Continent urinary tract reconstruction – the Lund experience

W. MÅNSSON, T. DAVIDSSON, J. KÖNYVES, F. LIEDBERG, Å. MÅNSSON* and B. WULLT
Department of Urology, University Hospital and *Department of Nursing, Lund University, Lund, Sweden
Accepted for publication 12 February 2003

OBJECTIVE
To assess the early and late complications and functional results in patients undergoing continent reconstruction of the urinary tract, i.e. orthotopic bladder substitution (OBS) or continent cutaneous diversion (CCD).

PATIENTS AND METHODS
The medical records of all patients undergoing OBS (Goldwasser technique) or CCD (‘Lundiana’ technique) for malignant or benign disease during 1987–1999 and followed to December 2001 were reviewed. There were 67 patients with neobladders, 77 with a Lundiana pouch who had undergone radical cystectomy and 22 with a Lundiana pouch operated for benign disorders.

RESULTS
Early complications requiring reoperation occurred in 12% of the cystectomy group, with no difference with type of reconstruction, and in 10% with benign diseases. Four patients (3%) undergoing radical cystectomy died from early cardiovascular complications, two after surgery for intra-abdominal complications. Intestinally related complications and wound dehiscence requiring re-operation occurred in nine and six patients, respectively. The incidence of late complications requiring open surgery was 22% and 23% after cystectomy with OBS and CCD, respectively. The value in patients with benign diseases undergoing CCD was also 23%. Stone formation in the pouch was common, occurring in 12% in patients with OBS and in 10% after CCD. The pouch perforated or ruptured in four patients. The incidence of uretero-intestinal stricture using the Le Duc technique was 2.4% and renal function was well preserved. The incidence of revisional surgery of the Lundiana pouch outlet for incontinence was low and all patients but four were continent. The functional outcome in patients with OBS was less good; some needed pouch augmentation or an artificial urinary sphincter. Most patients used incontinence products and many needed clean intermittent self-catheterization.

CONCLUSION
Continent urinary tract reconstruction is associated with a high incidence of early and late complications. For storage and emptying, their Lundiana pouch was superior to the Goldwasser neobladder.

KEYWORDS
orthotopic bladder substitution, continent cutaneous diversion, radical cystectomy, complications, functional results

INTRODUCTION
Although the concept of the continent reconstruction of the urinary tract is as old as that of urinary diversion, it was not until two
reports in the early 1980s that continent reconstruction became clinically accepted, i.e.
Kock et al. [1] reported a continent cutaneous diversion (CCD) using an ileal reservoir and
Lilien and Camey [2] reviewed the results from orthotopic bladder substitution (OBS). In
the following 20 years there has been an astonishing development in techniques for
continent reconstruction, and clinical and experimental research has elucidated the
physiological aspects of such procedures.

After the initial surge in interest for continent reconstruction it has become obvious that
these types of procedures have several problems; complication rates in some series seem
high, continence is not always achieved and many studies showed no clear advantage
of such reconstruction over the ileal conduit in adjustment and well-being [3].

The authors’ department undertook its first CCD 25 years ago; since 1991 we have used
a modification of the Indiana pouch, the ‘Lundiana’ pouch. For OBS we have also used
the right colon. The present report includes all patients operated with these techniques and
compares the functional results obtained.

PATIENTS AND METHODS

To select patients for continent reconstruction, age is a relative
contraindication; the upper age limit is
usually 75–80 years. The same is true for
advanced disease, but if small positive nodes
are found at surgery we usually proceed with
the planned procedure. If renal function is
low (serum creatinine >150 µmol/L or
GFR < 50 mL/min/1.73 m²) the patient is
usually recommended to have an ileal
conduit. Before cystectomy, mapping biopsies
are taken from the bladder and deep
transurethral biopsies of the prostate taken
at the 3 and 9 o’clock positions from the
bladder neck to the verumontanum. If there
is widespread carcinoma in situ in the
bladder, tumour or carcinoma in situ at the
bladder neck, or tumour in the prostatic
urethra/prostate, primary urethrectomy is
recommended. Understanding the symptoms
and signs of a full pouch is essential.

