Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition

Moiseev, S. A.; Kröll, Stefan

Published in:
Physical Review Letters

Published: 2001-01-01

Citation for published version (APA):
Complete Reconstruction of the Quantum State of a Single-Photon Wave Packet Absorbed by a Doppler-Broadened Transition

S. A. Moiseev1,2,* and S. Kröll3

1Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Sibirsky Trakt 10/7, Kazan, 420029, Russia
2Kazan State University, Kremlsovskoy 18, Kazan, 420008, Russia
3Department of Physics, Lund Institute of Technology (LTH), Box 118, S-221 00 Lund, Sweden

(Received 2 May 2001; published 8 October 2001)

An idea for how to reconstruct the quantum state of a nonstationary single-photon wave packet absorbed in a macroscopic medium with inhomogeneously broadened lines is presented. An analytical treatment of the problem is performed and the requirements on the proposed scheme for complete recovery of the recorded nonstationary quantum state with a probability close to unity is described. The physical nature of the present scheme is also discussed.

DOI: 10.1103/PhysRevLett.87.173601 PACS numbers: 42.50.Gy, 03.65.Wj, 03.67.–a

Quantum optics opens new possibilities for construction of specific quantum states and for their use both in fundamental research and in numerous applications. Growing interest in quantum computation and the strong requirements that must be fulfilled to realize quantum calculations in practice have spurred an interest in many new issues related to the quantum dynamics of matter and light. A basic problem is the development of appropriate techniques for storage and recall of arbitrary quantum states of light. Recently a new technique for storage and recall of quantum states of light within a narrow spectral interval, based on electromagnetically induced transparency (EIT) \cite{1}, was proposed \cite{2}. Mapping the quantum state of single-mode fields has also been attempted using trapped ions \cite{3}, whereas for the case of free space the common scheme of Raman-type interaction was also recently proposed for the mapping in \cite{4}. It is interesting to consider techniques which would give a more general solution to quantum state storage and recall including a wider range of nonstationary fields. This is the problem we consider here. Our approach stems from the general ability of photon echoes techniques \cite{5} to store and reproduce arbitrary, temporally shaped wave packets \cite{6}. However, the efficiency in the photon echo process normally is low. For example, if the sample is transparent most of the input light would go through without absorption, while if, on the other hand, the optical density is high, the incoming wave packet will be completely absorbed by (mapped onto) the atomic ensemble, but most of the recalled wave packet will then also be absorbed as it propagates through the material. Here we propose an alternative photon echo storage procedure which solves both the above problems and which can be used for quantum state storage and total recall of nonstationary light fields. The proposed technique for restoring the field is based on the property that frequency shifts due to the Doppler effect are opposite for counterpropagating directions. We present the analytical solution for quantum state storage and recall of nonstationary single-photon wave packets in this medium.

We consider a gas localized between coordinates $z = 0$ and $z = L$. The gas consists of N three-level atoms all initially in the ground state, $|1\rangle$. There is an allowed electric dipole transition to the state $|2\rangle$ and there is a metastable state $|3\rangle$ situated just above state $|1\rangle$ in energy. We will neglect relaxation processes in the atomic system. A single-photon wave packet, resonant with the inhomogeneously broadened $|1\rangle$-$|3\rangle$ transition, is incident along the z direction and absorbed in the medium. After a small time delay, τ, we apply a laser pulse in the z direction with pulse area π that transfers any excitation to state $|2\rangle$ using the electric dipole allowed transition $|2\rangle$-$|3\rangle$. Information about the photon can now be saved for a longer time since the relaxation processes in level 2 are slow.

