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Log-concave Observers

Toivo Henningsson, Karl Johan Åström

Abstract—The Kalman filter is the optimal state
observer in the case of linear dynamics and Gaus-
sian noise. In this paper, the observer problem
is studied when process noise and measurements
are generalized from Gaussian to log-concave. This
generalization is of interest for example in the case
where observations only give information that the
signal is in a given range. It turns out that the op-
timal observer preserves log-concavity. The concept
of strong log-concavity is introduced and two new
theorems are derived to compute upper bounds on
optimal observer covariance in the log-concave case.
The theory is applied to a system with threshold
based measurements, which are log-concave but far
from Gaussian.

Keywords—Observers, Stochastic systems, Filter-
ing and estimation

I. INTRODUCTION

The Kalman filter (see [1], [2]) is one of the most
widely used schemes for state estimation from noisy
measurements. It is optimal for linear measure-
ments and Gaussian noise, but it is often applied
in a more general setting. Although the Extended
Kalman filter (see [3]) often works well in practice,
sometimes it does not, and it is in general not easy
to see how altered conditions change the observer
problem.
In this paper, a particular generalization is inves-

tigated where measurements and noise are allowed
to be log-concave (see [4], [5], [6], [7]). The model
of log-concave measurements is applicable in many
instances where the assumption of independent ad-
ditive measurement noise is too limited, for instance
with heavy quantization, or with the problem of
event based sampling discussed in [8].
Within this framework, the problem of moving

horizon ML/MAP estimation becomes a convex op-
timization problem, see [9]. This paper will however
focus on the covariance of the Bayesian Observer,
which is investigated and compared with the Kalman
filter.
Strongly log-concave functions are introduced as

a means to quantify observer properties. Two new
theorems are applied to derive upper bounds on
optimal observer covariance.
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It turns out that the observer problem is still quite
well behaved so that, especially with some insight
gained in the analysis, a Kalman filter might often
be usable for this more general measurement setting.
For a more thorough treatment, see [10].
The paper is organized as follows. A motivating

example is presented in section II. The notion of log-
concavity is introduced in section III, where we state
the main results as theorem 1 and 2. In section IV
we treat the observer problem. The results in section
III are used to investigate the observer properties.
Finally in section V the results are applied to the
example.

II. EXAMPLE: A MEMS ACCELEROMETER

Consider an accelerometer based on the following
design. A test mass is suspended to move freely
in one dimension and is affected by an external
acceleration. Sensors detect deviations from the ori-
gin exceeding a detection threshold and report the
sign of the deviation. An input signal is available
to accelerate the test mass so as to keep it close to
the origin. The aim of the design is to estimate the
external acceleration as accurately as possible.
The discrete time dynamics are given by

x(k) =
(

1 h

0 1

)

x(k− 1)+
(
1
2h
2

h

)

u(k− 1)+ v(k− 1),

where x is the state, u the input signal, v the
external acceleration and h the sampling period. The
state consists of position x1 and velocity x2. With the
external acceleration as a white noise disturbance,
sampling yields v to be Gaussian white noise with
covariance

PN = σ
2

(
1
3h
3 1

2h
2

1
2h
2 h

)

,

where σ
2 is the process noise intensity.

The measurements are given by

y(k) =
{

sign
(
x1(k)

)
, px1(k)p ≥ 1

0, otherwise,

which is the only non-classical assumption used in
the model. The output y(k) is not readily described
as a linear combination of state and uncorrelated
measurement noise, making a straightforward ap-
plication of Kalman filter theory difficult.



In fact, it is not at all obvious what properties to
expect for this observer problem; will the observer
error remain bounded, how large will it be, how
does it depend on the measurement sequence, how
complex observer is necessary, and so on. To answer
questions about the observer problem, the Bayesian
observer for the system will be analyzed.
Other examples where similar measurement con-

ditions apply are when measurements are coarsely
quantized or come in the form of level triggered
events.

III. LOG-CONCAVITY

Many results are available on general log-
concavity, see for instance [4], [5], [6], and [7]. The
book [11] contains much material on convex func-
tions that can easily be transfered to the log-concave
case. Here, only the properties that are most relevant
in the context of this paper will be stated.
A log-concave function is a function with concave

logarithm. Log-concave functions are well suited for
applying convexity theory to probability densities;
many common densities are log-concave and several
useful operations preserve log-concavity. In contrast,
no probability density on R

n is either convex or
concave since probability densities have a finite
integral while convex and concave functions on R

n

do not.