Between February 1987 and December 1999
OBS was performed in 73 patients, 67 of
whom had a detubularized right colonic
segment for the neobladder, and constitute
the patients assessed in the present study (63
men and four women). All had a radical
cystectomy for locally advanced bladder
cancer; early in the series 23 received 20 Gy of
irradiation in the week before surgery. All
patients were followed until death or
December 2001; the patients’ data are shown in
Table 1.

Between March 1991 (when the first Lundiana
pouch was created) and December 1999, 130
patients had CCD, using the same pouch in all,
i.e. a detubularized right colonic segment,
the outlet being the appendix in 10, an
intussuscepted ileal nipple valve in 21 and a
stapled ileal outlet in 99, i.e. the Lundiana
pouch. The present study focuses on the last
group. Seventy-seven patients had a diversion
for invasive bladder cancer or in one for
recurrent cervical carcinoma necessitating
radical cystectomy. Five of them had
preoperative irradiation, one of 70 Gy after
radical prostatectomy 5 years earlier, and the
patient with cervical carcinoma of 30 Gy
before hysterectomy 12 years earlier. All
the women and all but five men had a
urethrectomy.

Twenty-two patients had a diversion for
benign conditions; the indications were
interstitial cystitis in two (and they also had
a simple cystectomy), a shrunken bladder
caused by previous full-dose irradiation for
prostate cancer in two, and in the others
for various organic or functional bladder
disturbances. Among these patients two were
converted from an ileal conduit diversion and
cutaneous ureterostomy, respectively. The
stoma was in the right lower quadrant in 88
patients and in the umbilicus in 11. The
patient’s data are shown in Table 1.

SURGICAL TECHNIQUES

The neobladder is made from a detubularized
right colonic segment as described by
Goldwasser et al. [4] and modified by us [5]
(Fig. 1). Thus, the ileum is divided just
proximal to the ileocaecal valve and the colon
divided = 10 cm distal to the hepatic flexure,
usually sacrificing a branch of the right
colonic artery. Bowel continuity is by a side-
to-side ileotransversostomy using a stapling
technique. The isolated segment is dependent
on the ileocaecal artery with its arcade along
the right colon. The segment is rinsed and
opened along the anterior taenia all the way
to the bottom of the caecum. The ileocaecal
junction is closed and the ureters implanted
just below the middle of the isolate, with an
antirefluxing technique. A hole is made in the
most dependant part of the caecum and the
mucosa everted through the opening to
lessen the risk of urethrocaecal stricture. Then
the segment is detubularized by folding the
bowel plate so that the distal end of the
isolate meets the proximal end. The
anastomosis to the urethra is accomplished
with six 4/0 polydioxanone sutures over a
22 F silicone Foley catheter. Baby-feeding
catheters (8 F) are used for the ureters and
brought through the neobladder and the
abdominal wall. A 22 F silicone Foley catheter
for suprapubic drainage was also brought
through the anterior wall of the neobladder and
the abdominal wall. The technique has
remained unchanged.

To create a Lundiana pouch the distal 10 cm
of the ileum and the right colonic segment, as
described above, are isolated [6] (Fig. 2). The
colonic segment is opened along the anterior
taenia down to the level of the ileocaecal
valve, from where the incision is transverse to
the base of the valve. The ileal segment is
tapered snugly over a 10 F catheter with a GIA
50 Premium stapler, using two or occasionally
three cartridges of staples. Early in the series
we noted stomal stenosis, so that now the
first cartridge is placed obliquely to preserve
as much as possible of the diameter of the

