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Triangulation of Points, Lines and Conics

Klas Josephson and Fredrik Kahl

Centre for Mathematical Sciences,
Lund University, Lund, Sweden

{klasj, fredrik}@maths.lth.se

Abstract. The problem of reconstructing 3D scene features from multi-
ple views with known camera motion and given image correspondences is
considered. This is a classical and one of the most basic geometric prob-
lems in computer vision and photogrammetry. Yet, previous methods fail
to guarantee optimal reconstructions - they are either plagued by local
minima or rely on a non-optimal cost-function. A common framework
for the triangulation problem of points, lines and conics is presented. We
define what is meant by an optimal triangulation based on statistical
principles and then derive an algorithm for computing the globally op-
timal solution. The method for achieving the global minimum is based
on convex and concave relaxations for both fractionals and monomials.
The performance of the method is evaluated on real image data.

1 Introduction

Triangulation is the problem of reconstructing 3D scene features from their pro-
jections. Naturally, since it is such a basic problem in computer vision and pho-
togrammetry, there is a huge literature on the topic, in particular, for point
features, see [1,2]. The standard approach for estimating point features is:

(i) Use a linear least-squares algorithm to get an initial estimate.
(ii) Refine the estimate (so called bundle adjustment) by minimizing the sum of

squares of reprojection errors in the images.

This methodology works fine in most cases. However, it is well-known that the
cost-function is non-convex and one may occasionally get trapped in local min-
ima [3]. The goal of this paper is to develop an algorithm which computes the
globally optimal solution for a cost-function based on statistical principles [4].

In [3], the two-view triangulation problem for points was treated. The solution
to the optimal problem was obtained by solving a sixth degree polynomial. This
was generalized for three views in [5], but the resulting polynomial system turns
out to be of very high degree and their solution method based on Gröbner bases
becomes numerically unstable. In [6] convex linear matrix inequalities (LMI) re-
laxations are used to approximate the non-convex cost-function (again, in the
point case), but no guarantee of actually obtaining the global minimum is pro-
vided. For line and conic features, the literature is limited to closed-form so-
lutions with algebraic cost-functions and to local optimization methods, see [1]
and the references therein.
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In this paper, we present a common framework for the triangulation problem
for any number of views and for three different feature types, namely, points,
lines and conics. An algorithm is presented which yields the global minimum
of the statistically optimal cost-function. Our approach is most closely related
to the work in [7], where fractional programming is used to solve a number of
geometric reconstruction problems including triangulation for points. Our main
contributions are the following. First, we show how a covariance-weighted cost-
function - which is the statistically correct thing to consider - can be minimized
using similar techniques as in [7] for the point case. For many point and corner
detectors, e.g., [8,9], it is possible to obtain information of position uncertainty
of the estimated features. Second, we present a unified framework for the tri-
angulation problem of points, lines and conics and the corresponding optimal
algorithms. Finally, from an algorithmic point of view, we introduce convex and
concave relaxations of monomials in the optimization framework in order to
handle Plücker constraints appearing in the line case.

2 Projective Geometry

In the triangulation of points, lines and conics, it is essential to have the formu-
lation of the projection from the three dimensional space to the two dimensional
image space in the same way as the standard projection formulation used in the
point case. For that reason we begin with a short recapitulation of the projection
of points with a standard pinhole camera. After that the methods to reformulate
the projection of lines and quadrics into similar equations are considered. For
more reading on projective geometry see [1].

2.1 Points

A perspective/pinhole camera is modeled by,

λx = PX, λ > 0, (1)

where P denotes the camera matrix of size 3 × 4. Here X denotes the homoge-
neous coordinates for the point in the 3D space, X = [U V W 1]T , and x denote
the coordinates in the image plane, x = [u v 1]. The scalar λ can be interpreted
as the depth, hence λ > 0 if the point appears in the image.

