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Abstract

The stochastic leaky integrate-and-fire (LIF) neuronal models are common theoretical
tools for studying properties of real neuronal systems. Experimental data of frequently
sampled membrane potential measurements between spikes show that the assumption of
constant parameter values is not realistic, and that some (random) fluctuations are oc-
curring. In this paper we extend the stochastic LIF model allowing for a noise source
determining slow fluctuations in the signal. This is achieved by adding a random variable
to one of the parameters characterizing the neuronal input, considering each ISI as an
independent experimental unit with a different realization of this random variable. In
this way, the variation of the neuronal input is split into fast (within-interval) and slow
(between intervals) components. A parameter estimation method is proposed, allowing
the parameters to be estimated simultaneously over the entire data set. This increases
the statistical power and the average estimate over all ISIs will be improved in the sense
of decreased variance of the estimator compared to previous approaches, where the es-
timation has been conducted separately on each individual ISI. The results obtained on
real data show a good agreement with classical regression methods.

1



Keywords: stochastic differential equations, mixed-effects, random parameters, maxi-
mum likelihood estimation, interspike interval, spontaneous firing.

1 Introduction

The stochastic leaky integrate-and-fire (LIF) neuronal models are common theoretical tools for
studying properties of real neuronal systems. They represent a compromise between similarity
to real neurons and mathematical tractability (see e.g. Ricciardi (1977); Tuckwell (1988);
Dayan and Abbott (2001); Gerstner and Kistler (2002); Burkitt (2006)). In these models, a
neuron is characterized by a single stochastic differential equation describing the evolution of
neuronal membrane potential over time. Firing is not an intrinsic property of the LIF models,
and a firing threshold has to be imposed. An action potential (spike) is produced when the
membrane voltage reaches the voltage threshold and corresponds to the first-passage time for
the associated stochastic process describing the voltage. In the moment of spike generation,
the voltage is instantaneously reset to the resting membrane potential.

Studies devoted to the comparison of the stochastic leaky integrate-and-fire neuronal mod-
els with experimental data are rare. The data are typically either intracellular measurements
of the membrane potential, or extracellular measurements of the spike times. Obviously there
is more information contained in the intracellular recordings of the otherwise hidden membrane
potential. One line of research attempts to estimate intrinsic parameters characterizing the
neuron assuming the neuronal input known. This is useful for predicting spiking activity with
different kinds of input, as well as to do comparisons of prediction and real output, when the
same input is applied to a model neuron and a real neuron. Some references in this line using
frequently sampled membrane potential measurements between spikes are Rauch et al. (2003);
Jolivet et al. (2004, 2006); La Camera et al. (2004); Paninski et al. (2005); Huys et al. (2006);
Clopath et al. (2007) and references using first-passage time data are Paninski et al. (2004,
2005). Another line of research attempts to identify the signal impinging upon the neuron,
assuming the intrinsic neuronal parameters known. This is equally an important task, where
the goal is to reconstruct the signal to the neuron from the neuronal output. Some refer-
ences using frequently sampled membrane potential measurements between spikes are Lansky
(1983); Lanska and Lansky (1998); Lansky et al. (2006); Höpfner (2007) and references using
first-passage time data are Inoue et al. (1995); Shinomoto et al. (1999); Ditlevsen and Lansky
(2005, 2006, 2007); Ditlevsen and Ditlevsen (2007). In these last studies, two parameters of
the model characterizing the neuronal input were estimated or methods for this purpose were
proposed. All parameters were assumed fixed for the whole period of an experiment, without
any internal fluctuations.

From the point of view of potential applications, it is of interest to be able to characterize
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the signalling environment to which the recorded neuron is exposed. The main feature of this
environment is the intensity of stimulation, which may well be variable over the course of the
experiment. Indeed, the degree of this background signal variability could be the main piece
of information to be extracted from available data. In fact, experimental data of frequently
sampled membrane potential measurements between spikes show that the assumption of con-
stant parameter values is not realistic (Lansky et al. (2006)), and that some (possibly random)
fluctuations are occurring. It is difficult to evaluate the time scale of such fluctuations, and in
this paper we have made a somehow arbitrary choice of the time scale of the ISIs as a start to
explore this variability. This choice is supported by the study in Lansky et al. (2006) where it
is apparent that there is variation from one interspike interval to the next. An argument for
this choice could be that the spike itself has some feedback on the neuron under study.

