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Abstract. – DNA compaction can be caused by multivalent ions as condensing agents.
Both discontinuous (all-or-none) and continuous (pearl-necklace structure) transitions have
been observed in experiments as the concentration of the condensing agent was increased. We
have investigated the DNA transition by analytical calculations in the infinite-chain limit. A
mechanism for pearl-necklace structures could be a combinatorial entropy term, which favours
a mixture of globules and coils in a single chain. However, when a surface term is taken into
account, it gives rise to a discontinuous transition. We also consider the role of surface charges
on the globule.

Introduction. – In the cell, genomic DNA generally exists in a compact state. DNA
compaction can be caused by a variety of condensing agents. This compaction of a semi-flexible
polyelectrolyte has attracted much interest from physicists and chemists as an experimental
system for the transition between coil and globule states [1–3]. Single DNA molecules can be
visualised by fluorescence microscopy. Early reports showed that DNA compaction is an all-
or-none transition and was described as a first-order transition [4–6]. However, recent studies
have revealed a more detailed scenario [7,8]. DNA compaction is initiated by the formation of
several nucleation centers along DNA and a partial globule state exists as a stable state; i.e.,
coil and globule states can coexist in a single chain. Depending on the concentration of the
condensing agent, the most stable state changes from a coil state to partial globule, to a fully
collapsed state. The formation of similar pearl-necklace structures has also been observed
experimentally for other polyelectrolytes [9] and in simulation studies [10, 11]. A repulsive
electrostatic self-energy of the globule competes with the surface effect of a cohesive energy.
This is called Rayleigh instability. The question arises whether the coil-globule transition is an
all-or-none transition or a continuous transition (something in between) with partial globules.
In this paper, we focus on the long-chain limit to get insight into the basic nature of the
coil-globule transition. We discuss what gives “all or none” and what gives “in between”.

Theory. – We adopt a phenomenological model for the DNA transition with i) two
conformational states to represent a coil part and a globule part and ii) two states for the
condensing agent [12], bound to the chain or free in the bulk. In experiments, there is always
monovalent salt, which competes with the condensing agent. Here we consider monovalent salt
only as a background screening. “Counterion” simply means condensing agent. To include the
c© EDP Sciences
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Fig. 1 – Schematic picture of the system.

degrees of freedom that allow for pearl-necklace structures, i.e., several intra-chain globules
connected by coil regions, the polymer chain is divided into f units where each unit consists
of a coil part and a globule part. In each unit, we have three regions, namely, the coil region
denoted region I, and two regions in the globule part, a neutral core, region II, and a charged
shell, region III. Furthermore, nI is the number of monomers in a subchain between two
successive globule regions, nII is the number of monomers in the neutral core region of a
globule, and nIII is the number of monomers in the shell part. For the condensing agent, mI

and mII describe the number of molecules bound to region I and region II, respectively. A
schematic picture is given in fig. 1.

The periodic units are numbered 1, 2, 3, · · · , i, · · · , f from one end of the chain. The total
numbers of counterions and monomers are obtained by summing up the numbers in the
different units,

M =
f∑

i=1

mI,i +
f∑

j=1

mII,j , (1)

N =
f∑

i=1

nI,i +
f∑

j=1

nII,j +
f∑

k=1

nIII,k , (2)

where M is the total number of counterions bound to the chain. The canonical partition
function of the system with N monomers is given by

Z(M,f,N) =
∑

mI ,mII ,nI ,nII ,nIII

p(mI,1, nI,1)q(mII,1, nII,1, nIII,1) · · ·

· · · p(mI,f , nI,f

)
q
(
mII,f , nII,f , nIII,f

)
, (3)

where p(mI , nI) is the partition function of the coil part and q(mII , nII , nIII) is the partition
function of the globule part, assuming statistical independence of the two states. We have to
count all the states for unit 1, unit 2, · · · , unit f . In unit i, both the coil part (denoted ci)
and the globule part (denoted gi) can vary in size. In the whole chain we have all the states,
c1-g1 − · · · cf -gf . This creates a combinatorial entropy, Ωc-g, which is coupled to the energy
of each possible state of c1-g1 − · · · cf -gf . To avoid this difficulty, we release the constraints
for M , f , and N . First, we establish equilibrium with the condensing agent in a bulk solution
by considering a grand canonical ensemble,

