Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition

Moiseev, S. A.; Kröll, Stefan

Published in:
Physical Review Letters

2001

Citation for published version (APA):
Complete Reconstruction of the Quantum State of a Single-Photon Wave Packet Absorbed by a Doppler-Broadened Transition

S. A. Moiseev1,2,* and S. Kröll3

1Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Sibirsy Trakt 10/7, Kazan, 420029, Russia
2Kazan State University, Kremlyovskay 18, Kazan, 420008, Russia
3Department of Physics, Lund Institute of Technology (LTH), Box 118, S-221 00 Lund, Sweden

(Received 2 May 2001; published 8 October 2001)

An idea for how to reconstruct the quantum state of a nonstationary single-photon wave packet absorbed in a macroscopic medium with inhomogeneously broadened lines is presented. An analytical treatment of the problem is performed and the requirements on the proposed scheme for complete recovery of the recorded nonstationary quantum state with a probability close to unity is described. The physical nature of the present scheme is also discussed.

Quantum optics opens new possibilities for construction of specific quantum states and for their use both in fundamental research and in numerous applications. Growing interest in quantum computation and the strong requirements that must be fulfilled to realize quantum calculations in practice have spurred an interest in many new issues related to the quantum dynamics of matter and light. A basic problem is the development of appropriate techniques for storage and recall of arbitrary quantum states of light. Recently a new technique for storage and recall of quantum states of light within a narrow spectral interval, based on electromagnetically induced transparency (EIT) [1], was proposed [2]. Mapping the quantum state of single-mode fields has also been attempted using trapped ions [3], whereas for the case of free space the common scheme of Raman-type interaction was also recently proposed for the mapping in [4]. It is interesting to consider techniques which would give a more general solution to quantum state storage and recall including a wider range of nonstationary fields. This is the problem we consider here. Our approach stems from the general ability of photon echoes techniques [5] to store and reproduce arbitrary, temporally shaped wave packets [6]. However, the efficiency in the photon echo process normally is low. For example, if the sample is transparent most of the input light would go through without absorption, while if, on the other hand, the optical density is high, the incoming wave packet will be completely absorbed by (mapped onto) the atomic ensemble, but most of the recalled wave packet will then also be absorbed as it propagates through the material. Here we propose an alternative photon echo storage procedure which solves both the above problems and which can be used for quantum state storage and total recall of nonstationary light fields. The proposed technique for restoring the field is based on the property that frequency shifts due to the Doppler effect are opposite for counterpropagating directions. We present the analytical solution for quantum state storage and recall of nonstationary single-photon wave packets in this medium.

We consider a gas localized between coordinates \(z = 0 \) and \(z = L \). The gas consists of \(N \) three-level atoms all initially in the ground state, \(|1\rangle \). There is an allowed electric dipole transition to the state \(|2\rangle \) and there is a metastable state \(|3\rangle \) situated just above state \(|1\rangle \) in energy. We will neglect relaxation processes in the atomic system. A single-photon wave packet, resonant with the inhomogeneously broadened \(|1\rangle-|3\rangle \) transition, is incident along the \(z \) direction and absorbed in the medium. After a small time delay, \(\tau \), we apply a laser pulse in the \(z \) direction with pulse area \(\pi \) that transfers any excitation to state \(|2\rangle \) using the electric dipole allowed transition \(|2\rangle-|3\rangle \). Information about the photon can now be saved for a longer time since the relaxation processes in level 2 are slow. Time \(T \) after the first pulse we apply a second laser pulse also tuned to the \(|2\rangle-|3\rangle \) transition. This pulse also has pulse area \(\pi \) but propagates in negative \(z \) direction. This pulse will now revert the atomic excitation from state \(|2\rangle \) to state \(|3\rangle \). A rephasing of atomic coherence will now occur in the negative \(z \) direction a time interval \(\tau \) after the second laser pulse (i.e., time interval \(2\tau + T \) after the single-photon wave packet). Several different photon echo processes in three-level systems of similar type have been investigated and experimentally demonstrated [7]. However, the novel feature in our scheme is that here the rephasing process reproduces an exact time-reversed counterpropagating replica of the input single-photon wave packet; moreover, our scheme creates a rephasing process where the absorption process is replayed in a time-reversed mode, forcing the material to reemit what it previously absorbed. (Related considerations have been made previously in connection to schemes for quantum information transfer [8].) So the efficiency in the reemission process can be very high and the quantum state of the photon can be reproduced with a probability close to unity. Below we give the theory of the proposed process. Before interaction of the photon with the medium the state vector \(|\psi(t)\rangle \) of the combined system is the direct product of the field state and the atomic state:...
Here \(f_k(t) \) is the photon wave function with initial condition \(\int dk |f_k(-\infty) a_k^+ |0\rangle |A(t)\rangle \). (1)

