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Camera Resectioning from a Box

Henrik Aanæs1, Klas Josephson2, François Anton1, J. Andreas Bærentzen1,
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1 DTU Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2 Centre For Mathematical Sciences, Lund University, Lund, Sweden

Abstract. In this paper we describe how we can do camera resectioning
from a box with unknown dimensions, i.e. determine the camera model,
assuming that image pixels are square. This assumption is equivalent
to assuming that the camera has an aspect ratio of one and zero skew,
and this holds for most — if not all — digital cameras. Our proposed
method works by first deriving 9 linear constraints on the projective cam-
era matrix from the box, leaving a 3-dimensional subspace in which the
projective camera matrix can lie. A single solution in this 3D subspace is
then found via a method by Triggs in 1999, which uses the square pixel
assumption to set up a 4th degree polynomial to which the solution is the
desired model. This approach is, however, numerically challenging, and
we use several means to tackle this issue. Lastly the solution is refined
in an iterative manner, i.e. using bundle adjustment.

1 Introduction

With the ever increasing use of interactive 3D environments for online social in-
teraction, computer gaming and online shopping, there is also an ever increasing
need for 3D modelling. And even though there has been a tremendous increase
in our ability to process and display such 3D environments, the creation of such
3D content is still mainly a manual — and thus expensive — task. A natural way
of automating 3D content creation is via image based methods, where several
images are taken of a real world object upon which a 3D model is generated,
c.f. e.g. [9,12]. However, such fully automated image based methods do not yet
exist for general scenes. Hence, we are contemplating doing such modelling in
a semi-automatic fashion, where 3D models are generated from images with a
minimum of user input, inspired e.g. by Hengel et al. [18].

For many objects, especially man made, boxes are a natural building blocks.
Hence, we are contemplating a system where a user can annotate the bounding
box of an object in several images, and from this get a rough estimate of the
geometry, see Figure 1. However, we do not envision that the user will supply the
dimensions (even relatively) of that box. Hence, in order to get a correspondence
between the images, and thereby refine the geometry, we need to be able to do
camera resectioning from a box. That is, given an annotation of a box, as seen
in Figure 1, we should be able to determine the camera geometry. At present, to
the best of our knowledge, no solution is available for this particular resectioning



problem, and such a solution is what we present here. Thus, taking the first step
towards building a semi-automatic image based 3D modelling system.

Our proposed method works by first extracting 9 linear constraints from the
geometry of the box, as explained in Section 2, and thereupon resolving the am-
biguity by enforcing the constraint that the pixels should be square. Our method
extends the method of Triggs [16] from points to boxes, does not require elim-
ination of variables, and is numerically more stable. Moreover, the complexity
of our method is polynomial by opposition to the complexity of the method of
Triggs, which is doubly exponential. It results in solving a 4th degree polynomial
system in 2 variables. This is covered in Section 3. There are however some nu-
merical issues which need attention as described in Section 4. Lastly our solution
is refined via Bundle adjustment c.f. e.g. [17].

Fig. 1. A typical man made object, which at a coarse level is approximated well by a
box. It is the annotation of such a box, that we assume the user is going to do in a
sequence of images.

1.1 Relation to Other Work

Solutions to the camera resectioning problem are by no means novel. For the
uncalibrated pinhole camera model the resectioning problem can be solved from
6 or more points via a direct linear transform from 6 or more points c.f. e.g.
[9], using so called algebraic methods. If the camera is calibrated, in the sense
that the internal parameters are known, solutions exist for 3 or more known 3D
points c.f. e.g. [8], given that the camera is a pinhole camera. In the general case
– the camera is not assumed to obey the pinhole camera model – of a calibrated



camera and 3 or more points, Nister et al. [11] have provided a solution. In the
rest of this paper, a pinhole camera model is assumed. A linear algorithm for
resectioning of a calibrated camera from 4 or more points or lines [1] exists.
If parts of the intrinsic camera parameters are known, e.g. that the pixels are
square, solutions also exist c.f. e.g. [16]. Lastly, we would like to mention that
from a decent initial estimate we can solve any – well posed – resection problem
via bundle adjustment c.f. e.g. [17].