One way to approach between-interval variability has been to estimate parameters indi-
vidually on each interspike interval and then interpret the results through some summary
statistics, e.g. the median and the range of estimates. In this paper, we will take a different
approach and extend the stochastic LIF model allowing for a second noise source determining
slow fluctuations in the signal. In this way, the variation of the neuronal input is split into fast
(within-interval) and slow (between intervals) components. This is achieved by adding a zero
mean random variable to one of the parameters characterizing the neuronal input, considering
each interspike interval (ISI) as an independent experimental unit with a different realization
of this random variable. This is also termed a random effect and allows part of the neuronal
input to be characterized by a distribution of two parameters (instead of one parameter for
each single ISI), which are estimated simultaneously over the entire data set. This increases
the statistical power and the average estimate over all ISIs will be improved in the sense of
decreased variance of the estimator compared to previous approaches, where the estimation
has been conducted separately on each individual ISI (see e.g. Diggle et al. (2002); McCulloch
and Searle (2001); Pinheiro and Bates (2000)).

2 Model and parameter estimation

2.1 The Model

The changes in the membrane potential between two consecutive neuronal firings are repre-
sented by a stochastic process Xt indexed by the time t. The reference level for the membrane
potential is taken to be the resting potential. The initial voltage (the reset value following a
spike) is assumed to be equal to the resting potential. An action potential is produced when
the membrane voltage Xt exceeds a voltage threshold S for the first time. It follows from the
model assumptions that for time-homogeneous input containing either a Poissonian or white
noise only, the membrane potentials during different interspike intervals are independent and
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the initial time following a spike can always be identified with zero.
A scalar diffusion process X = {Xt; t ≥ 0} can be described by the stochastic differential

equation

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt, X0 = x0 (1)

where W = {Wt; t ≥ 0} is a standard Wiener process and µ(·) and σ(·) are real-valued
functions of their arguments. The function µ(·) is usually called the “infinitesimal mean” and
σ2(·) the “infinitesimal variance”. Traditionally, for the LIF model, the diffusion process given
in equation 1 is specified by the infinitesimal mean

µ(Xt, t) = −Xt

τ
+ µ, (2)

where the constant µ [V/s] characterizes the neuronal input and τ > 0 [s] reflects spontaneous
voltage decay (the membrane time constant) in the absence of input. Moreover, the constant
square root of the infinitesimal variance,

σ(Xt, t) = σ > 0 (3)

also characterizes the neuronal input, see also Ditlevsen and Lansky (2005). The diffusion
process in equation 1 with the infinitesimal moments given by equation 2 and 3 defines the
Ornstein-Uhlenbeck (OU) diffusion process:

dXt =
(
−Xt

τ
+ µ

)
dt+ σ dWt ; X0 = x0. (4)

The parameters appearing in model 4, together with the threshold S, can be divided into two
groups: parameters characterizing the input, µ and σ, and intrinsic parameters, τ, x0 and S,
which describe the neuron irrespectively of the incoming signal (Tuckwell and Richter (1978)).

Solving the Fokker-Planck equation for model 4 yields the transition density function

pX(x, t|xs, s) = (2πV )−
1
2 exp

{
−(x−M)2

2V

}
(5)

where

M = xs e
−(t−s)/τ + µτ(1− e−(t−s)/τ ), (6)

V =
σ2τ

2
(1− e−2(t−s)/τ ) (7)

for t > s. Hence, at each time t the transition probability density function is normal with
mean M and variance V (Ricciardi (1977)).
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Since the intrinsic parameters describe inherent physiological characteristics of the neuron,
they are usually expected to be constant in time, whereas the input parameters fluctuate,
depending on incoming signals. However, experimental studies suggest that the effective
membrane constant τ changes in dependence of the time elicited since the last spike (Powers
and Binder (1996); Jolivet et al. (2004)). This refinement is ignored and the approximation of
a constant τ is used throughout the paper. As we shall see later, this creates fitting problems
in the maximum likelihood estimation, and a correction is proposed.

If it is reasonable to assume the neuron is operating in a stationary state during some time
interval of interest, then the input parameters would be assumed constant during this period.
We may however generalize, by assuming that additionally to the input characterized by the
parameter µ there is a random component changing from one ISI to the next, which could
be caused by the naturally occurring variations of environment signalling, by experimental
irregularities or by other sources of noise, not included in the model. The main interest
rests in the overall µ, whereas the specific values during each ISI are not of interest but for
their distribution. Thus, neuronal input is assumed to consist of a constant component µ,
representing average global input, and an ISI-specific random component Bi with realization
bi representing time-local input oscillations.