Definition 1 (Log-concave Function): A function
f : R

n −→ R is logarithmic concave or log-concave,
iff f (x) ≥ 0, f has convex support and ln

(
f (x)

)
is

concave on this support.

For some simple examples of log-concave functions
see figure 1, and for some counterexamples figure 2.
Among common log-concave densities are Gaussian
and exponential densities.
Log-concave functions are unimodal, meaning that

the superlevel sets {x; f (x) ≥ a}, a ∈ R are convex.
Many attractive properties of log-concave functions
are analogous to those for concave functions. A
useful fact is that multiplication takes the place
of addition so that the product of two log-concave
functions is log-concave. Another very useful result
derived by Prékopa is

Proposition 1 (Prékopa): Let f (x, y) be jointly log-
concave in x ∈ R

m, y∈ R
n. Then the integral

�(x) =
∫

f (x, y)dy

is a log-concave function of x.

Proof. See [4] and [5].
This theorem implies for instance that the

marginal densities of log-concave densities are log-
concave, and that the convolutions of log-concave
functions are log-concave. It will be central in the
proof of theorems 1 and 2.
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Fig. 1. Some examples of log-concave functions in one variable;
the function is plotted above and its logarithm below. The dotted
line is f = 0, and ln(0) is taken to be −∞. f1: Truncated expo-
nential function, f2: Gaussian function, f3: rectangular window.

f 4
ln

(f 4)

f 5
ln

(f 5)

f 6
ln

(f 6)

−∞ −∞

Fig. 2. Some examples of functions in one variable that are
not log-concave; the function is plotted above and its logarithm
below. f4: Not unimodal, f5: Discontinuous on interior of support,
f6(x) = 1

1+x2 : sub-exponential decay.

A. Strong log-concavity

Log-concavity is in its nature only a qualitative
property. To allow for quantitative statements, the
following class of functions is introduced.

Definition 2 (Strongly Log-concave Function): Let
P ∈ R

n$n be positive definite and define the set

LC (P−1) =
{

f ; f0(x) =
f (x)

e−
1
2 x
TP−1x

log-concave
}

.

The function f is strongly log-concave of strength
P−1 iff f ∈ LC (P−1).
All strongly log-concave functions are log-concave,

bounded and go to zero as pxp → ∞ at least as fast
as a Gaussian function.
Membership in LC (P−1) can be seen as an inequal-

ity, in the sense that

f ∈ LC (P−1), P ≤ R
=[ f ∈ LC (R−1).

The inclusion f ∈ LC (P−1) is tight iff LC (P−1) is a
subset of all LC (R−1) that contain f .
A Gaussian density with covariance P is tightly

in LC (P−1), and can be seen as the corresponding
Gaussian to this class. The definition states that
any strongly log-concave function can be written



as the product of a log-concave function and
a corresponding Gaussian. Also, the following
properties hold:

Theorem 1 (Encapsulation Property): If
f ∈ LC (F−1) and � ∈ LC (G−1) then

f (Ax + b) ∈ LC (AT F−1A)
( f ∗ �)(x) ∈ LC

(
(F + G)−1

)

f (x) ⋅ �(x) ∈ LC (F−1 + G−1),

where x, b ∈ R
n, A ∈ R

n$n and f ∗ � is the
convolution of f and �.
Proof. See appendix A.
The inclusions are as narrow as the premises

allow, being tight when f and � are the
corresponding Gaussians.

Theorem 2 (Covariance Bound): If f ∈ LC (P−1) is
a probability density then

V =
∫

(x −mx)(x −mx)T f (x)dx ≤ P,

where mx =
∫
x f (x)dx. The bound is tight for the

corresponding Gaussian.

Proof. See appendix B.
The matrix expressions for strength of log-

concavity correspond exactly to the way that the
operations propagate inverse covariances for Gaus-
sian functions. By the latter theorem, the inverse
strength of log-concavity is an upper bound on the
covariance.
The theorems form a chain of inequalities that can

be used to propagate upper bounds on covariance
under the operations of affine transformation, con-
volution and multiplication. For more properties of
strongly log-concave functions, see [10].