2.2 Lines

Lines in three dimensions have four degrees of freedom - a line is determined
by the intersection of the line with two predefined planes. The two intersection
points on the two planes encode two degrees of freedom. Even if lines only have
four degrees of freedom, there is no universal way of representing every line in
P4. One alternative way to represent a line is to use Plücker coordinates. With
Plücker coordinates, the line is represented in an even higher dimensional space
P5. The over parameterization is hold back by a quadratic constraint that has to
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be fulfilled for every line. In [1] definitions and properties for Plücker coordinates
are described. The big benefit with Plücker coordinates is the Plücker camera
that makes it possible to write the projection of lines as λl = PLL. A drawback
on the other hand is that they have to fulfill the quadratic constraint

l12l34 + l13l42 + l14l23 = 0, (2)

otherwise projection of lines can be formulated in the same manner as point
projections, but now it is a projection from projective space of dimension 5 to
the image. Hence the line camera matrices are of dimension 3 × 6.

2.3 Conics

As for lines, we are interested in writing the projection of a quadric to an image
conic in the form of the projection formula for points. To do that we use the pro-
jection formula of the duals to the quadric conics. These duals are the envelopes
of the structures. For conics, the envelope consists of lines and for quadrics, the
envelope consist of all planes tangent to the quadric locus. Provided the quadrics
and conics are non-degenerate, one can show that the equations for the duals are,
UT LU = 0, where U are homogeneous plane coordinates and L = C−1. Similar
for conics, one gets, uT lu = 0, where u are homogeneous line coordinates and
l = c−1. The projection for the envelope forms are,

λl = PLPT λ �= 0. (3)

Now we want to reformulate (3) so it appears in a similar way as the point
projection formula. This can be done in the form, λl̃ = P

C
L̃, where l̃ and L̃

are column vectors of length 6 and 10 obtained from stacking the elements in l
and L. P

C
is an 6 × 10 matrix. The entries in P

C
are quadratic expressions in P .

As for the line case, it is not possible to make the interpretation that the
scalar λ of the projected conic corresponds to the depth.

3 Triangulation

In triangulation the goal is to reconstruct a three dimensional scene from mea-
surements in N images, N ≥ 2. The camera matrices Pi, i = 1 . . .N , are consid-
ered to be known for each image. In the point case, the camera matrix can be
written P = (p1, p2, p3)T , where pj is a 4–vector. Let (u, v)T denote the image
coordinates and X = (U, V, W, 1)T the extended coordinates of the point in 3D.
This gives the reprojection error

r =
(

u pT
3 X − pT

1 X

pT
3 X

,
v pT

3 X − pT
2 X

pT
3 X

)
, (4)

Further,
∑N

i=1 ‖ri‖2
2 is the objective function to minimize if the smallest repro-

jection error is to be achieved in L2-norm. To use the optimization algorithm
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proposed in this paper (see next section), it is necessary to write the error in
each image as a rational function f/g where f is convex and g concave.

It is easy to see that the L2-norm of the residual in (4) can be written as
‖r‖2 = ((aT X)2 + (bT X)2)/(pT

3 X)2, where a, b are 4-vectors determined by the
image coordinates and the elements of the camera matrix. By choosing f =
((aT X)2 + (bT X)2)/(pT

3 X) (with the domain pT
3 X > 0) and g = pT

3 X , one can
show that f is indeed convex and g concave. It is straight forward to form the
same residual vectors in the line and conic cases - the only difference is that the
dimension is different.

3.1 Incorporation of Covariance

The optimal cost-function is to weight the residual vector by its covariance [4]
(at least to a first order approximation). Incorporating covariance weighted error
transforms to,

‖Lr‖ =
∥∥∥∥L

(
x1p

T
nX − pT

1 X

pT
nX

, . . .

)∥∥∥∥ , (5)

where L is the cholesky factorization of the inverse covariance matrix to the
structure in each image. Notice that we have chosen to normalize by the last
coordinate and in that case the covariance becomes a 2× 2 symmetric matrix in
the point and line cases and a 5 × 5 matrix in the conic case. The reason why
the covariance matrix is one dimension lower than the image vector is that there
is no uncertainty in the last element of the extended image coordinates.