This extends model 4 to the following model of the membrane potential during the ith ISI,

dXi
t =

(
−X

i
t

τ
+ µ+Bi

)
dt+ σ dW i

t , Xi
0 = xi0, (8)

Bi ∼ N (0, σ2
µ), i = 1, ...,M (9)

where M is the total number of ISIs, N (0, σ2
µ) is the normal distribution with mean zero

and variance σ2
µ and the W i

t are standard Brownian motions. The distribution of Bi in this
paper is assumed normal for simplicity, but other distributions could be considered. Note
the different nature of the two noise intensity parameters, which also follows from different
units of σ [V/

√
s] and σµ [V/s]. The W i

t and Bj are assumed mutually independent for all
1 ≤ i, j ≤M . Thus, the neuronal input in the drift during the ith ISI (µ+Bi) is a draw from
the normal distribution with mean µ and variance σ2

µ. Model 8–9 assumes that in each of the
M ISIs the evolution of X follows a common functional form, and differences between ISIs
are due to different realizations of the Brownian motion paths {W i

t }t≥0 and of the random
parameters Bi.

The model is still a renewal process and ignores afterspike effects, like the Ihist(t) in
Paninski et al. (2004). The addition of a spike aftereffect describing the afterhyperpolariza-
tion and/or inclusion of a time-dependent time constant in equation (8) could surely make
the model more realistic. However, such modifications would substantially complicate the sta-
tistical inference. As always, it is necessary to find a compromise between model tractability
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and realism. In this paper a simpler model is used permitting a more transparent treatment.
Our model corresponds to the stimulus current for which Istim(t) = µ+Bi if t belongs to the
ith ISI, see Paninski et al. (2004).

Suppose that the membrane potential is sampled during the ith ISI at ni + 1 equidistant
time points. Let xij denote the observed membrane potential during the ith ISI at time j∆,
1 ≤ i ≤ M , 0 ≤ j ≤ ni, where ∆ is the constant time-interval between observations. Notice
that while there is no conceptual difference in considering non-equidistant time points, this
would make notation more cumbersome, and it is not relevant for our application. Using
simultaneously all data {xij}

i=1,..,M
j=0,...,ni

the goal is to estimate θ = (µ, τ, σ, σ2
µ) by maximum

likelihood, as explained in the following, see also Ditlevsen and De Gaetano (2005); Picchini
et al. (2006).

2.2 Parameter Estimation

It follows from equations 6 and 7 that the conditional mean and variance of Xi
t are

E(Xi
t |Bi = bi) = xi0e

−t/τ + (µ+ bi)τ(1− e−t/τ )

Var(Xi
t |Bi = bi) =

σ2τ

2
(1− e−2t/τ )

and from equation 5 it follows that the transition density is normal and given by

pX(xij ,∆|xij−1, b
i) =

(
πσ2τ

(
1− e(−2∆/τ)

))−1/2

× exp
(
−
(
xij − xij−1e

−∆/τ − (µ+ bi)τ(1− e−∆/τ )
)2

σ2τ(1− e−2∆/τ )

)
.

Integrating this conditional density with respect to the marginal density of the random effects
yields the likelihood function of θ = (µ, τ, σ, σ2

µ)

L(θ) =
M∏
i=1

∫ +∞

−∞

 ni∏
j=1

pX(xij ,∆|xij−1, b
i)

ϕ(bi) dbi (10)

where ϕ is the probability density function of Bi, here assumed to be Gaussian for every i.
In equation 10 we have used that Xi

t given Bi is Markov, and that W i
t and Bi are assumed
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independent. Since Bi ∼ N (0, σ2
µ), the likelihood function in equation 10 can be written as

L(θ) = (2πσ2
µ)−M/2

(
πσ2τ(1− e−2∆/τ )

)−∑M
i=1 ni/2

×
M∏
i=1

∫ +∞

−∞
exp
{
−

ni∑
j=1

[(
xij − xij−1e

−∆/τ − (µ+ bi)τ(1− e−∆/τ )
)2

σ2τ(1− e−2∆/τ )

]
− (bi)2

2σ2
µ

}
dbi.(11)

The estimator is obtained by maximizing the likelihood over the parameters, or equivalently,
minimizing − logL(θ). The asymptotic variance of the estimator is provided by solving nu-
merically the Hessian of the log-likelihood at the optimum and inverting it. If it is of interest
to estimate the random parameters bi separately for each ISI this can be done in the standard
way from mixed-effects theory by

b̂i = arg min
bi

{
−

ni∑
j=1

log pX(xij ,∆|xij−1, b
i)
}
, i = 1, ...,M (12)

where the estimates of µ, τ and σ have been plugged in.