FIG. 1. Detubularized right colonic segment for
orthotopic bladder substitution according to
Goldwasser et al. [4].
TABLE 1 The characteristics of the patients, the early and late complications, and causes of death in the three groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>OBS</th>
<th>CCD malignant</th>
<th>CCD benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>67</td>
<td>77</td>
<td>22</td>
</tr>
<tr>
<td>M/F</td>
<td>63/4</td>
<td>62/15</td>
<td>8/14</td>
</tr>
<tr>
<td>Mean (range):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at surgery, years</td>
<td>61 (53–74)</td>
<td>63 (26–78)</td>
<td>40 (13–73)</td>
</tr>
<tr>
<td>Follow-up, months</td>
<td>70 (4–172)</td>
<td>47 (2–129)</td>
<td>69 (25–127)</td>
</tr>
<tr>
<td>Early complications, n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac insufficiency</td>
<td>2 (++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insuff. bowel anastomosis</td>
<td>1 (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal fistula</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal obstruction</td>
<td>2</td>
<td>3 (+)</td>
<td>1 (paralysis)</td>
</tr>
<tr>
<td>Perforated acute cholecystitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-abdominal bleeding</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wound dehiscence</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Intra-abdominal abscess*</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neobladder-rectal fistula</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial necrosis of pouch</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fistula pouch-vagina†</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ureteric obstruction‡</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute pyelonephritis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicaemia:</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococci</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury to brachial plexus</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute psychosis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Causes of death during the follow-up

<table>
<thead>
<tr>
<th>No.</th>
<th>OBS</th>
<th>CCD malignant</th>
<th>CCD benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent malignancy</td>
<td>20</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cancer of the renal pelvis or ureter</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal abscess</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive uraemia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other causes</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Late complications

Fistula neobladder-bowel	4*		
Bowel obstruction/fistula	5*		
Incisional hernia	2		
Parastomal hernia awaiting surgery	1		
Bile acid-induced diarrhoea	1		
Rupture/perforation of pouch	1	2	1
Stone formation in pouch	8*	7*	3
Septicaemia	1		
Acute pyelonephritis/febrile UTI	1		
Ureteric stone	1		
Pyocystitis	3		
Ureteric stricture	3*	4*	1

Problem solved by: *drainage of abscess, †drainage of pouch and ‡percutaneous nephrostomy; ¶At autopsy there was renal pelvic cancer of the contralateral kidney with lymph node metastases; “two had tumour recurrence and one had received full-dose irradiation for tumour recurrence; ’four had tumour recurrence; “Managed endoscopically except in one patient; “one reimplantation; *two reimplantations.
ileal opening, as this will create the future stoma. This is the only change in technique over the years. The edges of the caecal wall incision are then grasped with two Babcock clamps and a third Babcock is used to grasp the ileocaecal valve, and it is pulled out between the previous two clamps, or only one clamp is used. A TA-55 stapler with 4.8 mm staples is placed to incorporate the edges of the caecal wall and part of the valve. The fired staples line closes the caecum, tapers the valve and tethers the narrowed ileocaecal valve to the caecal wall. A uniform narrowed diameter is thus achieved in the entire length of the outlet and a small flap valve created at the junction to the pouch. The ileocaecal segment is rotated 180° counter-clockwise so that the colonic end dips down into the pelvic cavity. The ureters are implanted, the pouch closed and ureteric stents and a 22 F Foley reservoir catheter placed as described above. The stoma is in the right lower quadrant or in the umbilicus, according to the wish of the patient. A 16 F Foley catheter passes through the reservoir inlet into the pouch.

In the 166 patients, 328 ureters were implanted; 301 according to Le Duc, 22 with submucosal tunnels, three according to Turner-Warwick and two implanted end-to-side.

Before surgery all patients were assessed using IVU and renal function determined by serum creatinine; if the latter was equivocal, the total and separate GFR was estimated. CT was used in patients with advanced malignant disease, but not routinely. The patients were fully counselled by a urologist and stoma nurse. The bowel was prepared the day before surgery with 4 L of polyethylene glycol and a low-molecular weight heparin analogue administered at the start of surgery; 1–2 h before the bowel was opened 2 g of mexitoxin was given intravenously.