IV. LOG-CONCAVE OBSERVERS

The observer problem that will be considered is
for processes with linear dynamics and log-concave
noise and measurements, as defined below.
The dynamics are given by

x(k) = Ax(k− 1) + Bu(k− 1) + v(k− 1),

where x is the state, u the input and v the process
noise. The noise has log-concave probability density
fN . The matrices A and B, as well as fN may be
time-varying.
The measurements are described by the stochastic

variables Y(k),

fY(k)pX (k)
(
ypx(k)

)
= fM

(
y, x(k)

)
,

where the measurement function fM is log-concave
in x for each y and may be time-varying.
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Fig. 3. Illustration of the dynamics update for the MEMS
accelerometer observer. The transformation amounts to a shear
in this case.
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Fig. 4. Illustration of the process noise update for the MEMS
accelerometer observer. The Gaussian noise enters almost exclu-
sively in the x2 direction.

A. The Bayesian observer

As a basis for the analysis, the online Bayesian
observer for estimation of x(k) from the history of y
and u will be considered. The state of the observer
at any time is fully described by the function

fk(x) = fXkpy1:k, fX0 (x),

where y1:k is the measurement history and fX0 is the
assumed initial density.
The observer update from fk−1 to fk is best de-

scribed in three steps taking into account dynamics,
process noise, and measurements:

f dk (x) ∝ fk−1
(
A−1x − A−1Bu(k− 1)

)
, (1)

f dnk (x) = ( fN ∗ f
d
k )(x), (2)

fk(x) ∝ fM (y(k), x) ⋅ f dnk (x), (3)

where ∝ denotes proportionality and A is assumed
to be invertible. For the derivation, see [10]. The
dynamics update corresponds to an affine transfor-
mation, the noise update to a convolution with fN ,
and the measurement update to a multiplication
with fM (y(k), ⋅). For an illustration, see figures 3,
4 and 5. If fX0 , fN and fM (y, ⋅) are Gaussian, the
observer updates (1)-(3) reduce to a Kalman filter.



−1 0 1
−3

0

3

x
1

x
2

⋅

x
2

x
1

−1 0 1

−3

0

3

f = 10 0

=

−1 0 1
−3

0

3

x
1

x
2

Fig. 5. Illustration of the measurement update for the MEMS
accelerometer observer. The measurement is y = 0.

B. Properties

Since log-concavity is preserved under affine pa-
rameter transformation, convolution, and multipli-
cation, all fk are log-concave if fX0 is log-concave.
Theorem 1 can be used to propagate upper bounds

on observer covariance. This approach can be used
to asses the merits of a particular sensor setup, or
together with some information about the localiza-
tion of fk to give state estimates with error bounds.
The computations of covariance propagation have the
structure of a Kalman filter applied to corresponding
Gaussians.

V. AN APPLICATION

The MEMS accelerometer will now be used to
illustrate how the theory can be applied in the
analysis of a concrete observer problem.

A. Analytical covariance bounds

The accelerometer has linear dynamics and log-
concave noise and measurements. The process noise
density fN is Gaussian with covariance PN , so that
fN ∈ LC (P−1N ). The measurement function fM (y, x)
is log-concave in x for all y, see figure 6.
Applying theorem 1 directly leads in this case

to a highly conservative covariance bound, achieved
when completely ignoring the measurements. The
bound grows cubically with time. Grid based finite
difference simulations of the Bayesian observer do
however indicate that the covariance is bounded, and
if the output changes frequently, small.
The reason why the bound is so conservative is

that fM is not strongly log-concave for any y; strength
of log-concavity being the only measure of informa-
tion that the theorem considers. In lack of stronger
proven results, a slight approximation will allow to
account for the major source of state information.
The most important source of state information

under normal conditions is the events when y goes
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Fig. 6. The measurement function fM (y, x) for the MEMS
accelerometer describing the relative probability of state x when
y = −1,0,−1. The function is independent of x2.
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Fig. 7. The modified measurement function f̂M (y, x) for the
MEMS accelerometer when y = −1,0,−1. For y = ±1, the
function has been changed to a narrow Gaussian centered on the
detection threshold.

from being 0 to ±1, at which time x1 is known to be
almost exactly equal to y. This can be modeled as a
Gaussian measurement of x1 with expectation y and
variance σ

2
M .

The variance σ
2
M will depend on the process noise

and uncertainty in velocity, but will be small when h
is small. The modified measurement function f̂M can
be seen in figure 7. For events, f̂M (±1, ⋅) ∈ LC (QM )
where

QM =
(

σ
−2
M 0

0 0

)

,

and otherwise f̂M (0, ⋅) ∈ LC (0).
Under this approximation, the variance of the

optimal estimate x̂2 of x2 right after an event can
be shown to satisfy

V (x̂2) ≤
1
3

σ
2t+ 2σ 2M t−2,

where t is the time since the last event. For the
derivation, see [10].
The bound illustrates that the accuracy of the

accelerometer depends strongly on the rate of events.
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Fig. 8. Observer covariances during a simulation for the MEMS
accelerometer: grid filter, approximate upper bound and tuned
Kalman filter.