3.2 Problem Formulation

In all of the above cases, the optimization problem to solve is the following:

min
n∑

i=1

‖Liri‖2. (6)

The only thing which differs (except for dimensions) in the different cases is that
in the line case it is necessary to fulfill the quadratic Plücker constraint (2) for
the coordinates of the three dimensional structure.

4 Branch and Bound Optimization

Branch and bound algorithms are used to find the global optimum for non-
convex optimization problems. The algorithm gives a provable upper and lower
bound of the optimum and it is possible to get arbitrary close to the optimum.

On a non-convex, scalar-valued objective function Φ at the domain Q0 the
branch and bound algorithm works by finding a lower bound to the function
Φ on the domain Q0. If the difference between the optimum for the bounding
functions and the lowest value of the function Φ - calculated so far - is small
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enough, then the optimum is considered to be found. Otherwise the domain Q0

is splitted into subdomains and the procedure is repeated in these domains.
If the lower bound on a subdomain has its optimum higher than a known

value of the objective function in another subdomain it is possible to neglect the
first subdomain since we know that the optimum in that region is greater than
the lowest value obtained so far.

4.1 Bounding

The goal of the bounding function Φlb is that it should be (i) a close under-
estimator to the objective function Φ and (ii) easy to compute the lowest value
Φlb in given domain. Further, as the domain of the bounding functions is par-
titioned into smaller regions, the approximation gap to the objective function
must converge (uniformly). A good choice of Φlb is the convex envelope [7].

Fractional Relaxation. Fractional programming is used to minimize/maxi-
mize a sum of p ≥ 1 fractions subject to convex constraints. In this paper we
are interested of minimizing

min
x

p∑
i=1

fi(x)
gi(x)

(7)

subject to x ∈ D,

where fi and gi are convex and concave, respectively, functions from Rn → R,
and the domain D ⊂ Rn is a convex set. On top of this it is assumed that fi

and gi are positive and that one can compute a priori bounds on fi and gi. Even
under these assumptions it can be shown that the problem is NP-complete [10].

It is showed in [7] that if you have bounds on the domain D it is possible to
rewrite (7) to a problem that is possible to find the convex envelope to for every
single fraction by a Second Order Cone Program (SOCP) [11].

When Φ is a sum of ratios as in (7) a bound for the function can be calculated
as the sum of the convex envelopes of the individual fractions. The summarized
function will be a lower bound and it fulfills the requirements of a bounding
function. This way of calculating Φlb by solving a SOCP problem can be done
efficiently [12].

A more exhaustive description on fractional programming in multiple view
geometry can be found in [7] where point triangulation (without covariance
weighting) is treated.

Monomial Relaxation. In the line case the Plücker coordinates have to fulfill
the Plücker constraint (2). This gives extra constraints in the problem to find
lower bounds.

If we make the choice in the construction of the Plücker coordinates that the
first point lies on the plane z = 1 and the second on the plane z = 0, remember
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that the Plücker coordinates are independent of the construction points, the two
points X = (x1, x2, 1, 1)T and Y = (y1, y2, 0, 1)T gives the following Plücker
coordinates for the line (2.2),

L = (x1y2 − x2y1, −y1, x1 − y1, −y2, y2 − x2, 1)T . (8)

This parameterization involves that the last coordinate is one and that only the
first one is nonlinear to the points of intersection. Hence it is only necessary to
make a relaxation of the first coordinate (in addition to the fractional terms).

In [13] the convex and the concave envelopes are derived for a monomial y1y2.
The convex and the concave envelopes are given by,

convenv(y1y2) = max
{

y1y
U
2 + yU

1 y2 − yU
1 yU

2

y1y
L
2 + yL

1 y2 − yL
1 yL

2

}
, (9)

concenv(y1y2) = min
{

y1y
L
2 + yU

1 y2 − yU
1 yL

2

y1y
U
2 + yL

1 y2 − yL
1 yU

2

}
. (10)

Given bounds on x1, x2, y1 and y2 in the parameterization of a line, it is possible
to propagate the bounds to the monomials x1y2 and x2y1.