Ξ(λ, f,N) =
∑
M≥0

Z(M,f,N)λM . (4)
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λ is defined by λ ≡ eβµ, where µ is the chemical potential of the condensing agent, and
β ≡ 1/kBT with kB being Boltzmann’s constant and T is the absolute temperature. To
further release the constraints, we write first and second generating functions by introducing
conjugate variables; η for the number of pearls, f , and ξ for the number of monomers, N :

Ξ̃(λ, η,N) =
∑
f≥1

∑
M≥0

Z(M,f,N)λMηf , (5)

˜̃Ξ(λ, η, ξ) =
∑
N≥1

∑
f≥1

∑
M≥0

Z(M,f,N)λMηfξN . (6)

Substituting eqs. (1) to (3) into eq. (6) and calculating the infinite series with respect to the
sum over f , we obtain the second generating function as

˜̃Ξ(λ, η, ξ) =
P (λ, ξ)Q(λ, ξ)η

1− P (λ, ξ)Q(λ, ξ)η
, (7)

where

P (λ, ξ) =
∑

nI≥0

∑
mI≥0

p(mI , nI)λmI ξnI , (8)

Q(λ, ξ) =
∑

nII≥0

∑
nIII≥0

∑
mII≥0

q(mII , nII , nIII)λmII ξnII ξnIII . (9)

Since the number of monomers of a chain is always conserved, we have to go back to the first
generating function by an inverse Laplace transformation,

Ξ̃(λ, η,N) =
∮

dξ
2πi

PQη

1− PQη
ξ−N . (10)

From the residue theorem we get

Ξ̃(λ, η,N) = ξ0(λ, η)−N . (11)

The pole ξ0(λ, η) is a solution of

1− P (λ, ξ)Q(λ, ξ)η = 0. (12)

The physical meaning of eq. (11) is Ftotal = −kBT ln Ξ̃(λ, η,N) = Nµmonomer(λ, η). The free
energy of the system is equal to the “total number of monomers times the chemical potential
of a monomer”. This equation ensures the equilibrium condition for chain monomers in the
coil and globule states. We also see that Ωc-g and the contribution from the counterions are
renormalised into the chemical potential of a monomer.

Now, we can calculate average properties for the DNA transition as a function of the
chemical potential (concentration in the bulk) of the condensing agent. As an example, if we
take the derivative of eq. (11) with respect to η, we can calculate the average number of pearls
f per monomer along the chain, 〈f〉/N , as

〈f〉
N

= −∂ξ0(λ, η)
∂ ln η

∣∣∣∣∣
η=1

. (13)

After taking the derivative with respect to η, η is set equal to one (the chemical potential of a
c-g unit is zero). This corresponds to turning-off the field conjugate to f , since η is introduced
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artificially to release the constraint on f . We can calculate other physical properties in the
same way.

The main point of this investigation is to understand the essential features of the coil-
globule transition. We would like to clarify two things: i) If a pearl-necklace structure can
exist as a thermodynamic state when N goes to infinity, what is the mechanism for that?
ii) What gives a discrete transition? To actually calculate the second generating function in
eq. (7), we develop detailed models to calculate p(mI , nI) and q(mII , nII , nIII).

Coil. A one-dimensional Ising lattice model is used for the coil part. At high salt concen-
trations, the repulsive or attractive electrostatic interactions are restricted to neighbouring
monomers. One statistical monomer unit is taken to be a section that corresponds to the
charge of the condensing agent, commonly +3 or +4 in experiments on DNA [7]. The total
number of lattice sites is nI . The monomer unit can be occupied by one condensing agent or be
unoccupied. The states of the sites are denoted by j1, j2, · · · , jnI

. When site i is occupied by a
counterion, ji = 1, while ji = 0, when it is unoccupied. w00 is the energy of interaction between
two unoccupied sites, w10 and w01 are interactions between occupied and unoccupied sites, and
w11 is the interaction between two occupied sites. The partition function of the Ising lattice is