After surgery the pouches were irrigated two to three times daily until all catheters were removed. Ureteric stents were removed after 13–14 days and IVU performed. The patient was discharged and readmitted 2 weeks later for a couple of days, when the urethral and stomal catheter were removed, the patient assessed for the ability to empty the neobladder or catheterize the pouch, after which the suprapubic catheter to the pouch was removed. Antibiotics were given only preoperatively and for 2 days when the ureteric stents were removed, but not otherwise.

For the follow-up, IVU was used after 3 and 12 months, after 2 years and then biannually if there were no signs of abnormality. Regular laboratory assessments included serum creatinine, sodium, chloride and venous base excess. Serum vitamin B12 was checked annually/biannually after 5 years.

RESULTS

As shown in Table 1 there were many early complications, with 12% requiring open surgical intervention in patients undergoing radical cystectomy, with no difference with the method of reconstruction; 10% of patients with benign disorders required further surgery. Of the 144 patients undergoing radical cystectomy four (3%) died from postoperative cardiovascular complications, which in two patients followed surgery for intra-abdominal complications. There were serious intestinally related complications but they were unrelated to preoperative irradiation or age.

Table 1 also lists the causes of death during the follow-up; 52 of the 140 surviving patients with malignancy (37%) died from recurrent disease at a mean (range) of 29 (2–118) months after surgery. Seven patients developed upper tract tumours, causing death in three. One patient developed a urethral recurrence 38 months after radical cystectomy and OBS, and was treated conservatively; 9 months later pelvic pain began, caused by tumour recurrence.

Several patients developed one or more complications during the later follow-up (Table 1). In patients with OBS, 22% had late complications requiring open surgery, and 23% did so in the CCD groups, excepting revision for stomal stenosis. Intestinal obstruction and/or fistula occurred mainly in patients with recurrent cancer. Stone formation was common, in 12% of OBS and 10% of Lundiana pouches, occurring more than once in some, and the problem was managed endoscopically in all but two patients. In four patients rupture/perforation of the pouch necessitated emergency surgery.

The ureter became obstructed in eight of 318 ureteric anastomoses (eight of 162 patients); of these, seven were in 291 Le Duc anastomoses (2.4%). Obstruction resulted in three nonfunctioning kidneys. Balloon dilatation was successful in two strictures, primary reimplantation in two ureters and reimplantation of another ureter after unsuccessful dilatation.

The serum creatinine level increased from normal values (<120 μmol/L) in 11 patients (7%); one patient died from uraemia, who had an initial GFR of 39 ml/min/1.73 m². One patient required chronic haemodialysis for Goodpasture’s syndrome. Another patient who developed a nonfunctioning kidney has hypertension, a contralateral kidney with no obstruction, and a serum creatinine level of 250–300 μmol/L. Eight other patients developed increased serum creatinine to 121–165 μmol/L; three had normal IVU findings, one had a kidney resected for renal cancer, two had nephrectomy for a nonfunctioning kidney (stricture), one a reimplanted ureter (stricture) and one nephroureterectomy for ureteric cancer. The other patients had or have a serum creatinine of <120 μmol/L at end of the follow-up.

Two patients, both with Lundiana pouches, developed low serum B12 values and were prescribed vitamin B12 substitution therapy.

In several patients with OBS, endoscopic or open surgery was needed for stenosis of the urethral anastomosis or urine leakage (incision at the urethro-caecal anastomosis in three, an artificial urinary sphincter in four, augmentation for intermittent high pressure in two and conversion to a conduit in one. In addition, clean intermittent self-catheterization (CISC) was used by 23 patients (37%) and most patients needed pad(s) and/or condom drainage (Table 2). Only 14 patients (22%) had perfect control of storage and emptying and needed no protection, although some used CISC.