Time T after the first pulse we apply a second laser pulse also tuned to the $|2\rangle$-$|3\rangle$ transition. This pulse also has pulse area π but propagates in negative z direction. This pulse will now revert the atomic excitation from state $|2\rangle$ to state $|3\rangle$. A rephasing of atomic coherence will now occur in the negative z direction a time interval τ after the second laser pulse (i.e., time interval $2\tau + T$ after the single-photon wave packet). Several different photon echo processes in three-level systems of similar type have been investigated and experimentally demonstrated \cite{7}. However, the novel feature in our scheme is that here the rephasing process reproduces an exact time-reversed counterpropagating replica of the input single-photon wave packet; moreover, our scheme creates a rephasing process where the absorption process is replayed in a time-reversed mode, forcing the material to reemit what it previously absorbed. (Related considerations have been made previously in connection to schemes for quantum information transfer \cite{8}.) So the efficiency in the reemission process can be very high and the quantum state of the photon can be reproduced with a probability close to unity. Below we give the theory of the proposed process.

Before interaction of the photon with the medium the state vector $|\psi\rangle(t \rightarrow -\infty)$ of the combined system is the direct product of the field state and the atomic state:
Here $f_k(t)$ is the photon wave function with initial condition $\int dk |f_k(-\infty)|^2 = 1$ and a sharp maximum at $\tilde{k} = \tilde{e}_\omega\omega_{31}/c$. $A(t)$ is the quantum state of light, the field operators satisfy the commutation relations $[\hat{a}_\nu, \hat{a}_\nu^+] = \delta(k') - k$. $A(t)$ is the atomic ground state, $| \phi_j(t) \rangle_j$ is the atomic ground state, $| \phi_j(t) \rangle_j = \delta^{1/2}[r_j - r_j^0(t)]|1_j\rangle$, $|1_j\rangle$ is the ground state of atom j, the function $\delta^{1/2}[r_j - r_j^0(t)]$ describes the spatial movement of the jth atom with its coordinates at $t = 0$, $r_j^0(t = 0) = r_j^0(0)$, where the z coordinate $z_j^0(t) = z_j^0 + v_z t$, \vec{v}_j is the velocity of the jth atom. Below we treat the problem in one dimension with the function $f_k(-\infty) = f^{in}((\omega - \omega_{31})/c)$, where $k = \omega/c$, and we introduce the spectral width $\delta \omega_{ph}$ of the function $\delta t_{ph} = \delta \omega_{ph}^{-1}$ as the temporal duration of the photon wave-packet state. The dynamics will be described by the Hamiltonian:

$$H = H_a + H_f + V,$$

$$H_a = \hbar \omega_{31} \sum_{j=1}^N P_{31}^j + \hbar \sum_{j=1}^N P_{22}^j,$$

$$H_f = \int dk \hbar \omega_k a_k^+ a_k^0,$$

$$V = \hbar g \int dk \sum_{j=1}^N \{a_k P_{31}^j \exp[i k z_j(t)] + H.c.\}.$$

Here $P_{\mu \nu}^j = |\mu \rangle_j \langle \nu|$ are the transition atomic operators between the states $|\nu\rangle_j$ and $|\mu\rangle_j$; g is the coupling constant of the photons with atoms on the transition $|1\rangle - |3\rangle$. We neglect the small frequency dependence $g(k)\equiv g(\omega_{31}/c) = g$. Initially we consider the mapping of the quantum state onto the atomic ensemble. The photon enters the medium at time $t = 0$. We have the following general form of the wave function:

$$|\psi_f(t)\rangle = |\psi_m(t)\rangle + |\psi_f(t)\rangle,$$

$$|\psi_f(t)\rangle = \int dk f_k(t) a_k^+ |0\rangle |A(t)\rangle,$$

$$|\psi_m(t)\rangle = \sum_{j=1}^N b_j(t) P_{31}^j \langle 0 | A(t) \rangle,$$

which is easily determined from the initial condition (1) and the interaction V, which conserves the total number of the excitations in the field plus atoms. Substituting Eq. (3) into the Schrödinger equation and taking into account that the wave vector k is parallel to the z direction we obtain

$$\frac{\partial}{\partial t} f_k(t) = -i \omega_k f_k(t) - i g \sum_{j=1}^N b_j \times \exp[-ikz_j^0 - i(v_z^j/c)\omega_{31}t],$$