Most of the methods above require the solution to a system of multivariate
polynomials, c.f. [5,6]. And also many of these problems end up being numerically
challenging as addressed within a computer vision context in [3].

2 Basic Equations

Basically, we want to do camera resectioning from the geometry illustrated in
Figure 2, where a and b are unknown. The two remaining corners are fixed to
(0, 0, 0) and (1, 0, 0) in order to fix a frame of reference, and thereby remove
the ambiguity over all scale rotations and translations. Assuming a projective
or pinhole camera model, P, the relationship between a 3D point Qi and it’s
corresponding 2D point qi is given by

qi = PQi , (1)

where Qi and qi are in homogeneous coordinates, and P is a 3 by 4 matrix. It
is known that Qi and qi induces the following linear constraint on P, c.f. [9]

0 = [qi]xPQi = QT
i ⊗ [qi]xP̄ , (2)

where [qi]x is the 3 by 3 matrix corresponding to taking the cross product with
qi, ⊗ is the Kronecker product and P̄ is the elements of P arranged as a vector.
Setting ci = QT

i ⊗ [qi]x, and arranging the ci in a matrix C = [cT
1 , . . . , cT

n ]T , we
have a linear system of equations

CP̄ = 0 (3)

constraining P. This is the method used here.
To address the issue that we do not know a and b, we assume that the box

has right angles, in which case the box defines points at infinity. These points at
infinity are, as illustrated in Figure 2, independent of the size of a and b, and can
be derived by calculating the intersections of the lines composing the edges of the
box.3 We thus calculate linear constraints, ci, based on [0, 0, 0, 1]T and [1, 0, 0, 1]T

and the three points at infinity [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T . This, however,
only yields 9 constraints on P, i.e. the rank of C is 9. Usually a 3D to 2D
point correspondence gives 2 constraints, and we should have 10 constraints.
The points [0, 0, 0, 1]T , [1, 0, 0, 1]T and [1, 0, 0, 0]T are, however, located on a
line making them partly linearly dependant, and thus giving an extra degree of
freedom, leaving us with our 9 constraints.
3 Note that in projective space infinity is a point like any other.



Fig. 2. The geometric outline of the box, from which we want to do the resectioning,
along with the associated points at infinity denoted. Here a and b are the unknowns.

To define P completely we need 11 constraints, in that it has 12 parameters
and is independent of scale. The null space of C is thus (by the dimension
theorem for subspaces) 3-dimensional instead of 1-dimensional. We are thus 2
degrees short. By requiring that the images are taken by a digital camera the
pixels should be perfectly square. This assumption gives us the remaining two
degrees of freedom, in that a pinhole camera model has a parameters for skewness
of the pixels as well as one for their aspect ratio. The issue is, however, how to
incorporate these two constraints in a computationally feasible way. In order
to do this, we will let the 3D right-null space of C be spanned by v1, v2, v3.
The usual way to find v1, v2, v3 is via singular value decomposition (SVD) of C.
But during our experiments we found that it does not yield the desired result.
Instead, one of the equations in C corresponding to the point [0, 0, 0, 1]T was
removed, and by that, we can calculate the null space of the remaining nine
equations. This turned out to be a crucial step to get the proposed method to
work. We have also tried to remove any of the theoretically linearly dependent
equations, and the result proved not to be dependent on the equations that were
removed. Then, P is seen to be a linear combination of v1, v2, v3, i.e.

P̄ = µ1v1 + µ2v2 + µ3v3 . (4)

For computational reasons, we will set µ3 = 1, and if this turns out to be
numerically unstable, we will set one of the other coefficients to one.



3 Polynomial Equation

Here we are going to find the solution to (4), by using the method proposed
by Triggs in [16]. To do this, we decompose the pinhole camera into intrinsic
parameters K, rotation R and translation t, such that

P = K[R|t] . (5)

The dual image of the absolute quadric, ω is given by [9,16]

ω = PΩPT = KKT , (6)

where Ω is the absolute dual quadric,

Ω =
[
I 0
0 0

]
.