In patients with a Lundiana pouch, none required surgery for difficulties in emptying the pouch, but in two percutaneous punctures were necessary for episodes of inability to catheterize a full reservoir (once in one and three times in the other). The other procedures were dilatation of stoma for stenosis (one), revision of the stoma for stenosis (six patients; twice in two and three times in one), revision of the outlet because of urine leakage (six patients; twice in one in and three times in two) and augmentation for an inadequate pouch capacity (two). Stomal stenosis occurred early in the series before modifying the technique. Continence was achieved in all but four patients (two of whom had the pouch continuously drained...
because of rapidly recurring malignancy. Patients who had more than one revision for incontinence were all diverted for benign diseases. The common finding at re-operation was a wide diameter of the outlet at the caecal junction, which was then narrowed.

DISCUSSION

There are some major findings from this series: (i) Continent reconstruction of the urinary tract, especially in conjunction with radical cystectomy, is associated with considerable early morbidity; (ii) the most common late complication is stone formation in the pouch; (iii) the Le Duc procedure for ureteric implantation into colonic segments has a low stricture rate; (iv) renal function is well preserved during the follow-up; (v) the functional results with the Lundiana pouch for CCD are satisfactory, but less so are the results after OBS using the right colon.

Radical cystectomy with continent urinary tract reconstruction remains a major undertaking, in this series shown by the 3% mortality rate and several re-operations for intra-abdominal complications and wound dehiscence. Similar contemporary results were reported from other European centres [7–9], in contrast to some lower values published [10,11]. There is some association between patients’ physical condition, as measured by the ASA score, and the likelihood of major postoperative complications [9,11]. Two patients in the present series, one of whom ultimately died, had leakage of intestinal content from the stapled ileocolonic anastomosis, indicating that expertise with the stapling technique is mandatory, and that the stapling instrument may expedite the procedure but ‘it is an adjunct to, and not a substitute for, meticulous surgical technique’ [12].

TABLE 2 The use of incontinence products in 63 patients with OBS (excluding one who received an ileal conduit and one who was on chronic haemodialysis); two patients had permanent indwelling catheters and 23 used CISC.

<table>
<thead>
<tr>
<th>Night-time</th>
<th>Daytime</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No pad</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Pad</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Condom drainage</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

this is common after surgical techniques using staples exposed to urine, as in the Kock ileal neobladder, and a third of such patients have developed stones after 5 years [10]. We are not using staples for neobladder construction and for the Lundiana pouch they are placed on the outside of the bowel, but the incidence of stones was still 10% in both procedures. In addition to foreign material, residual urine, bacteria, hypercalciuria and hypocitraturia seem to be important [10,13], and measures to prevent stone formation are avoiding staples and emptying the reservoir completely. Incomplete emptying and bacteriuria, with or without CISC, were possibly the main risk factors among the present patients. Regular irrigation has been suggested, but its true value remains unclear [14].

Less common, but more serious, is perforation/rupture of the pouch, in this series occurring in 3% of those with CCD, but also in OBS. In a Scandinavian hospital survey this complication was noted in 1.5%, occurring in any segment of intestine used [15]. Causal factors may be blunt or sharp trauma (e.g. catheterization) to an overdistended pouch. This complication must be suspected in all patients with continent pouches who present with acute abdominal pain.

Whether ureters should be implanted with or with no reflux protection is in continuous debate; we consider strongly that an antirefluxing technique should be used, also in OBS [16]. We continue to feel that the Le Duc technique is excellent, with a low incidence of anastomotic stricture, contrary to some clinical and experimental studies. The 2-week period with intubated ureters and irrigation of the pouch provides tissue cover for the exposed ureteric adventitia, followed by ingrowth of colonic mucosa. The unobstructed, nonrefluxing ureter is probably the main factor for satisfactory renal function in this series. Although serum creatinine is a rather crude measure of renal function, the present results support studies reporting the GFR of well-preserved renal function after continent reconstruction of the urinary tract [10,17–19]. Similar to findings by others, renal function was lost mostly in patients with identifiable, and, in some, potentially remediable causes [18].