2.3 Numerical procedure for the estimation

We have no closed-form solution to the integral in equation 11. However, when an integral
over the real line with respect to a variable x contains an exp(−x2) multiplicative term, it
can be approximated by the Gauss-Hermite quadrature (e.g. Fröberg (1985), Krommer and
Ueberhuber (1998)). Here, a grid of R evaluation points was applied, i.e.

L(θ) ' L̃(θ) =
M∏
i=1

( R∑
r=1

∏ni
j=1 pX(xij ,∆|xij−1,

√
2σµzr)√

π
wr

)
(13)

where zr is the rth zero of the Hermite polynomial of degree R and wr is a corresponding weight
factor (the zr’s and the wr’s values are tabulated e.g. in Salzer et al. (1952) or Table 25.10
in Abramowitz and Stegun (1964), where values up to order R = 20 are provided). A set of
R = 40 points has been applied in the Gauss-Hermite quadrature (also R = 100 was applied
but the results were not appreciably different; notice that some authors consider R = 20

sufficient for a good degree of approximation (McCulloch and Searle, 2001, p. 272)). The
resulting approximate maximum likelihood estimator of θ is given by θ̃ = arg minθ(− log L̃(θ)).
Notice that, due to the large number of observations in each ISI (from few hundreds to tens
of thousands), the product

∏ni
j=1 pX in equation 13 might be difficult to evaluate numerically.

This can be solved e.g. by normalizing the densities by a common constant or optimizing only
a kernel of the likelihood, or by applying an arbitrary/variable precision package, e.g. we used
the package by Barrowes (2007) for Matlab.
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3 Application

The experimental ISI data were measured intracellularly from the auditory system of a guinea
pig (for details on data acquisition and processing see Yu et al. (2004)). These data were
analyzed in Lansky et al. (2006) where model 4 was fitted individually to each ISI data series,
applying methods already proposed in Lansky (1983).

The data consists of M = 312 ISIs, with membrane potential recorded every 0.15 ms,
see Figure 1 for a histogram of the ISI lengths and Figures 4–5 for sample trajectories. The
parameter estimates and 95% confidence intervals obtained using model 8-9 and the estimation
method described in sections 2.2-2.3 are given in Table 1 where it is evident that the parameters
are well identified. In other words, the statistical uncertainty on the estimated parameters is in
all cases smaller than 5% of the estimated value. These conclusions are of course conditioned
on the model. To evaluate if the random effect on µ is statistically significant, the hypothesis
H0 : σµ = 0 was tested against H1 : σµ > 0 in a likelihood ratio test (see Appendix). H0

was rejected with p < 0.001, and thus we conclude that model 8–9 describes the data better
than model 4. This can also be seen from Figure 2, where the variability in the estimated
random effects does not support a conclusion of all bi’s being zero. The random effects bi were
estimated using equation 12 and the sample mean and standard deviation of the 312 obtained
estimates are given by -0.001 V/s and 0.0762 V/s, respectively, the former being close to zero
and the latter close to the σµ estimate, as they should be, see Table 1. The histogram of the
b̂i’s is given in Figure 2.

By inspecting Figure 2, ten outliers were identified, namely those b̂i’s smaller than −0.15

V/s. Each outlier corresponds to one of the black trajectories in Figure 3, the latter reporting
all the observations from the 312 ISIs, grouped in the same time-frame. Notice how the ten
black trajectories form a cluster with a lower asymptotic depolarization, as expected since they
were chosen exactly to have low values of µ. The outliers were also located chronologically
to see if they clustered in time, maybe indicating a temporary different state of the neuron.
This was not the case, these ISIs were randomly appearing from time to time, and we have
no biological explanation to this. In order to check the sensitivity of the results to those ten
trajectories, we estimated the parameters again on the set of M = 312− 10 = 302 ISIs. The
parameter estimates are reported in Table 1. The sample mean and standard deviation of the
b̂i’s are -0.0041 V/s and 0.0649 V/s, respectively. The estimates of τ and σ are not affected by
the extreme trajectories, and the estimate of µ is slightly larger and that of σµ slightly smaller
than the estimates from the full data set, as they should be when the lower tail is removed.
Thus, the estimation seems robust to those outliers and in the following we refer to the case
M = 312 only.