Equations (4) and (5) are valid assuming \(\exp[i(k - \omega_{31}/c)v_z t]\). This condition can be restated as \(t < \omega_{31}/(\delta \omega_{ph}) \). Assuming \(\delta \omega_{ph} = 10^9 \text{ sec}^{-1} \) and \(\omega_{31} = 10^{15} \text{ sec}^{-1} \) we obtain \(t < 1 \text{ ms} \). With the new variables \(\beta_j = b_j(t) \exp[-i(v_z/c)\omega_{31} t] \), we obtain

\[
\frac{\partial}{\partial t} f_k = -i \omega_k f_k - i g \sum_{j=1}^N \beta_j \exp[-ikz_j^0], \quad (6)
\]

\[
\frac{\partial}{\partial t} \beta_j = -i \omega_{31} \beta_j - i g \int dk f_k \exp[-ikz_j^0], \quad (7)
\]

where \(\omega_j^{(ii)} = \omega_{31} = \omega_{mn}(1 + v_z/c) \). Let \(\delta \omega_{ph} \) be much narrower than the inhomogeneous broadening, \(\Delta \nu \), of the atomic transition \([1]\) to [3] (\(\delta \omega_{ph} \ll \Delta \nu \)). The result will then be independent of the type of line profile for the inhomogeneous broadening. For simplicity the Doppler broadening is therefore represented by a Lorentzian profile. Also for each value of \(z \) we sum over all atoms localized within the beam cross section [using notation \(\beta_j(t) = \beta_j(\omega_{31}/t, z_j^0) \)]:

\[
\sum_{j=1}^N \beta_j(t) \delta(z - z_j^0) = n_0 \int_{-\infty}^\infty d(\omega_{31} - \omega_{31}) \times \beta_j(\omega_{31}/t, z) \times \frac{\Delta \nu}{\pi[\Delta \nu^2 + (\omega_{31} - \omega_{31})^2]} \ldots . \quad (8)
\]

Here \(n_0 = N/L \) is the number of atoms per unit length. After multiplying Eq. (6) by \(e^{ikz} \), integrating over \(k \), and then using the notation \(\int dk f_k(t) e^{ikz} = E(t, z) \times \exp[i\omega_{31}(z/c - t)] \), \(\int dk e^{ik(z-z_j)} = 2\pi \delta(z - z_j^0) \) and Eqs. (7) and (8), we get

\[
E(t, z) = E_0(t - z/c) \exp[-\alpha z], \quad (10)
\]

\[
E_0(t) = \int dk f_{in}(\omega_k - \omega_{31}/c) \exp[-i(\omega_k - \omega_{31})t], \quad (11)
\]

where \(\alpha = 2\pi g^2 n_0/(\epsilon \Delta \nu) \). \(2\alpha \) corresponds to the absorption coefficient on the \([1] \rightarrow [3]\) transition. Using Eqs. (11) and (7) we find \(\beta_j(t) \) for \(t > \delta t_{ph} \):

\[
\beta_j(t) = \beta_0(\omega_{31}/t, z_j^0) e^{-i\omega_{31}t}, \quad (12)
\]

\[
\beta_0(\omega_{31}/t, z_j^0) = -i 2\pi \delta \exp[-\alpha z_j^0] \times [f_{in}(\omega_{31}/c - \omega_{31})/c].
\]