Renal function, or worse, life, may also be lost by upper tract recurrence of urethelial cancer, with an incidence of 5% in the present series. This is one reason for following these patients with regular IVU, the other being that IVU provides an acceptable measure to evaluate function. We disagree with the European guidelines in which the follow-up is by ultrasonography and plain films [20], as obstruction can be present with no dilatation and vice versa, in addition to ultrasonography being user-dependent.

Stomal stenosis is common after diversion using small-bore outlets, i.e. the appendix [21]. Although the stoma most often can be revised as an outpatient procedure, it is nevertheless annoying to the patient. By placing the first staple instrument obliquely when tapering the ileal segment of the Lundiana pouch, we were able to preserve an adequate diameter of the ileal stoma, thereby lowering the risk of stenosis.

From the functional results obtained it is obvious that the Lundiana pouch is superior to the right colonic neobladder. Storage is better, because the outlet closure mechanism is adequate, resulting in longer intervals between emptying and patients having less difficulty in controlling urine than those with a neobladder [22]. Only a few of the latter needed no protection. The other patients had pads and many had condom drainage at night. This does not mean that all of those who used pads had severe leakage; most had small leakage only and some did not usually leak, but they felt insecure with no protection. CISC was used by 23 patients because of inadequate emptying, something not exclusively associated with the use of colon, but reported to be equally common after an ileal neobladder [10]. Although there are no proper prospective studies comparing ileum and colon, some retrospective studies failed to show major functional differences, although the urodynamic findings seem to be more favourable using ileum [23,24]. True comparative studies are needed, including the
use of validated outcome instruments and
voiding diaries [25], and such a study is now
underway in the Scandinavian countries as a
multicentre study comparing different types
of neobladders.

Although there were differences in functional
outcome between CCD and OBS, a ‘quality-of-
life’ study in these patients using instruments
tested for validity and reliability showed no
differences [22]. This may at least partly
be explained by the provision of honest
information to the patient before surgery, and
the adaptation that takes place afterward.

Is radical cystectomy associated with more
complications when combined with continent
reconstruction than in conjunction with ileal
conduit? Some studies fail to find such
differences even when stratifying according
to comorbidity index [9,11,26,27]. We are
sceptical as to whether these findings have
general applicability within this field. The
more complicated the surgery, the higher the
likelihood of complications, early and late.
This should also be part of the preoperative
information to the patient.

ACKNOWLEDGEMENTS

This study was supported by grants from The
Swedish Cancer Society (3789–B98–03XAC),
Gunnar Nilsson Cancer Foundation and the
Swedish Foundation for Health Care Sciences
and Allergy Research.