For ease of comparison between the observations and the theoretical model, Figure 4
reports only five observed trajectories from the 312 ISIs with lengths less than 0.16 s (the
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median of the empirical distribution of the ISI lengths is 0.58 s), grouped in the same time-
frame, the empirical mean of 2000 trajectories simulated from model 8–9 according to the
Euler-Maruyama scheme (Kloeden and Platen (1992)) using the estimated parameters, the
empirical 95% confidence bands of the 2000 trajectories and five simulated trajectories. For
each simulated trajectory a different realization of Bi has been produced by drawing from
the normal distribution with mean zero and standard deviation σµ = 0.0723 V/s. In Figure
5 more observed trajectories (with lengths less than 0.4 s) over a longer time interval are
compared with the simulated model using the same settings above.

The results are in agreement with the maximum likelihood estimates obtained in Lansky
et al. (2006), where 1/τ was estimated at 43.5068 s−1, corresponding to τ = 0.023 s, and the
medians of the estimates were 0.4606 V/s for µ and 0.0135 V/

√
s for σ (compare with our

Table 1). Note that in Lansky et al. (2006) different sets of estimates for the input parameters
were obtained for each ISI, whereas the introduction of the random effect and the extra noise
parameter σµ in our approach provides only one set of estimates of input parameters based
on the full data.

From Figures 4-5 it would seem that immediately after a spike the model prediction in-
creases faster than the observed trajectories. This is probably due to model misspecification
caused by not considering possible changes in τ depending on the time elicited since last spike.
The maximum likelihood method is in fact a parametric method sensitive to this kind of model
misspecifications, whereas e.g. the method of moments might be more robust. Since it is not
obvious exactly how to correct the model, in order to fix the misspecification problem we
proceed in two steps. We first obtain an estimate of τ with a regression method (first step),
which depends mostly on the first moment, and is thus effective in identifying the initial rise,
where there is a clear drift. In this way we have a better estimate of τ , and may then continue
(second step) with our maximum likelihood procedure to obtain estimates for the remaining
parameters. In practice, we simply repeated the maximum likelihood estimation after having
fixed the value of τ to 0.039 = 1/25.8042 s, as obtained in Lansky et al. (2006) by their
regression method based on the first moment, equation 6. The final estimates of µ, σ, and
σµ are reported in Table 1. These last results are in agreement with the regression estimates
obtained in Lansky et al. (2006), where the median of the estimates were 0.2846 V/s for µ and
0.0135 V/

√
s for σ. Figures 6-7 report the same observed trajectories considered in Figures

4-5, this time compared with the model simulated using the estimates obtained by fixing τ
to 0.039 s. The model fit appears more convincing here, though there might still be some
misspecification towards the end of the trajectories. The truth probably lies somewhere in
between with τ varying between the two values found. The histogram of the corresponding
random effects estimates is given in Figure 8 with sample mean and standard deviation of
the b̂i estimates given by 0.0036 V/s and 0.0467 V/s, respectively. In this case the empirical
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distribution of the b̂i’s seems to be closer to a normal distribution than in the previous case
represented in Figure 2.

4 Discussion

In this paper, a new model for the evolution of the neuronal membrane potential between
spikes has been proposed and compared to a limited amount of experimental data. This
comparison should be considered an illustration of the model and its verification methods
more than a basis for biological conclusions. Thus, despite we found that the model gave
a better description of the available data, an extensive confrontation with large data sets
recorded under different experimental conditions are necessary.

The model is an extension of the stochastic LIF model and introduces a new parameter to
describe a slowly fluctuating signal received by the neuron. Whereas the classical stochastic
LIF with Gaussian noise encompass fast fluctuations of the membrane potential, it assumes
that the mean signal is constant over the observed period. Here, the mean signal is variable
at the scale of the ISIs. The statistical methods used for the estimation of the parameters of
the model show that it is in fact possible to clearly distinguish between the two fluctuation
sources that are working on different time scales. The model is therefore appealing because it
coherently describes the behavior of a neuron over a large time span, more than the classical
stochastic LIF. Moreover, only a single analysis on the full data set is required instead of
splitting the data in smaller individually analyzed subsets, with a substantial gain in statistical
estimation power. This holds, of course, only under the assumption of stationarity in the ISI
generation.

The choice of a random effect on µ is natural since it is a parameter describing the intensity
of neuronal input, and thus, the random effect describes the slow fluctuations in the total signal
that the neuron receives from its environment between spikes. Also a random effect on σ could
be considered, since it has been claimed that signal and noise are not independent quantities
in the neuronal context in general (Cecchi et al. (2000)) and in the stochastic LIF specifically
(Lansky and Sacerdote (2001)). It would correspond to variations in the synchronization or
coherence of the source neurons in the environment. However, from Figure 10 in Lansky et al.
(2006) it is clear that the estimates of σ do not vary much from ISI to ISI (most estimates
differ less than 10% from the median value) and could be explained by statistical uncertainties
in the estimation from finite samples. On the other hand, the variation in the estimates of µ
is more substantial from ISI to ISI, and is more likely to represent a true biological effect.