Here P and thus K and ω are functions of µ = [µ1, µ2]T . Assuming that the
pixels are square is equivalent to K having the form

K =

f 0 ∆x
0 f ∆y
0 0 1

 , (7)

where f is the focal length and (∆x,∆y) is the optical center of the camera. In
this case the the upper 2 by 2 part of ω−1 is proportional to an identity matrix.
Using the matrix of cofactors, it is seen that this coresponds to the minor of ω11

equals the minor of ω22 and that the minor of ω12 equals 0, i.e.

ω22ω33 − ω2
23 = ω11ω33 − ω2

13 (8)
ω21ω33 − ω23ω31 = 0 (9)

This corresponds to a fourth degree polynomial in the elements of µ = [µ1, µ2]T .
Solving this polynomial equation will give us the linear combination in (4),
corresponding to a camera with square pixels, and thus the solution to our
resectioning problem.

3.1 Polynomial Equation Solver

To solve the system of polynomial equations Gröbner basis methods are used.
These methods compute the basis of the vector space (called the quotient alge-
bra) of all the unique representatives of the residuals of the (Euclidean) multi-
variate division of all polynomials by the polynomials of the system to be solved,
without relying on elimination of variables, nor performing the doubly exponen-
tial time computation of the Gröbner basis. Moreover, this computation of the
Gröbner basis, which requires the successive computation of remainders in float-
ing point arithmetic, would induce an explosion of the errors. This approach



has been a successful method used to solve several systems of polynomial equa-
tions in computer vision in recent years e.g. [4,13,14]. The pros of Gröbner basis
methods is that they give a fast way to solve systems of polynomial equations,
and that they reduce the problem of the computation of these solutions to a
linear algebra (eigenvalue) problem, which is solvable by radicals if the size of
the matrix does not exceed 4, yielding a closed form in such cases. On the other
hand the numerical accuracy can be a problem [15]. A simple introduction to
Gröbner bases and the field of algebraic geometry (which is the theoretical basis
of the Gröbner basis) can be found in the two books by Cox et al. [5,6].

The numerical Gröbner basis methods we are using here require that the
number of solutions to the problem needs to be known beforehand, because we
do not actually compute the Gröbner basis. An upper bound to a system is given
by Bézout’s theorem [6]. It states that the number of solutions of a system of
polynomial equations is generically the product of the degrees of the polynomials.
The upper bound is reached only if the decompositions of the polynomials into
irreducible factors do not have any (irreducible) factor in common. In this case,
since there are two polynomials of degree four in the system to be solved, the
maximal number of solutions is 16. This is also the true number of complex
solutions of the problem. The number of solutions is later used when the action
(also called the multiplication map in algebraic geometry) matrix is constructed,
it is also the size of the minimal eigenvalue problem necessary to solve. We
are using a threshold to determine whether monomials are certainly standard
monomials (which are the elements of the basis of the quotient algebra) or not.
The monomials for which we are not sure whether they are standard are added
to the basis, yielding a higher dimensional representation of the quotient algebra.

The first step when a system of polynomial equations is solved with such
a numerical Gröbner basis based quotient algebra representation is to put the
system in matrix form. A homogenous system can be written,

CX = 0. (10)

In this equation C holds the coefficients in the equations and X the monomials.
The next step is to expand the number of equation. This is done by multiplying
the original equations by a handcrafted set of monomials in the unknown vari-
ables. This is done to get more linearly independent equations with the same set
of solutions. For the problem in this paper we multiply with all monomials up
to degree 3 in the two unknown variables µ1 and µ2. The result of this is twenty
equations with the same solution set as the original two equations. Once again
we put this on matrix form,

CexpXexp = 0, (11)

in this case Cexp is a 20×36 matrix. From this step the method of [3] is used. By
using those methods with truncation and automatic choice of the basis monomi-
als the numeric stability is considerably improved. The only parameters that are
left to choose is the variable used to construct the action matrix and the trun-
cation threshold. We choose µ1 as action variable and the truncation threshold
is fixed to 10−8.