If the objective of control is good measurements, the
controller should keep the rate above a certain level,
for instance sending the test mass bouncing in a ping
pong fashion between the detection boundaries.

B. Kalman filter approximation

A Kalman filter was tuned to give a reasonable
approximation of the Bayesian observer. The crucial
issue was to assign the covariance of the measure-
ment y = 0. While a single measurement y = 0
predicts x1 to have expectation zero with variance
σ
2 = 1

3 , there is much less additional information in
the measurement y = 0 at the next time step.
In this case it is reasonable to design the Kalman

filter by choosing the stationary variance pstat11 of
x1 when y = 0. The variance would typically be
pstat11 = 1√

3
(rectangular distribution) or a little less.

From solving the Riccati equation, it is found that
the measurement variance σ

2
oh
−1 for y = 0 must be

chosen according to

σ o = 2−1/3(pstat11 )2/3σ−1/3,

where σ
2 is the process noise intensity.

C. Simulation

Figure 8 shows a comparison of actual and pre-
dicted variances for a simulation of the Bayesian
observer. The variance σ

2
M was chosen so that the

approximate upper bound would always be conserva-
tive. The upper bound is quite tight some time after
each event, but then diverges. The variance of the
tuned Kalman filter appears to be an only mildly
conservative approximation of the actual variance.
As long as the rate of events is reasonably high, the
approximate upper bound is very tight.
A simple control law was devised to control the

rate of events, and simulations were run for dif-
ferent rates to compare observer performance for
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2

Grid

Kalman

Approx. upper bound

Fig. 9. RMS x2 estimation error as a function of mean time
between events: grid filter estimation error, tuned Kalman filter
estimation error, and approximate upper bound. For too high
event rates, the grid filter suffers from discretization problems.

the grid filter and the tuned Kalman filter. Figure
9 shows the observer error as a function of mean
time between events tmean. The grid filter is slightly
better than the tuned Kalman filter and considerably
better than the approximate covariance bound down
to values of tmean around 0.4.
For lower tmean it seems that the grid filter scheme

encounters discretization issues. At the same time,
the tuned Kalman filter comes very close to the
approximate upper bound which appears to be very
tight in this region, indicating that the observer
problem is very similar to the Kalman filter case
for high rates. This similarity is not surprising since
when the covariance is small, the bulk of probability
mass is concentrated in a small region which is only
seldom affected by the non Gaussian measurements.
Thus it is seen that the upper bound derived from

the theory is quite tight when the rate of events is
high and that if the inherent correlation in the non
Gaussian measurements is considered, a Kalman
filter can be applied as a close to optimal observer.

Example 1 (Quantized measurements): In the pre-
vious example it was necessary to rely on approx-
imations because the measurement functions were
not strongly log-concave. If the measurement func-
tion can be chosen freely, much stronger results are
possible.
Consider the general problem of estimating a

scalar variable from a series of independent iden-
tically distributed quantized measurements. The ob-
jective is to find a conditional measurement distri-
bution, or measurement function, that is in some
sense optimal. Using strength of log-concavity as an
optimality criterion one can formulate the following
problem:
Let the independent measurements y be dis-
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Fig. 10. The measurement function in example 1. The function
is Gaussian when pxp ≤ 1

2 and zero when pxp ≥ 1.

tributed according to

fYpx(ypx) = f (x − y), y ∈Z ,

where x is the variable to be estimated. Find a
function f ∈ LC (p−1), where p > 0 is as small as
possible, such that

f (x) ≥ 0,
f (−x) = f (x),
∞∑

k=−∞
f (x − k) = 1.

The solution is given by the function

f (x) =







2−4pxp
2
, pxp ≤ 1

2 ,
1− 2−4(1−pxp)2 , 1

2 < pxp ≤ 1,
0, otherwise,

satisfying f (x) ∈ LC
(
8 ln(2)

)
. The function is plot-

ted in figure 10, and in log-scale in figure 11. A
series of n measurements with f as measurement
function is guaranteed to yield a probability density
in LC

(
n ⋅ 8 ln(2)

)
and therefore a variance satisfying

σ
2 ≤ 1

n⋅8 ln(2) .