We realize that there are more sophisticated variants of the LIF model (Burkitt (2006);
Brunel and van Rossum (2008)) and new methods for signal estimation would be useful for
their evaluation. The problem is that a minimal knowledge is required to develope these
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methods, like knowledge of the transition density. However, there are still open questions
concerning inference for the diffusion LIF, e.g. identification of the input parameters under
periodic stimulation. Periodical stimulation has a long-lasting tradition in experimental stud-
ies as well as theoretical ones, and establishing a method for estimation of the signal would
contribute to the verification of the model. This was also noted by Habib and Thavaneswaran
(1990).

The approach used in this paper is common in biomedical research, where studies in which
repeated measurements are taken on a series of individuals or experimental units play an im-
portant role. In these models it is assumed that all responses follow a similar functional form,
but with parameters that vary among units. The increasing popularity of such mixed-effects
models (“mixed-effects” means that the model contains both fixed and random effects, some-
times also called multi-level or hierarchical models) lies in the flexible modeling of correlation
structures, where the total variation is specifically split in within-units and between-units
variation. The theory for mixed-effects models is well developed for deterministic models
(without system error), both linear and non-linear (Davidian and Giltinan (1995); McCulloch
and Searle (2001); Diggle et al. (2002)), and standard software for model fitting is available,
see e.g. Pinheiro and Bates (2000), Pinheiro et al. (2007) and Lavielle et al. (2007). Recently
stochastic differential equation models with random effects have been considered (Ditlevsen
and De Gaetano (2005); Tornøe et al. (2005); Overgaard et al. (2005); Picchini et al. (2006);
Mortensen et al. (2007); Donnet and Samson (2008)), with different authors following different
statistical approaches.

In conclusion, we have presented an extension of the stochastic LIF model which gives a
significantly better description of experimental data, and simultaneously a statistical method
to estimate parameters of the new model from experimental data.

Acknowledgments

The authors thank J.F. He for making the experimental data available. Supported by grants
from the Danish Medical Research Council and the Lundbeck Foundation to S. Ditlevsen, and
the Center for Neurosciences LC554, AV0Z50110509 and Academy of Sciences of the Czech
Republic (Information Society, 1ET400110401) to P. Lansky.

References

M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover, New York, ninth Dover printing, tenth GPO printing
edition, 1964. http://www.math.sfu.ca/~cbm/aands/.

11



B. Barrowes. Multiple precision toolbox for Matlab, 2007. http://www.mathworks.com/

matlabcentral/fileexchange/loadFile.do?objectId=6446&objectType=File.

N. Brunel and M.C.W. van Rossum. Lapicque’s 1907 paper: from frogs to integrate-and-fire.
Biol. Cybern., 2008. In press.

A.N. Burkitt. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic
input. Biol. Cybern., 95:1–19, 2006.

G.A. Cecchi, M. Sigman, J.M. Alonso, L. Martinez, D.R. Chialvo, and M. Magnasco. Noise
in neurons is message-dependent. Proceeding National Academy of Sciences, 97:5557–5561,
2000.

C. Clopath, R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner. Predicting neuronal
activity with simple models of the threshold type: Adaptive exponential integrate-and-fire
model with two compartments. Neurocomput., 70:1668–1673, 2007.

M. Davidian and D.M. Giltinan. Nonlinear models for repeated measurement data. Chapman
and Hall, 1995.

P. Dayan and L.F. Abbott. Theoretical Neuroscience: Computational and Mathematical Mod-
eling of Neural Systems. MIT Press, 2001.

P.J. Diggle, P. Heagerty, K.Y. Liang, and S.L. Zeger. Analysis of longitudinal data. Oxford
University Press, 2002.

S. Ditlevsen and A. De Gaetano. Mixed effects in stochastic differential equations models.
REVSTAT - Statistical Journal, 3(2):137–153, November 2005.

S. Ditlevsen and O. Ditlevsen. Parameter estimation from observations of first-passage times
of the Ornstein-Uhlenbeck process and the Feller process. Prob. Eng. Mech., 2007. doi:
10.1016/j.probengmech.2007.12.024. To appear.

S. Ditlevsen and P. Lansky. Estimation of the input parameters in the Ornstein-Uhlenbeck
neuronal model. Phys. Rev. E, 71:Art. No. 011907, 2005.

S. Ditlevsen and P. Lansky. Estimation of the input parameters in the Feller neuronal model.
Phys. Rev. E, 73:Art. No. 061910, 2006.