(4)

$$\frac{\partial}{\partial t} b_j(t) = -i \omega_{31} b_j(t) - i g \int dk f_k \times \exp[-ikz_j^0 - i(v_z^j/c)\omega_{31}t].$$

(5)

Equations (4) and (5) are valid assuming $\exp[i(k - \omega_{31}/c)v_z^j/c] \approx 1$. This condition can be restated as $t < \omega_{31}/(\delta \omega_{ph})$. Assuming $\delta \omega_{ph} = 10^9$ sec$^{-1}$ and $\omega_{31} = 10^{15}$ sec$^{-1}$ we obtain $t < 1$ ms. With the new variables $\beta_j = b_j(t) \exp[-i(v_z^j/c)\omega_{31}t]$, we obtain

$$\frac{\partial}{\partial t} f_k = -i \omega_k f_k - i g \sum_{j=1}^N \beta_j \exp[-i k z_j^0],$$

(6)

$$\frac{\partial}{\partial t} \beta_j = -i \omega_{31} \beta_j - i g \int dk f_k \exp[-i k z_j^0],$$

(7)

where $\omega_{31}^j = \omega_{31} = \omega_{31} n_1 (1 + v_z^j/c)$. Let $\delta \omega_{ph}$ be much narrower than the inhomogeneous broadening, Δ_ω, of the atomic transition $|1\rangle - |3\rangle$ ($\delta \omega_{ph} \ll \Delta_\omega$). The result will then be independent of the type of line profile for the inhomogeneous broadening. For simplicity the Doppler broadening is therefore represented by a Lorentzian profile. Also for each value of z we sum over all atoms localized within the beam cross section [using notation $\beta_j(t) = \beta_j(\omega_{31}; z, z_j^0)$]:

$$\sum_{j=1}^N \beta_j(t) = n_0 \int_{-\infty}^\infty d(z - z_j^0) \ldots = n_0 \int_{-\infty}^\infty d(z - z_j^0) \times \beta_j(\omega_{31}; z, z_j^0) \times \frac{\Delta_\omega}{\pi(\Delta_\omega^2 + (\omega_{31}^2 - \omega_{31}^2)^2)} .$$

(8)

Here $n_0 = N/L$ is the number of atoms per unit length. After multiplying Eq. (6) by e^{ikz}, integrating over k, and then using the notation $\int dk f_k(t) e^{ikz} = E(t, z) \times \exp[i \omega_{31}(z/c - t)]$, $\int dk e^{ik(z - z_j^0)} = 2\pi \delta(z - z_j^0)$ and Eqs. (7) and (8), we get

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial z}\right) E(t, z) = -\alpha E(t, z),$$

(9)

$$E(t, z) = E_0(t - z/c) \exp[(-\alpha z)],$$

(10)

$$E_0(t) = \int dk f^{in}((\omega_{31} - \omega)/c) \exp[-i(\omega_{31} - \omega_{31}t)] \exp[-i(kz/c)],$$

(11)

here $\alpha = 2\pi g^2 n_0/(c \Delta_\omega)$, 2α corresponds to the absorption coefficient on the $|1\rangle \rightarrow |3\rangle$ transition. Using Eqs. (11) and (7) we find $\beta_j(t)$ for $t > \delta t_{ph}$:

$$\beta_j(t) \sim \beta_{0}(\omega_{31}^j; z_j^0) \exp[-i \omega_{31}^j t],$$

$$\beta_{0}(\omega_{31}; z_j^0) = \beta_0(\omega_{31}; z_j^0) \exp[(-\alpha z_j^0)],$$

$$\beta_0(\omega_{31}; z_j^0) = \frac{1}{2\pi} \exp(-\alpha z_j^0) \times \left[f^{in}(\omega_{31}^j - \omega_{31})/c\right]/c.$$

(12)