4.2 Branching

It is necessarily to have a good strategy when branching. If a bad strategy is
chosen the complexity can be exponentially but if a good choice is made it is
possible to achieve a lower complexity - at least in practice.

A standard branching strategy for fractional programming [14] is to branch
on the denominator si of each fractional term ti/si. This limits the practical
use of branch and bound optimization to at most about 10 dimensions [15] but
in the case of triangulation the number of branching dimensions can be limited
to a fixed number (at most the degree of freedom of the geometric primitive).
Hence, in the point case is it enough to branch on three dimensions, in the line
case four and in the cases of conics nine dimensions maximally.

In the line case, we choose not to branch on the denominators. Instead the
coordinates of the points where the line intersect with the planes z = 0 and
z = 1 are used for the parameterization (4.1). This gives four dimensions to
split at, independent of the number of images. It is also important to choose a
coordinate system such that the numerical values of these parameters are kept
at a reasonable magnitude.

For strategies for branching and more on fractional programming see [15].

4.3 Initialization

It is necessary to have an initial domain Q0 for the branch and bound algorithm.
The method used for this is similar in the point and conic case but different in
the line case due to the Plücker constraint.



168 K. Josephson and F. Kahl

Points and Conics. In order to get a bound on the denominators, we assume a
bound on the maximal reprojection error. Ideally, with correctly weighted covari-
ance, each such residual Liri should approximately be i.i.d. with unit variance.
Thus the bounds are constructed from a user given maximal reprojection error.
The bounds on the denominators gi(x) can then be calculated by the following
optimization problem,

for i = 1, . . . , p, min/max gi(x) (11)

subject to
fj(x)
gj(x)

≤ γ j = 1, . . . , p,

where γ is the user given bound on the reprojection error. This is a quadratic
convex programming problem. In the experiments, γ is set to 3 pixels.

Lines. In the case of lines, the Plücker constraint makes things a bit more
problematic. Instead we choose a more geometric way of getting bounds on the
coordinates of the two points defining the line.

For each image line l, two parallel lines are constructed with γ pixels apart
(one on each side of l). Then, we make the hypothesis that the two points defining
the optimal 3D line (with our choice of coordinate systems) are located on the
planes z = 0 and z = 1, respectively. Now, finding bounds on x1, x2, y1, y2,
see equation (8), becomes a simple linear programming problem. Again, it is
important to choose the coordinate system such that the planes z = 0 and z = 1
are located appropriately. In addition, to avoid getting an unbounded feasible
region, the maximum depth is limited to the order of the 3D point furthest away.
In the experiments, we set γ to 5 pixels.

5 Experiments

The implementation is made in Matlab using a toolbox called SeDuMi [12] for
the convex optimization steps.

The splitting of dimensions has been made by taking advantage of the infor-
mation where the minimum of the bounding function is located.

While testing the various cases, we have found that the relaxation performed
in the line case - a combination of fractions and monomials - the bounds on the
denominators is a critical factor for the speed of convergence. To increase the
convergence speed, a local gradient descent step is performed on the computed
solution in order to quickly obtain a good solution which can be employed to
discard uninteresting domains.