S. Ditlevsen and P. Lansky. Parameters of stochastic diffusion processes estimated from ob-
servations of first hitting-times: application to the leaky integrate-and-fire neuronal model.
Phys. Rev. E, 76:Art. No. 041906, 2007.

12



S. Donnet and A. Samson. Parametric inference for mixed models defined by stochastic
differential equations. ESAIM: Probability and Statistics, 12:196–218, 2008.

C.E. Fröberg. Numerical Mathematics. The Benjamin/Cummings Publishing Company, Inc.,
1985.

W. Gerstner and W.M. Kistler. Spiking Neuron Models. Cambridge University Press, 2002.

M.K. Habib and A. Thavaneswaran. Inference for stochastic neuronal models. Applied Math.
Comput., 38:51–73, 1990.

R. Höpfner. On a set of data for the membrane potential in a neuron. Math. Biosci., 207(2):
275–301, 2007.

Q.J.M. Huys, M.B. Ahrens, and L. Paninski. Efficient estimation of detailed single-neuron
models. J. Neurophysiol., 96:872–890, 2006.

J. Inoue, S. Sato, and L.M Ricciardi. On the parameter estimation for diffusion models of
single neurons activity. Biol. Cybern., 73:209–221, 1995.

R. Jolivet, T.J. Lewis, and W. Gerstner. Generalized Integrate-and-Fire models of neuronal
activity approximate spike trains of a detailed model to a high degree of accuracy. J.
Neurophysiol., 92:959–976, 2004.

R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner. Predicting spike timing of neocortical
pyramidal neurons by simple threshold models. J. Comput. Neurosci., 21:35–49, 2006.

P.E. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Springer,
1992.

A.R. Krommer and C.W. Ueberhuber. Computational Integration. Society for Industrial and
Applied Mathematics, 1998.

G. La Camera, A. Rauch, H.-R. Lüscher, W. Senn, and S. Fusi. Minimal models of adapted
neuronal response to in vivo-like input currents. Neural Comput., 16:2101–2124, 2004.

V. Lanska and P. Lansky. Input parameters in a one-dimensional neuronal model with reversal
potentials. Biosystems, 48:123–129, 1998.

P. Lansky. Inference for diffusion models of neuronal activity. Math. Biosci., 67:247–260, 1983.

P. Lansky and L. Sacerdote. The Ornstein-Uhlenbeck neuronal model with signal-dependent
noise. Physics Letters A, 285:132–140, 2001.

13



P. Lansky, P. Sanda, and J. He. The parameters of the stochastic leaky integrate-and-fire
neuronal model. J. Comput. Neurosci., 21:211–223, 2006.

M. Lavielle, H. Mesa, and the Monolix Group. MONOLIX (MOdèles NOn LInéaires à effets
miXtes), 2007. http://www.monolix.org.

C.E. McCulloch and S.R. Searle. Generalized, Linear and Mixed Models. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., 2001.

S.B. Mortensen, S. Klim, B. Dammann, N.R. Kristensen, H. Madsen, and R. Overgaard. A
Matlab framework for estimation of NLME models using stochastic differential equations.
Applications for estimation of insulin secretion rates. J. Pharmacokinet. Pharmacodyn., 34
(5), October 2007.

R.V. Overgaard, N. Jonsson, C.W. Tornøe, and H. Madsen. Non-linear mixed-effects mod-
els with stochastic differential equations: implementation of an estimation algorithm. J.
Pharmacokinet. Pharmacodyn., 32:85–107, 2005.

L. Paninski, J.W. Pillow, and E.P. Simoncelli. Maximum likelihood estimation of a stochastic
integrate-and-fire neural encoding model. Neural Comput., 16:2533–2561, 2004.

L. Paninski, J. Pillow, and E. Simoncelli. Comparing integrate-and-fire models estimated
using intracellular and extracellular data. Neurocomputing, 65-66:379–385, 2005.

U. Picchini, A. De Gaetano, and S. Ditlevsen. Parameter estimation in stochastic differential
mixed-effects models. Technical Report 06/12, Department of Biostatistics, University of
Copenhagen, 2006.

J.C. Pinheiro and D.M. Bates. Mixed-Effects Models in S and S-PLUS. Springer-Verlag, New
York, 2000.

J.C. Pinheiro, D.M. Bates, S. DebRoy, D. Sarkar, and the R Core Team. The nlme Package.
The R Project for Statistical Computing, 2007. http://www.r-project.org/.