We note that $\beta(\omega_{31}; z_j^0)$ corresponds to the coefficients for the wave function $|\psi_f(t)\rangle$ in the interaction picture. The solution (12) reflects the fundamental principle that any atom absorbs only the resonant component of the field spectrum. Using (12) and (8) in the interaction picture we find that $\lim_{t \rightarrow \infty} \sum_{j=1}^N |\beta_j(t)|^2 \rightarrow 1$ and
\[|\psi^i(t)\rangle_{\text{post}} = \sum_{j=1}^{N} \beta_0(\omega_{31}^j; z_j^0)e^{i\omega_{3j}^i/c}P_{31}^i|0\rangle A(t). \]

(13)

To store the single-photon quantum state for a longer time we apply the classical laser pulse \(E_1(t, z) = E_{01}(t - \tau - z/c) \cos\{\omega_{32}(t - \tau - z/c) + \varphi_1 \} \), after time delay \(t_1 = \tau \ll T_2^{(3)} \) (\(T_2^{(3)} \) is the phase relaxation time of state [3]). Since level [2] is unpopulated the laser pulse amplitude will be constant throughout the medium. Let the temporal duration of the laser pulse \(\delta t_1 \) be very short so that we can neglect the atomic dephasing \((\delta t_1 \delta \omega_{ph} \ll 1) \). The pulse area is set to \(\pi \) \((\delta t_1 = dE_{01}h^{-1} \approx \pi)\). Here the atomic evolution is described by the unitary operator \(U_1(\delta_1 = \pi, k_1, \varphi_1) \) (see, for example, Ref. [9]) which in the interaction picture can be written as \(U_1(\tau + \delta t_1, \tau, \delta t_1, \varphi_1) \equiv U_1(\theta_1, k_1, \varphi_1) = \prod_{j=1}^{N} U^i(\theta_j, \gamma_j^i)U^j(\theta_j, \gamma_j^j) = P_{11}^i + \cos(\theta_j/2)P_{22}^i + \sin(\theta_j/2)[P_{23}i^e^{-iy} + \text{H.c.}], \)

\[
|\psi^i_m(\tau + \delta t_2)\rangle = U_2(\theta_2 = \pi, k_2, \varphi_2) |\psi^i_m(\tau + \delta t_1)\rangle = \frac{i^2}{\sum_{j=1}^{N} \beta_0(\omega_{32}^j; z_j^0)} \exp[i\chi_j^i]\right]P_{31}^i|0\rangle A(\tau + T). \]

(15)

Here the phase \(\chi_j^i = \omega_{2j}^i(T + \tau - z_j^0/c) - \omega_{32}^i(\tau + \Delta z_j^0/c + \varphi_2 - \varphi_1) \). It is important to compare the change in the state after the mapping, Eq. (13), with the state after the recall pulse, Eq. (15). We see that the changes in the state (15) are determined by the phase factor \(e^{ikz} \). After the transfer of the quantum state to level 3 we consider the interaction of the medium with the quantum electromagnetic field. We will investigate the radiation emitted in direction \(k = -k_2 \). Using substitution \(\eta_j = b_j \exp[i(\nu_j^i/c)\omega_{31}t] \) into the basic equations we obtain

\[
\frac{\partial}{\partial t} f_k = -i\omega_k f_k - ig \sum_{j=1}^{N} \eta_j \exp[i\nu_j^0], \]

(16)

\[
\frac{\partial}{\partial t} \eta_j = -i\omega_{31} \eta_j - ig \int dk \ f_k \exp[-i\nu_j^0]. \]

(17)

The parameters \(b_j, \beta_j, \eta_j, f_k \) correspond to the Schrödinger representation so we have the initial conditions for Eqs. (16) and (17) at \(t = T + \tau + \delta t_2 \):

\[
f_k(T + \tau + \delta t_2) = 0, \]

\[
\eta_j(T + \tau + \delta t_2) = -\beta_0(\omega_{31}^j; z_j^0) e^{i\chi_j} \times \exp[-i\omega_{3j}^i(T + \tau + \delta t_2)]. \]

