way to chose a node in R: Assume that the load status of node i is l(i). Observe that
l(i) may be queue length, load or roundtrip delays. Then we calculate probabilities for
all nodes in R as follows:

p(i) = l(i)−k

∑
j∈R

l(i)−k

With probability p(i) node i is chosen. In this way there is a larger probability of
sending a call to a node with a low load status value. The k in the calculation is the
factor that describes the randomness of the weights. k = 0 is the case where every
node is chosen with equal probabilities, larger k’s give larger weights to values on the
limits.

Ants are generated in a node according to a Poisson process with rate λ. The gen-
eration rate is an important parameter. If it is too low, the values in the load table will
not be updated fast enough which could lead to oscillations. If it is high, the ants them-
selves will increase the load of the system. When an ant has been generated, it must be
decided where to send it. We have chosen the following algorithm: with probability α

the receiving node is chosen randomly with equal probability for all nodes, with prob-
ability 1 − α the node with the lowest value in the load status table is chosen, i.e. the
node with lowest load. Thus we have two parameters λ and α that must be tuned.

7 Simulation Results and Analysis
Several simulations were run using the model defined in Section 3. Both the bench-
mark algorithms and the three ant-based algorithms were simulated. The simulation
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parameters are listed in Table 1 and the simulation results are presented in Table 2.
As indicated in Table 1, all algorithms were simulated under a low loading and

high loading scenario. The service mix is balanced in each case, i.e. the mean arrival
rates for all three services are equal in each case. These arrival rates were chosen to
give an average load of about 30% in the low load case and about 80% in the high load
case. The services executing in the simulation are Virtual Private Network (Service A),
Ringback (Service B) and Restricted Access Call Forwarding (Service C), described
in Section 3.2. The distribution of service objects was obtained using the method de-
scribed in Section 5. This distribution is optimised for the given arrival rates. The ant
spawning intervals for the ant-based algorithm were tuned for each variation and are
given in Table 1.

Simulation Parameters
Arrival Rate Low Load 225s−1

Arrival Rate High Load 675s−1

Object distribution Optimised for balanced service mix
Service Types Services A, B and C
Service Mix Balanced
Ant Spawning Interval (Load Query) 0.05s−1

Ant Spawning Interval (Round Trip) 0.01s−1

Ant Spawning Interval (Shortest Queue) 0.015s−1

Table 1. Simulation Parameters

Benchmark Ant-Based
Random Shortest Load Round Shortest

Queue Query Trip Queue
Low Load Service Time 12.4ms 11.4ms 12.4ms 13.0ms 12.9ms

Max Load 25.8% 55.3% 25.6% 30.4% 28.9%
High Load Service Time 35.2ms 25.1ms 34.6ms 40.9ms 40.5ms

Max Load 78.7% 87.0% 74.5% 81.7% 81.5%

Table. 2. Simulation Results

As indicated in Table 2, The Mean Service Completion Time was measured for each
algorithm and averaged over all three services. Note that the User Interaction times,
indicated in Section 3.2, are excluded from this measurement as they are independent
of loading in the network. The Max Load value indicated is the load on the most heavily
loaded node in the network.

Considering the performance of the benchmark algorithms, as expected the Shortest
Queue algorithm performs best overall in terms of minimising the service time. This
is due to the fact that queue sizes are kept as short as possible. This method will
not perform as well when there is a large difference in the processing required from
message to message, as queue size will not accurately indicate how long an arriving
message will need to wait for service. However, for the service simulated, there is
not a large difference in message processing and thus the Service Time is close to the
minimum and gives a good benchmark. The uneven loading, indicated by the high
Max Load value for the Shortest Queue benchmark algorithm is due to the fact that
the node with the lowest number is chosen when several queues have the same length.
This condition will occur frequently at low loading levels when there is a significant
probability that the queue length is small.
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The Random benchmark algorithm gives a low Max Load value as expected, how-
ever, this is not the lowest overall value. This is because of the static nature of the
algorithm. The algorithm will give minimum loading on all nodes only at exactly the
intended operation point i.e. perfectly balance service mix with deterministic arrivals.
To avoid this problem, future work will consider combining this algorithm with a more
dynamic algorithm. The service times observed for the Random benchmark algorithm
are increased compared to the Shortest Queue benchmark due the constraint on node
loading. Because the optimisation is constrained to maintaining load below a particular
level on all nodes, service execution is more distributed and thus service times increase
due to increased protocol processing costs. Future work will consider "softening" this
constraint to allow load to be less balanced but so that shorter overall service execution
times can be obtained.

The simulation results show that the Ant-Based algorithms compare quite favorably
with the benchmark results. In the low load condition, the service times are comparable
to the service time for the Shortest Queue benchmark. The Max Load for the Ant-Based
algorithms is also close to the value for the Random benchmark for low loading. For
high loading, the service times increase considerably compared to the Shortest Queue
benchmark. Further work is required to refine the Ant-based algorithms. In the results
presented here, the weighting factor (k) has been set to 1. Results are required to
investigate the performance with higher weighting factors and to investigate tuning of
the ant spawning interval.

Overall, further work is required in a number of areas. The results presented here
were generated under stable network conditions. In order to fully assess the algorithms,
the behavior under transient traffic conditions needs to be studied. Overload protect
has not been considered here and needs to be investigated and incorporated into the
algorithms. The algorithm computational complex and robustness also needs some
consideration.

8 Conclusions
This paper has presented a number of approaches for improving the performance of a
distributed CORBA-based Service Control Point. Although distributed systems tech-
nologies can contribute greatly to this area by allowing processing requirements to be
divided among a large number of less expensive processors, it is unwise to assume that
increasing processing power or memory sizes of network processors ad infinitum will
alone guarantee high performance. The solutions offered in this paper aim to increase
the efficiency and cost effectiveness of resources with a view to making CORBA-based
solutions more suitable for high performance, reliable systems required by telecommu-
nications environments.
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