REFERENCES

1 Kock NG, Nilsson AE, Nilsson LO, Norlen LJ,
Philipson BM. Urinary diversion via a
continent ileal reservoir: clinical results in
2 Lilien OM, Camey M. 25-year experience with
replacement of the human bladder
(Camey procedure). J Urol 1984; 132:
886–91
3 Månsson Å, Månsson W. When the
bladder is gone: quality of life following
different types of urinary diversion. World
J Urol 1999; 17: 211–8
Bladder replacement with use of a
detubularized right colonic segment:
preliminary report of a new technique.
5 Månsson W, Colleen S. Experience with a
detubularized right colonic segment for
bladder replacement. Scand J Urol Nephrol
1990; 24: 53–6
6 Davidsson T, Hedlund H, Månsson W.
Detubularized right colonic reservoir with
intussuscepted ileal nipple valve or
stapled ileal (‘Lundiana’) outlet. World J
Urol 1996; 14: 78–84
7 Venn SN, Popert RM, Mundy AR. ‘Nerve-
sparing’ cystectomy and substitution
cystoplasty in patients of either sex:
82: 361–5
8 Hautmann RE, de Petricioni R, Gottfried
HW, Kleinschmidt K, Mattes R, Paiss T. The
ileal neobladder: complications and
functional results in 363 patients after 11
years of followup. J Urol 1999; 161:
422–7
9 Malavaud B, Vaessen C, Mouzin M,
Rischmann P, Sarramon JP, Schulman C.
Complications for radical cystectomy.
Impact of the American Society of
Anesthesiologists score. Eur Urol 2001;
39: 79–84
10 Steven K, Poulsen AL. The orthotopic Kock
ileal neobladder: functional results,
urodynamic features, complications and
survival in 166 men. J Urol 2000; 164:
288–95
11 Chang SS, Cookson MS, Baumgartner RG,
Wells N, Smith JA. Analysis of early
complications after radical cystectomy:
results of a collaborative care pathway.
J Urol 2002; 167: 2012–6
12 Moran BJ. Stapling instruments for
intestinal anastomosis in colorectal
13 Edin-Lijegren A, Grenabo L, Hedelin H,
Jonsson O, Akerlund, S, Pettersson S.
Concremen formation and urease-
induced crystallization in urine from
patients with continent ileal reservoirs.
Br J Urol 1996; 78: 67–73
14 Brough RJ, O’Flynn KJ, Fishwick J, Gough
DH. Bladder washout and stone formation
in pediatric enterocystoplasty. Eur Urol
1998; 33: 500–2
15 Månsson W, Bakke A, Bergman B et al.
Perforation of continent urinary
reservoirs. Scandinavian experience.
Scand J Urol Nephrol 1997; 31: 529–32
16 Månsson W, Davidsdon T, Liedberg F,
Månsson Å, Wulbt B. Lower urinary tract
reconstruction in patients with bladder
cancer. In Pagano F, Bassi P eds, Invasive
Bladder Cancer. Oxfordshire: Bladon
17 Kristjansson A, Wallin L, Månsson W.
Renal function up to 16 years after
continual (refluxing or anti-reflux
anastomosis or) continent urinary
diversion. I. Glomerular filtration rate and
patency of uretero-intestinal
18 Fontaine E, Lever R, Woodhouse CR. The
effect of intestinal urinary reservoirs on
renal function: a 10-year follow-up. BJU
Int 2000; 86: 195–8
19 Jonsson O, Olofsson G, Lindholm E,
Tornqvist H. Long-time experience with
the Kock ileal reservoir for continent
urinary diversion. Eur Urol 2001; 40:
632–40
20 Oosterlink W, Lobel B, Jakse G, Malmström
P–U, Steckle M, Sternberg C. Guidelines on
Bladder Cancer. EAU, 2001
21 Gerharz EW, Kohl UN, Melekos MD, Bonfig
R, Weingartner K, Riedmiller H. Ten years’
experience with the submucosally
embedded in situ appendix in continent
urinary diversion. Eur Urol 2001; 40:
625–31
22 Månsson Å, Davidsson T, Hunt S, Månsson
W. Quality of life in men after radical
cystectomy with continent cutaneous
diversion or orthotopic bladder
substitution – is there a difference? BJU
Int 2002; 90: 386–90
23 Månsson Å, Caruso A, Capovilla E et al.
Quality of life after radical cystectomy
and orthotopic bladder substitution: a
comparison between Italian and
Swedish men. BJU Int 2000; 85:
26–31
24 Paananen I, Ottilen J, Hellström P. Early
cystometric findings in patients with
Goldwasser’s or Studer’s bladder substitution. Scand J Urol Nephrol 2001;
35 (Suppl. 208): 32
25 Steers WD. Voiding dysfunction in the
orthotopic neobladder. World J Urol 2000;
18: 330–7
26 Benson MC, Slawin KM, Wechsler MH
et al. Analysis of continent versus
69: 156–62
27 Gburek BM, Lieber MM, Blute ML.
Comparisons of Studer ileal neobladder
and ileal conduit diversion with respect
to perioperative outcome and late
complications. J Urol 1998; 160:
721–3

Correspondence: W. Månsson, Department of
Urology, University Hospital, S-221 85 Lund,
Sweden.
e-mail: wiking.mansson@urolki.lu.se

Abbreviations: CCD, continent cutaneous
diversion; OBS, orthotopic bladder
substitution; CISC, clean intermittent
self-catheterization.