(18)

Below we again use the notation \(\int dk \ f_k(t)e^{-ikz} = F(t, z)\exp[-i\omega_{31}(z/c + t)] \). The formal solution for \(\eta_j(t) \) with the initial condition (18) is

\[
\eta_j(t) = -\beta_0(\omega_{31}^j; z_j^0) e^{-i\omega_{3j}^i t} - ig \int_{t_0 + \delta t_2}^{t} dt' \times e^{-i\omega_{3j}^i(t - t')} e^{i\omega_{31}(z_j^0/c + t')}\exp[-i\omega_{3j}^i(z_j^0/c + t')]. \]

(19)

Using (8), (18), (19) in (16) we obtain

where the phase \(\gamma_j^i = \omega_{2j}^i(\tau + z_j^0/c) + \varphi_1 \). After this laser pulse we have the state

\[
|\psi^i_m(\tau + \delta t_1)\rangle = U_1(\theta_1 = \pi, k_1, \varphi_1) |\psi^i_m(\tau)\rangle = \frac{i^2}{\sum_{j=1}^{N} \beta_0(\omega_{31}^j; z_j^0)} e^{-i(\omega_{3j}^i(\tau + \xi_j^i))} \times P_{31}^i|0\rangle A(\tau). \]

(14)

Here \(\xi_j^i = \varphi_1 - \Delta z_j^0/c \). The state \(|\psi^i_m(\tau + \delta t_1)\rangle \) saves all information about the photon for a long time, \(T_2^{(2)} \).

To reconstruct the single-photon state the gas is now excited by a second short laser pulse at time \(t_2 = T + \tau \) \((T < T_2^{(2)}, \delta t_2 \delta \omega_{ph} \ll 1) \) propagating in the negative \(z \) direction \([k_2 = -k_1, \hat{k}_2 = -(\omega_{32}/c)\hat{e}_z]\). Similar to the first laser pulse, we have \(E_2(t, z) = E_{02}(t - \tau - z/c) \cos\{\omega_{32}(t - \tau - z/c) + \varphi_2 \} \). In this case the unitary evolution operator \(U_2(\theta_2, k_2, \varphi_2) \) will be \(U_2(\theta_2, k_2, \varphi_2) = \prod_{j=1}^{N} U^i(\theta_j, \gamma_j^j) \), with \(\gamma_j^j = \omega_{2j}^j(\tau + z_j^0) + \varphi_2 \), \(\omega_{m}^{j} = \omega_{mn}(1 - \nu_j^2/c) \). Thus after the second laser pulse excitation we have the following wave function:

\[
\frac{\partial}{\partial z} e^{-\alpha z} E_0(T + 2\tau - t - z/c) e^{i\gamma + \pi/2}. \]

(22)

We see that the output field will be radiated in the back direction from \(z = 0 \) at time \(t = T + 2\tau \). Its amplitude exactly copies the field of the incident photon. But the temporal profile is reversed as would be the case also for a conventional photon echo process. Using Eqs. (22) and (19) we find that for \(t > T + 2\tau + \delta t_{ph} \) the atomic parameters \(\eta_j(t) \) for \(t > T + 2\tau + \delta t_{ph} \rightarrow 0 \). This means that all atoms have returned to the ground state. Using (22) and the inverse frequency domain Fourier transform, we finally
obtain the state of the output wave function which in the
interaction picture has the form
\[
\lim_{t \to \infty} |\psi^\prime(t)\rangle = \int_{-\infty}^{\infty} dk f^{\text{out}}((\omega_k - \omega_{31})/c)
\times a_k^\dagger |0\rangle |A(t)\rangle,
\]
(23)
\[
f^{\text{out}}((\omega - \omega_{31})/c) = \exp[i\Phi]f^{\text{in}}(-(\omega - \omega_{31})/c),
\]
(24)
\[
\Phi = (\omega - \omega_{31})(T + 2\tau) + (\omega_{31} - \Delta)T + \varphi_{21} + \pi/2.
\]