An alternative way to solve the polynomial equation is to use the automatic
generator for minimal problems presented by Kukelova et al. [10]. A solver gen-
erated this way doesn’t use the methods of basis selection, which will reduce
the numerical stability. We could also use exact arithmetic for computing the
Gröbner basis exactly, but this would yield in the tractable cases a much longer
computation time, and in the other cases an aborted computation due to a
memory shortage.

3.2 Resolving Ambiguity

It should be expected that there are more than one real valued solution to the
polynomial equations. To determine which of those solutions are correct, an
alternative method to calculate the calibration matrix, K, is used. After that,
the solution from the polynomial equations with a calibration matrix closest
to the alternatively calculated calibration matrix is used. The method used is
described in [9]. It uses that in the case of square pixels and zero skew the image
of the absolute conic has the form

ω−1 =

ω1 0 ω2

0 ω1 ω3

ω2 ω3 ω4

 (12)

and that for each pair of orthogonal vanishing points vi, vj the relation vT
i ω−1vj =

0 holds. The three orthogonal vanishing points known from the drawn box in
the image thus gives three constraints on ω−1 that can be expressed on matrix
form according to Aω̄−1 = 0 where A is a 3 × 4 matrix. The vector ω̄−1 can
then be found as the null space of A. The calibration matrix is then obtained
by calculating the Cholesky factorization of ω as described in equation 6.

The use of the above method also has an extra advantage. Since it doesn’t
enforce ω to be positive definite it can be used as a method to detect uncertainty
in the data. If ω isn’t positive definite, the Cholesky factorization can’t be per-
formed and, hence, the result will not be good in the solution of the polynomial
equations. To nevertheless have something to compare with, we substitute ω
with ω − δI, where δ equals the smallest eigenvalue of ω times 1.1.

To decide which solution from the polynomial equations to use the extra
constraints that the two points [0, 0, 0] and [1, 0, 0] are in front of the camera is
enforced. Among those solutions fulfilling this constraint the solution with small-
est difference in matrix norm between the calibration matrix from the method
described above and those from the solutions of the polynomial equations is
used.

4 Numerical Considerations

The most common use of Gröbner basis solvers is in the core of a RANSAC
engine[7]. In those cases there is no problem if the numerical errors gets large in
a few setups since the problem is calculated for many instances and only the best



is used. In the problem of this paper this is not the case instead we need a good
solution for every null space used in the polynomial equation solver. To find the
best possible solution the accuracy of the solution is measured by the condition
number of the matrix that is inverted when the Gröbner basis is calculated.
This has been shown to be a good marker of the quality of the solution [2].
Since the order of the vectors in the null space is independent we choose to try
a new ordering if this condition number is larger than 105. If all orderings gives
a condition number larger than 105 we choose the solution with the smallest
condition number. By this we can eliminate the majority of the large errors.

To even further improve the numerical precision the first step in the calcula-
tion is to change the scale of the images. The scale is chosen so that the largest
absolute value of any image coordinate of the drawn box equals one. By doing
this the condition number of ω decreases from approximately 106 to one for an
image of size 1000 by 1000.

5 Experimental Results

To evaluate the proposed method we went to the local furniture store and took
several images of their furniture, e.g. Figure 1. On this data set we manually
annotated 30 boxes, outlining furniture, see e.g. Figure 3, and ran our proposed
method on the annotated data to get an initial result, and refined the solution
with a bundle adjuster. In all but one of these we got acceptable results, in the
last example, there were no real solutions to the polynomial equations. As seen
from Figure 3, the results are fully satisfactory, and we are now working on using
the proposed method in a semi-automatic modelling system. As far as we can
see, the reason that we can refine the initial results is that there are numerical
inaccuracies in our estimation. To push the point, that fact that we can find a
good fit of a box, implies that we have been able to find a model, consisting of
camera position and internal parameters as well as values for the unknown box
sides a and b, that explains the data well. Thus, from the given data, we have a
good solution to the camera resectioning problem.

6 Conclusion

We have proposed a method for solving the camera resectioning problem from
an annotated box, assuming only that the box has right angles, and that the
camera’s pixels are square. Once several numerical issues have been addressed,
the method produces good results.
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