VI. CONCLUSION

Log-concavity is a powerful tool when dealing with
probability densities. The generalization to allow log-
concave densities in the observer widens the range
of application considerably compared to the Kalman
filter. Although no closed form solution exists in
the general case, the observer problem is still very
accessible to mathematical treatment.
Regarding observability and observer perfor-

mance, strongly log-concave functions together with
theorems 1 and 2 can be applied to derive simple
bounds on achievable observer covariance.
An in-depth treatment of the log-concave case

gives a greater understanding of the performance of
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Fig. 11. The measurement function in example 1 in log-scale.
The logarithm is clearly concave, being quadratic when pxp ≤ 1

2 .

an Extended Kalman filter. In design of instrumen-
tation, striving for log-concave measurement func-
tions can facilitate the observer problem.
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APPENDIX
A. PROOF OF THEOREM 1

The proofs are based on the fact that a function f
is in LC (F−1) iff it can be factored as

f (x) = e− 12 xT F−1x f0(x), (4)
where f0(x) is log-concave. This follows from the
definition.
The proofs for affine transformation and multi-

plication are straightforward, while the proof for
convolution is a little more involved.

A. Affine transformation

Let f ∈ LC (F−1), A ∈ R
n$n, b ∈ R

n and y =
Ax + b. Then
�(x) = f (Ax + b)

= e− 12 (Ax+b)T F−1(Ax+b) ⋅ f0(y)
= e− 12 (xT AT F−1Ax+2bT F−1Ax+bT F−1b) ⋅ f0(y)
= e− 12 xT (AT F−1A)x ⋅

(

e−
1
2 b
T F−1be−(A

T F−1b)T x f0(y)
)

︸ ︷︷ ︸

�0(x)

.

We see that �0 is the product of a constant, an ex-
ponential function and a log-concave function, since
log-concavity is preserved under affine parameter
transformation. Then �0 is log-concave because each
of the factors is log-concave. Thus � ∈ LC (ATF−1A).
B. Convolution

For the proof we need the following matrix iden-
tity. Let A, B and C be positive definite matrices
such that C−1 = A−1 + B−1, or C = A(A + B)−1B.
Let x, y and z = y− (A+ B)−1Bx be vectors. Then
zT (A+ B)z
= yT(A+ B)y− 2xTBy+ xTB(A+ B)−1Bx

and

xTCx + zT (A+ B)z
= xT A(A+ B)−1Bx + zT (A+ B)z
= xTBx + yT(A+ B)y− 2xTBy
= yTAy+ (x − y)TB(x − y),

that is,

yTAy+ (x − y)TB(x − y) = xTCx+ zT (A+ B)z, (5)
which can be seen as completion of squares in x.
Let f ∈ LC (F−1) and � ∈ LC (G−1). Then
h(x) = ( f ∗ �)(x)

=
∫

f (y)�(x − y)dy

=
∫

e−
1
2 y
T F−1ye−

1
2 (x−y)TG−1(x−y) ⋅ f0(y)�0(x − y)dy

=
∫

e
− 12

(

yT F−1y+(x−y)TG−1(x−y)
)

⋅ f0(y)�0(x − y)dy.

Applying (5) with A = F−1, B = G−1 and C = H−1
yields H−1 = (F + G)−1 and

h(x)

=
∫

e
− 12

(

xTH−1x+zT (F−1+G−1)z
)

⋅ f0(y)�0(x − y)dy

= e− 12 xTH−1x
∫

e−
1
2 z
T (F−1+G−1)z

⋅ f0(y)�0(x − y)dy
︸ ︷︷ ︸

h0(x)

.

The integrand is log-concave since it is the product of
a Gaussian function and two log-concave functions,
and thus h0 is log-concave according to theorem 1.
This proves that h ∈ LC (H−1) = LC

(
(F + G)−1

)
.

C. Multiplication

Let f ∈ LC (F−1) and � ∈ LC (G−1). Then

h(x) = f (x)�(x)
= e− 12 xT F−1xe− 12 xTG−1x ⋅ f0(x)�0(x)
= e− 12 xT (F−1+G−1)x ⋅ h0(x),

where f0 and �0 are log-concave and h0(x) =
f0(x)�0(x). Thus h0 is log-concave and so h ∈
LC (F−1 + G−1).