For comparison see the initial state in Eq. (1). Solution (24) gives the relation between the wave function of the
recalled output photon, \(f^{\text{out}}((\omega - \omega_{31})/c)\), and the wave
function, \(f^{\text{in}}((\omega - \omega_{31})/c)\), of the incident photon and it
reflects the delay \((T + 2\tau)\) and unitary evolution of the
photon in the medium. As seen from Eq. (24) we can vary the phase \(\Phi\) of the photon using the phases of the
laser pulses, \(\varphi_2\) and \(\varphi_1\). We also note that in comparison
with the input photon, the spectrum of the output photon is
reversed around the center frequency of the transition.
So if the spectrum of the first photon is symmetric:
\(f^{\text{in}}((\omega - \omega_{31})/c) = f^{\text{in}}(-(\omega - \omega_{31})/c)\), the recalled
photon will reproduce the initial single-photon quantum
state, where \(\Phi\) will determine only the time delay and an
overall additional phase shift. In general Eq. (24) opens
interesting possibilities to manipulate single-photon states.

The possibility to truthfully map a nonstationary single-
photon wave packet in a photon echo medium has been
pointed out previously [9,10]. However, in the conven-
tional two-level photon echo scheme [5] the reconstructed
field is absorbed as it propagates in the sample, and
although the state could be correctly mapped onto the atomic
ensemble if the sample has a high optical density, it can be
only partly extracted. In fact, the output signal intensity in
a conventional photon echo experiment is typically only a
few percent of the input signal [11]. In comparison with quantum
state mapping using slow light and EIT [2] we use the same
energy level diagram configuration, but instead of causing the
sample to be transparent through EIT we just time re-
verse the absorption process. At the same time we think
that it would be important to study the spectral possibil-
ties of both techniques more precisely, but this question
requires further analysis. A potential problem with the
photon echo approach might be the requirement of having
pulse areas of exactly \(\pi\) for the pulses on the [2]-[3] tran-
section. However, it is easy to find the probability \(P\) to retrieve
a single photon wave packet for the pulse area \(\vartheta\) of the
laser pulses: \(P(\vartheta) = \sin^2(\vartheta/2)\). If \(\vartheta = \pi + \varepsilon\), where
\(|\varepsilon| \ll 1\), the probability \(P\) is very close to 1 and small
variations of \(\vartheta\) around \(\pi\) will then hardly affect the quality
of the reconstructed quantum field. As our scheme is
designed for use in macroscopic inhomogeneously broadened
media, it is suitable for nonstationary fields and should
readily be possible to extend to multiphoton fields. How-
ever, the in-depth analysis of this problem is an impetus
for future research.

We conclude that our photon echo technique opens good
possibilities to store, to recall, and also to change para-
ters of the photon wave function without destroying it.
We mean that the techniques could be very interesting for
studying intimate details of the interaction of nonstationary
single-photon quantum fields with macroscopic systems of
atoms and molecules [12].

The authors are grateful to Professor V.S. Letokhov
for discussion and useful advice. S.A.M. thanks the
Department of Atomic Physics Lund Institute of Tech-
nology for hospitality. This work was supported by the
Royal Swedish Academy of Sciences, the Swedish Natu-
ral Science Research Council and by the Russian Foun-
dation for Basic Research Grants No. 01-01-00387 and
No. 01-03-32730.

*Email address: samoi@yandex.ru

[3] Lu-Ming Duan, J.I. Cirac, and P. Zoller, in 2000 Inter-
national Quantum Electronics Conference: Conference
[9] S.A. Moiseev, Opt. Spectrosc. 82, 943 (1997);
[10] A.R. Kessel’ and S.A. Moiseev, JETP Lett. 58, 80 (1993);
S.A. Moiseev, Hyperfine Interact. 107, 345 (1997);
(1999).