We note that \(\beta(\omega_{31}/t, z_j^0) \) corresponds to the coefficients for the wave function \(|\psi(t)\rangle \) in the interaction picture. The solution (12) reflects the fundamental principle that any atom absorbs only the resonant component of the field spectrum. Using (12) and (8) in the interaction picture we find that \(\lim_{t \to \infty} \sum_{j=1}^N |\beta_j(t)|^2 \to 1 \) and
\[|\psi(t)\rangle_{\text{prep}} = \sum_{j=1}^{N} \beta_0(\omega_{31}^j; z_0^j) \epsilon^{i \omega_{31}^j t / c} P_{31}^j |0\rangle |A(t)\rangle. \]

(13)

To store the single-photon quantum state for a longer time we apply the classical laser pulse \(E_1(t, z) = E_{01}(t - \tau - z / c) \cos \{\omega_{32}(t - \tau - z / c) + \phi_1)\), after time delay \(t_1 = \tau < T_2^{(3)} (T_2^{(3)} \text{ is the phase relaxation time of state } [3])\). Since level [2] is unpopulated the laser pulse amplitude will be constant throughout the medium. Let the temporal duration of the laser pulse \(\delta t_1\) be very short so that we can neglect the atomic dephasing \((\delta t_1 \delta \omega_{\text{ph}} \ll 1)\). The pulse area is set to \(\pi \left(\delta t_1 = dE_{01} h^{-1} \delta t_1 = \pi\right)\). Here the atomic evolution is described by the unitary operator \(U_1(\theta_1 = \pi, k_1, \varphi_1)\) (see, for example, Ref. [9]) which in the interaction picture can be written as \(U_1(\tau + \delta t_1, \tau, \theta_1, k_1, \varphi_1) \equiv U_1(\theta_1, k_1, \varphi_1) = \prod_{j=1}^{N} U_j(\tau, \gamma_j^1) \exp\{i(\theta_{1j} / 2)(P_{22}^j + P_{33}^j) + i \sin(\theta_{1j} / 2)(P_{23}^j \epsilon^{-i\gamma_j} + \text{H.c.})\}, \)

where the phase \(\gamma_j = \omega_{32}^j (T + \tau - z_0^j / c) + \Delta z_0^j / c + \varphi_2 - \varphi_1\). It is important to compare the state after the mapping, Eq. (13), with the state after the recall pulse, Eq. (15). We see that changes in the state (15) are determined by the phase factor \(e^{i\gamma_k}\). After the transfer of the quantum state to level 3 we consider the interaction of the medium with the quantum electromagnetic field. We will investigate the radiation emitted in direction \(k = -k \hat{c}\). Using substitution \(\eta_j = b_j \exp\{i(\nu_j / c)\omega_{31} t\}\) into the basic equations we obtain

\[\frac{\partial}{\partial t} f_k = -i \omega_k f_k - i g \sum_{j=1}^{N} \eta_j \exp\{i k z_j^0\}, \]

(16)

\[\frac{\partial}{\partial t} \eta_j = -i \omega_{31}^j \eta_j - i g \int dk f_k \exp\{i k z_j^0\}. \]

(17)

The parameters \(b_j, \beta_j, \eta_j, f_k\) correspond to the Schrödinger representation so we have the initial conditions for Eqs. (16) and (17) at \(t = T + \tau + \delta t_2:\)

\[f_k(T + \tau + \delta t_2) = 0, \]

\[\eta_j(T + \tau + \delta t_2) = -\beta_0(\omega_{31j}^j; z_0^j) \epsilon^{i \gamma_j} \exp\{i \omega_{31j}^j (T + \tau + \delta t_2)\}. \]