APPENDIX
B. PROOF OF THEOREM 2

The factorization (4) will be central also in this
proof. Consider first the theorem in one dimension.
Let f ∈ LC (p−1), p > 0 be a nonincreasing probabil-
ity density defined for x ≥ 0. Then f can be factored
as

f (x) = e− 12 p−1x2 f0(x),

where f0(x), x ≥ 0 is log-concave. The right deriva-
tive f ′(0) exists since any convex function is almost
everywhere differentiable which transfers trivially to
log-concave functions. Furthermore f ′0(0) = f ′(0) ≤
0, and since f0 is log-concave it is nonincreasing for
all x ≥ 0.
Let C > 0 be defined such that
∫ ∞

0
Ce−

1
2 p

−1x2 dx =
∫ ∞

0
e−

1
2 p

−1x2 f0(x)
︸ ︷︷ ︸

f (x)

dx = 1.

Then, since f0(x) is nonincreasing, there must exist
some x0 > 0 such that

f0(x) ≥ C, x < x0
f0(x) ≤ C, x > x0.



The second moment of f is
∫ ∞

0
x2 f (x)dx

=
∫ ∞

0
x2Ce−

1
2 p

−1x2dx +
∫ ∞

0
x2
(

f (x) − Ce− 12 p−1x2
)

dx

= p+
∫ ∞

0
x2e−

1
2 p

−1x2
(

f0(x) − C
)

dx

= p+
∫ ∞

0
e−

1
2 p

−1x2
(

x20 + (x2 − x20)
)(

f0(x) − C
)

dx

≤ p+ x20
∫ ∞

0
e−

1
2 p

−1x2
(

f0(x) − C
)

dx

= p,

where we have used that (x2 − x20)
(
f0(x) − C

)
≤ 0.

Thus the second moment of f around x = 0 is ≤ p.
Now assume that f (x) ∈ LC (p−1) is an arbitrary

strongly log-concave function in one dimension that
assumes its maximum value at x = Mx. All strongly
log-concave functions are bounded and go to zero as
pxp → ∞, so if f does not assume its maximum it can
be made to do so by changing the value in one point,
which does not affect integrals of f and preserves
strong log-concavity. Then �(x) = f (x − Mx) can be
written as a convex combination of two probability
densities in LC (p−1) such that one has support on
x < 0 and is nondecreasing and one has support on
x ≥ 0 and is nonincreasing. The second moment of
� around 0 is a convex combination of the moments
of the two densities, and so

∫

(x − Mx)2 f (x)dx ≤ p.

Since the covariance of the density f is the minimum
of the second moment around any point,
∫

(x −mx)2 f (x)dx = min
y

∫

(x − y)2 f (x)dx ≤ p,

where mx is expectation of the density. This proves
the theorem in one dimension.

For the proof in Rn we shall need another ma-
trix inequality. In the Cauchy-Schwartz inequality
(uTv)2 ≤ (uTu)(vTv), let u = P− 12 x and v = P 12 ez,
where P > 0, ppezpp = 1. This yields

(xT ez)2 ≤ (xTP−1x)(eTz Pez)
=[ xT ez(eTz Pez)−1eTz x ≤ xTP−1x

=[ Qr = ez(eTz Pez)−1eTz ≤ P−1. (6)

Now consider a density f ∈ LC (P−1), P > 0.
Without loss of generality, assume the expectation
to be zero. The covariance is then

V =
∫

xxT f (x)dx,

and for a given unit vector ez,

eTz Vez =
∫

(eTz x)2 f (x)dx =
∫

t∈R

t2
∫

y⊥ez
f (tez + y)dy

︸ ︷︷ ︸

�(t)

dt,

where x = tez + y and �(t) is the marginal density
of f in the ez direction, having zero expectation. We
see that

�(t) =
∫

y⊥ez
e−

1
2 x
TP−1x f0(x)dy

=
∫

y⊥ez
e−

1
2 x
TQr xe−

1
2 x
T (P−1−Qr)x f0(x)dy

= e− 12 (eTz Pez)−1t2
∫

y⊥ez
e−

1
2 x
T (P−1−Qr )x f0(x)dy

︸ ︷︷ ︸

�0(t)

,

since yT ez = 0 so that xTQrx = teTz Qr ezt =
(eTz Pez)−1t2. From (6) P−1 − Qr ≥ 0 so that �0 is
log-concave. Thus � ∈ LC

(
(eTz Pez)−1

)
so that

eTz Vez ≤ eTz Pez =[ V ≤ P,
which proves the theorem.
The bound is tight for the corresponding Gaussian

by definition.