Φ(λ, nI) =
1∑

j1,j2,···,jnI
=0

exp
[
−wj1,j2 + wj1,j2 + · · · − µ(

∑nI

i=1 ji)
kBT

]
. (14)

Using the transfer-matrix method, Φ(λ, nI) = χnI is obtained. χ is the eigenvalue of the
transfer matrix. Next, the entropic contribution from the chain conformations is given by
znI , which corresponds to a random walk on a lattice with coordination number z. In this
model, eq. (8) becomes

P (λ, ξ) =
∑

nI≥0

χnIznI ξnI . (15)

Calculating the infinite series with respect to nI gives

P (λ, ξ) =
1

1− χzξ
, (16)

where χzξ < 1 was assumed for convergence and checked in numerical calculations.
Globule. When constructing the free energy of the globule and determining the dependence

with respect to the number of particles (monomers and counterions), we note that it is the
exponents of these parameters (in a power law) that determine the overall behaviour of the
coil-globule transition, while coefficients (numerical constants) have little effect as long as their
values are reasonable. It is of particular importance whether the n/m-dependence is linear
or non-linear. Thus, simple expressions for the free energy will be formulated, starting with
a linear contribution and adding non-linear terms. The globule is seen as a spherical object
with an ion-crystal–like organisation of the charges, neglecting any conformational entropy of
the chain inside the globule. We will take three steps:

a) First, we consider a cohesive electrostatic energy from ion pairs in the neutral core,

El = −2l∆ε (17)

with mII = nII = l, where ∆ε is a cohesive energy per particle. There is only a linear
contribution in terms of the number of monomers in the globule part. The degrees of freedom
representing the remaining surface charges, nIII , in eq. (9) are neglected here. In this way,
we can study the contributions from the combinatorial term, Ωc-g, and from the free energy
of the coil part, free of most other effects.
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b) We consider a surface term, originating from a lack of interactions at the surface, which
is taken to be spherical. The total interaction energy becomes

El = −(
2l − (2l)2/3

)
∆ε. (18)

The volume of the sphere is taken to be linear in the total number of particles, 2l, in the
neutral core, from which it follows that the surface of the neutral core scales as (2l)2/3. The
degrees of freedom representing surface charges, nIII , in eq. (9) are still neglected here.

c) Experimentally, it has been reported that a net surface charge remains on the globule
part [13]. The resulting electrostatic repulsion between the charges in a thin outer shell is
treated as a screened Coulomb interaction, i.e., using the Debye-Hückel approximation. To
clearly see the electrostatic effect, we omit the surface term introduced in case b),

El,nIII
= −(2l + nIII)∆ε+

n2
III

(2l)2/3

lB
ζ

rD
ζ
. (19)

The last term is the self-energy of the charged thin layer. lB is the Bjerrum length, rD is the
Debye screening length, ζ is a correlation length between ion pairs, and (2l)2/3 corresponds
to the radius squared. The correlation length inside the ion crystal is considered to be on
the same order as the Bjerrum length and the Debye screening length, which gives a trivial
constant on the order of one, which we will drop.

The globule part is defined when ten monomer units of the polymer have come together
with ten counterions, which sets a lowest cut-off in the sum over states. For case c), we have

Q(λ, ξ) =
lmax∑
l≥10

nmax
III∑

nIII≥0

exp[−βEl,nIII
]λlξlξnIII . (20)

In principle, the summation should go to infinity, but cut-offs, lmax and nmax
III , are introduced

for the sake of the numerical calculation, and are set so large that the results are independent
of their values. Q(λ, ξ) is a polynomial of degree lmax + nmax

III with respect to ξ.
Substituting eq. (16) into eq. (12), we have

ηQ(λ, ξ) + χzξ − 1 = 0. (21)

ξ0 is obtained by solving eq. (21) with the appropriate form of Q(λ, ξ) (for cases a) to c)) for
a given λ. We also use eq. (21) for implicit calculations of partial derivatives such as the one
in eq. (13).