(18)

Below we again use the notation \(\int dk f_k(t) e^{-i k z} = F(t, z) \exp\{-i \omega_{31j} (z / c + t)\}\). The formal solution for \(\eta_j(t)\) with the initial condition (18) is

\[\eta_j(t) = -\beta_0(\omega_{31j}^j; z_0^j) \epsilon^{i \omega_{31j}^j t} - i g \int_{0}^{t} dt' \times e^{-i \omega_{31j}^j (t-t')} F(t', \zeta_j^0) \exp\{-i \omega_{31j} (\zeta_j^0 / c + t')\}. \]

(19)

Using (8), (18), (19) in (16) we obtain

\[|\psi_m^j(T + \tau + \delta t_2) = U_2(\theta_2 = \pi, k_2, \varphi_2) |\psi_m^j(T + \tau + \delta t_1)\rangle = i \sum_{j=1}^{N} \beta_0(\omega_{32j}^j; z_0^j) \exp\{i \chi_j^1 P_{31}^j |0\rangle |A(t + T)\rangle. \]

(15)
obtain the state of the output wave function which in the interaction picture has the form

\[\lim_{t \to +T+2\tau} |\psi^f(t)\rangle \to |\psi_i^f\rangle = \int_{-\infty}^{+\infty} dk f^{\text{out}}((\omega_k - \omega_{31})/c) \times a_k^+ |0\rangle |A(t)\rangle, \]

\[f^{\text{out}}((\omega - \omega_{31})/c) = \exp[i\Phi] f^{\text{in}}(-(\omega - \omega_{31})/c), \]

\[\Phi = (\omega - \omega_{31}) (T + 2\tau) + (\omega_{31} - \Delta) T + \varphi_{21} + \pi/2. \]

For comparison see the initial state in Eq. (1). Solution (24) gives the relation between the wave function of the recalled output photon, \(f^{\text{out}}((\omega - \omega_{31})/c) \), and the wave function, \(f^{\text{in}}((\omega - \omega_{31})/c) \), of the incident photon and it reflects the delay \((T + 2\tau)\) and unitary evolution of the photon in the medium. As seen from Eq. (24) we can vary the phase \(\Phi \) of the photon using the phases of the laser pulses, \(\varphi_2 \) and \(\varphi_1 \). We also note that in comparison to the input photon, the spectrum of the output photon is reversed around the center frequency of the transition. So if the spectrum of the first photon is symmetric; \(f^{\text{in}}((\omega - \omega_{31})/c) = f^{\text{in}}(-(\omega - \omega_{31})/c) \), the recalled photon will reproduce the initial single-photon quantum state, where \(\Phi \) will determine only the time delay and an overall additional phase shift. In general Eq. (24) opens interesting possibilities to manipulate single-photon states.

The possibility to truthfully map a nonstationary single-photon wave packet in a photon echo medium has been pointed out previously [9,10]. However, in the conventional two-level photon echo scheme [5] the reconstructed field is absorbed as it propagates in the sample, and although the state could be correctly mapped onto the atomic ensemble if the sample has a high optical density, it can be only partly extracted. In fact, the output signal intensity in a conventional photon echo experiment is typically only a few percent of the input field intensity (however, the experiment can be configured such that the sample coherently amplifies the output signal such that it becomes stronger than the input signal [11]). In comparison with quantum state mapping using slow light and EIT [2] we use the same energy level diagram configuration, but instead of causing the sample to be transparent through EIT we just time reverse the absorption process. At the same time we think that it would be important to study the spectral possibilities of both techniques more precisely, but this question requires further analysis. A potential problem with the photon echo approach might be the requirement of having pulse areas of exactly \(\pi \) for the pulses on the \([2]-[3]\) transi-

*Email address: samoi@yandex.ru

173601-4