Two public sets of real data1 were used for the experiments with points and
lines. One of a model house with a circular motion and one of a corridor with a
mostly forward moving motion. The model house has 10 frames and the corridor
11. In these two sequences there were no conics. A third real data sequence was
used for conic triangulation. In Fig. 1 samples of the data sets are given.
1 http://www.robots.ox.ac.uk/∼vgg/data.html
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Fig. 1. Image sets used for the experiments

Table 1. Reprojection errors for points and lines with three different methods on two
data sets

Points

Data set Optimal Bundle Linear

Mean Std Mean Std Mean Std

House 0.15 0.14 0.15 0.14 0.16 0.15

Corridor 0.13 0.11 0.13 0.11 0.13 0.11

Lines

Optimal Bundle Linear

Mean Std Mean Std Mean Std

1.40 0.92 1.41 0.93 1.62 1.03

3.42 4.29 3.30 4.34 4.02 5.45

Points and lines were reconstructed and then the reprojection errors between
different methods were compared. The other methods compared are bundle ad-
justment and a linear method [1]. The covariance structure for the lines was
computed by fitting a line to measured image points. In the reconstruction only
the four first frames were used. In the house scene, there are 460 points and in
the corridor 490. The optimum was considered to be found if the gap between
the global optimum and the under-estimator was less than 10 %. The results are
presented in Table 1.

In the house scene, the termination criterion was reached already in the first
iteration for all points and for most of them the bounding functions was very
close to the global minimum (less than the 10 % required). In the corridor scene,
the average number of iterations were 3 and all minima were reached within at
most 23 iterations.

In the line case, the under-estimators works not as well as in the point case.
This is due to the extra complexity of the Plücker coordinates. Thus more iter-
ations are needed. For the house scene with the circular motion the breakpoint
is reached within at most 120 iterations for all the tested 12 lines. However, for
the corridor sequence with a weaker camera geometry (at least for triangulation
purposes) it is not even enough with 500 iterations for 6 of the tested 12 lines.
Even if a lot of iterations are needed to certify the global minimum, the location
of the optimum in most cases is reached within less than a handful of iterations.

It can be seen in Table 1 that both a linear method and bundle adjustment
works fine for these problems. However, in some cases the bundle adjustment
reprojection errors get higher than the errors for the optimal method. This shows
that bundle adjustment (which is based on local gradient descent) sometimes gets
stuck in a local minimum.



170 K. Josephson and F. Kahl

(a) (b)

Fig. 2. The result from reprojection of lines. The green dashed line is the original and
the red solid line is the reprojected. Image (a) is from the house scene and (b) is from
the corridor.

The result can also be seen in Fig. 2 where two lines from each data set are
compared with reprojected line.

5.1 Conics

For conics, an example images can be found in Fig. 1. The covariance structure
was estimated by fitting a conic curve to measured image points. The correspond-
ing 3D quadrics were computed with the optimal and a linear method. The result
of the reprojected conics from these two methods are imaged in Fig. 3.

(a) (b)

Fig. 3. The result of the reprojected conics of the data set in Fig. 1. In image (a) a part
of the reconstruction with optimal method is viewed. The light green is the reprojection
and the dark red the original conic. In (b) the red lines are the reprojection after linear
method and the white when the optimal method were used.

The number of iterations performed to reach the global minimum with a gap
less than 5 % of the bounding function for the three conics were 3, 6 and 14. As
can be seen from the images, the quadrics in the data set are planar and hence
the condition number of the corresponding 4 × 4 matrix should be zero. For the
three estimated quadrics with the optimal method, the condition numbers are
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1.2 · 10−3, 3.7 · 10−7 and 8.8 · 10−6. This can be compared with the result for the
linear estimate with condition numbers of 3.7 · 10−4, 4.1 · 10−5 and 1.1 · 10−4.

Fig. 3 (a) shows the reprojected conic compared with the original for one of
the conics. The fitting is very good and it is obvious from Fig. 3 (b) that the
linear result is far from acceptable.

6 Discussion

A unified treatment of the triangulation problem has been described using co-
variance propagation. In addition to traditional local algorithms and algorithms
based on algebraic objective functions, globally optimal algorithms have been
presented for the triangulation of points, lines and conics. For most cases, local
methods work fine (except for conics) and they are generally faster in perfor-
mance. However, none of the competing methods have a guarantee of globality.

A future line of research is to include more constraints in the estimation
process, for example, planar quadric constraints. This opens up the possibility
to perform optimal auto-calibration using the image of the absolute conic.
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