Results and discussion. – The phenomenological input parameters do not affect the
qualitative behaviour, therefore, we give them somewhat arbitrary values in units of kBT ,
just to be able to calculate and show the trends numerically. Note that our theory is based
on the scaling concept. Neighbouring sites where one is occupied by a counterion and the
other is unoccupied have net attractions, w10 = w01 = −3. Two unoccupied sites have a
repulsive electrostatic energy, w00 = 1, due to the bare negative charges of the chain. The
interaction between two occupied sites is set to be net attractive, w11 = −1, to allow for
correlations, since an occupied monomer unit contains one multivalent counterion and several
monovalent polymer charges. The strength of the electrostatic interactions inside the globule
is represented by ∆ε = 4 and for the estimation of the conformational entropy of the chain,
the lattice constant is given a value of z = 8.

Figure 2a shows case a). A continuous transition is observed with an interval in which
pearl-necklace structures can exist as an equilibrium state. The fraction of partial globules,
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f

f f

Fig. 2 – Average numbers of monomers, counterions and periodic units divided by the total chain
length as functions of the chemical potential of the condensing agent: nI (solid line with squares), nII

(solid line with diamonds), nIII (solid line with circles), M (dotted line with squares), mI (dotted
line with diamonds), and f (solid line with triangles).

〈f〉/N , has a maximum in the middle of the crossover region and decreases slowly as the
chemical potential of the condensing agent is increased. Note that the reason for the appear-
ance of a partial globule state, i.e., globules connected by coils, is different from the Rayleigh
instability, since globules are completely neutralised by counterions in the model. When there
is only a linear contribution in the free energy of a globule, it is better to have several local
globules along the chain to increase the entropy arising from the combinatorial term, Ωc-g,
i.e., from the mixing of the coil and globule states. This is analogous to a one-dimensional
Ising model, where a mixture of “spin up” and “spin down” is favoured for entropic reasons
and it follows from having a model that recognises two distinct states locally in the chain.

Figure 2b shows case b). The point here is to investigate the effect of a surface term on
the transition of the chain. As the concentration of the condensing agent increases, the coil
discontinuously collapses into a globule. The surface term in the globule free energy overcomes
the combinatorial term Ωc-g, which comes from a one-dimensional representation of the chain,
and causes the discrete transition. The origin of this phenomenon is that the chain is a one-
dimensional object embedded in a three-dimensional space where the surface term works. To
see how the non-linear term works, let us divide eq. (18) by 2l to get the free energy per
particle. The linear term gives a constant base line, −∆ε, and due to the non-linear term, the
free energy per particle decreases as 2l increases. This creates cooperativity, i.e., the addition
of a particle to the globule decreases the free energy per particle.

Figure 2c shows case c). A continuous transition with pearl-necklace structures is observed
within a wider range than in case a), although the mechanism is in principle the same. The
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addition of chain monomers on the surface of the globule is favoured by the cohesive term in
eq. (19). Although the repulsive electrostatic interactions disfavour the existence of charges on
the surface, there is no cost in the translational entropy of the condensing agent, as there is for
monomers in the neutral core, which require an equal number of counterions. Thus, when the
concentration of the condensing agent is low, the chain can start to have globules at a lower
concentration than in case a). The appearance of significant amount of surface charges on the
surface of globules might result in globule-globule interactions which have not been taken into
account in our formulation. The repulsive interactions between globules could also limit the
size and number of the globules and the DNA as a whole would be stiffened by electrostatic
repulsion. The fraction of partial globules maintains a significant value in quite a wide range.
Consider the separation of one globule with surface charges into two identical globules. The
contribution from the cohesive energy does not change, but, due to the electrostatic repulsion
in eq. (19), the separation becomes more favourable.

In the combination of case b) and case c), with the models and parameter values used
above, the effect of the surface term dominates over the electrostatic repulsion when we
include both. The coil discontinuously collapses into one globule with the remaining monomer
charges on the surface and the charged globule is gradually neutralised by bound counterions
as the concentration of the condensing agent increases further. If we tried to balance the
surface term and the electrostatic energy with the help of an additional parameter, we could
in principle obtain a Rayleigh instability, but separating the charges into smaller globules is
not the only mechanism for reducing the electrostatic repulsion. The excess charges can also
be neutralised by counterions. Thus, it is important to also consider the translational entropy
of the condensing agent. In the experiments, where pearl-necklace structures are observed,
we suggest that there is an interplay between all three driving forces.
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