R.K. Powers and M.D. Binder. Experimental evaluation of input-output models of motoneuron
discharge. J. Neurophysiol., 75:367–79, 1996.

A. Rauch, La Camera G., H.-R. Lüscher, W. Senn, and S. Fusi. Neocortical pyramidal cells
respond as integrate-and fire neurons in vivo-like input currents. J. Neurophysiol., 90:1598–
1612, 2003.

L.M. Ricciardi. Diffusion processes and related topics in biology. Springer, Berlin, 1977.

14



H.E. Salzer, R. Zucker, and R. Capuano. Table of the zeros and weight factors of the first
twenty Hermite polynomials. Journal of Research of the National Bureau of Standards, 48
(2):111–116, 1952. http://nvl.nist.gov/pub/nistpubs/jres/048/2/V48.N02.A04.pdf.

S. Shinomoto, Y. Sakai, and S. Funahashi. The Ornstein-Uhlenbeck process does not reproduce
spiking statistics of neurons in prefrontal cortex. Neural Comput., 11:935–951, 1999.

C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, and E.N. Jonsson.
Stochastic differential equations in NONMEM: implementation, application, and compari-
son with ordinary differential equations. Pharmaceutical Research, 22(8):1247–1258, 2005.

H.C. Tuckwell. Introduction to theoretical neurobiology, Vol.2: Nonlinear and stochastic theo-
ries. Cambridge Univ. Press, Cambridge, 1988.

H.C. Tuckwell and W. Richter. Neuronal interspike time distributions and the estimation of
neurophysiological and neuroanatomical parameters. J. Theor. Biol., 71:167–180, 1978.

Y.Q. Yu, Y. Xiong, Y.S. Chan, and J.F. He. Corticofugal gating of auditory information in
the thalamus: an in vivo intracellular recording study. J. Neurosci., 24:3060–3069, 2004.

Appendix

Hypothesis testing

Testing whether a variance component is zero leads to a boundary problem, and a little extra
care is required when evaluating the likelihood ratio statistic (see e.g. (McCulloch and Searle,
2001, section 8.7a)). The hypothesis H0 : σµ = 0 is tested against H1 : σµ > 0. Given
θ = (µ, τ, σ, σ2

µ) denote with θ̂ the estimate of θ and let θ̂0 be the estimate of (µ, τ, σ) under
the restriction that σµ = 0. The likelihood ratio statistic Λ is

Λ =
L(θ̂0, σµ = 0)

L(θ̂)

where L is given by (13). The large-sample distribution of −2 log Λ is a 50/50 mixture of the
constant 0 and a χ2

1 distribution. The critical values are thus given by χ2
1,1−2α for a test at

the specified critical level α (compare to χ2
1,1−α for an ordinary likelihood ratio test for nested

models). Here χ2
1,β is the β-percentile of the χ2 distribution with one degree of freedom.
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µ [V/s] τ [s] σ [V/
√

s] σµ [V/s]

M = 312 0.4944 [0.4829, 0.5058] 0.0210 [0.0206, 0.0215] 0.0135 [0.0135, 0.0135] 0.0723 [0.0692, 0.0753]
M = 302 0.5019 [0.4872, 0.5166] 0.0212 [0.0208, 0.0216] 0.0135 [0.0135, 0.0135] 0.0627 [0.0552, 0.0694]

M = 312 0.2779 [0.2733, 0.2824] Fixed at 0.039 0.0135 [0.0135, 0.0135] 0.0414 [0.0379, 0.0447]

Table 1: Parameter estimates and 95% confidence limits.
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Figure 1: Histogram of the 312 ISI lengths.
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Figure 2: Histogram of the random effects b̂i estimated from the 312 ISIs.
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Figure 3: Observations from 312 ISIs: in black are the ISIs observations corresponding to
b̂i < −0.15 [V/s].
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Figure 4: Observations from five of the 312 ISIs (grey) with lengths less than 0.16 s, empirical
mean curve of 2000 trajectories of the stochastic process defined by model 8-9 with their 95%
confidence bands (bold black lines) and five simulated trajectories.
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Figure 5: Observations from one hundred of the 312 ISIs (grey) with lengths less than 0.4 s,
empirical mean curve of 2000 trajectories of the stochastic process defined by model 8-9 with
their 95% confidence bands (bold black lines) and five simulated trajectories.
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Figure 6: The same as in Figure 4 but using the estimates when τ is fixed to 0.039 s.
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Figure 7: The same as in Figure 5 but using the estimates when τ is fixed to 0.039 s.
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Figure 8: Histogram of the random effects b̂i when τ is fixed to 0.039 s.
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