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On the interior stress problem for elasti
 bodiesJohan HelsingDepartment of Solid Me
hani
s and NADA, Royal Institute of Te
hnology,SE-100 44 Sto
kholm, SwedenApril 25, 2000Abstra
tThe 
lassi
 Sherman-Lauri
ella integral equation and an integral equation due toMuskhelishvili for the interior stress problem are modi�ed. The modi�ed formulationsdi�er from the 
lassi
 ones in several respe
ts: both modi�
ations are based on unique-ness 
onditions with 
lear physi
al interpretations and, more importantly, they do notrequire the arbitrary pla
ement of a point inside the 
omputational domain. Further-more, in the modi�ed Muskhelishvili equation the unknown quantity, whi
h is solvedfor, is simply related to the stress. In Muskhelishvili's original formulation the unknownquantity is related to the displa
ement. Numeri
al examples demonstrate the greaterstability of the modi�ed s
hemes.1 Introdu
tionThe task of 
omputing the elasti
 �eld inside an un
onstrained body subje
ted to externalstress is a basi
 one in applied me
hani
s. A variety of numeri
al methods exist, leading tothe solution of systems of linear equations. Finite element methods and integral equationmethods are two examples. A problem, for any method, is a 
ertain undetermina
y in thesolution { when stress is applied, displa
ement is not unique.There are standard ways to get a well-posed problem. In a �nite element program one
an pres
ribe also the displa
ement at some points (to prevent rigid body movements). Inthe 
ontext of integral equations, the integral operator 
an be 
ompleted with an extraoperator, 
ontaining another arbitrary point, whi
h makes the solution unique. The 
hoi
eof parti
ular representations of the unknown �elds and pla
ements of arbitrary points will,of 
ourse, a�e
t the stability of a numeri
al 
ode. With a dire
t solver and for simpleproblems this may not be an issue. The 
omputational work only depends on the size ofthe system matrix. With the faster, iterative, solvers used by many engineers today and indiÆ
ult situations, the stability of the 
ode and the 
ondition number of the system matrixis suddenly important. The lower the 
ondition number, the faster the solver will 
onverge.A stable algorithm 
an give a solution with better quality.This paper fo
uses on the Sherman-Lauri
ella integral equation and an integral equationdue to Muskhelishvili for the interior stress problem in two-dimensional elastostati
s. The
lassi
 way to get a unique solution for these equations is to 
omplete them with an oper-ator B 
ontaining an arbitrary point z� (Sherman 1940). We show that the 
onvergen
e1



properties of iterative algorithms based on these equations 
an be sensitive to the pla
ementof z�. To remedy this situation, we introdu
e a uniqueness 
ondition with a 
lear physi
alinterpretation. This leads us to a new operator B whi
h is free from the arbitrary pointz�. We then derive a modi�
ation of the Muskhelishvili equation whi
h is better suitedto 
ompute stress �elds. Numeri
al experiments indi
ate that our modi�ed equations givemore eÆ
ient algorithms.2 Potential representationA �nite, linearly elasti
, body o

upies a domain D. Its two-dimensional elasti
 bulk andshear moduli are � and �. The boundary of the body is denoted � and is given positive(
ounter-
lo
kwise) orientation. Tra
tion is pres
ribed at �. We would like to 
ompute thedeformation and the stress �eld inside D.Let U denote the Airy stress fun
tion. Sin
e U satis�es the biharmoni
 equation insideD it 
an be represented as U = <e f�z�+ �g ; (1)where the potentials � and � are single valued analyti
 fun
tions of the 
omplex variable z =x+ iy. For a thorough dis
ussion of the 
omplex variable approa
h to elasti
ity problems,see Muskhelishvili (1953), Sokolniko� (1956), Mikhlin (1957), and Parton and Perlin (1982).For our purposes it is suÆ
ient to observe a few relations that link the 
omplex potentialsto quantities of physi
al interest: The displa
ement (ux; uy) in the material satis�esux + iuy = � 12� + 1���� 12� �z�0 +  � ; (2)where  = �0. The integral of tra
tion (tx; ty) along a 
urve 
(s) 
an be obtained from therelation Z ss0 (tx + ity)ds = �����ss0i ��+ z�0 +  � ; (3)where s denotes ar
length along 
(s). Complex di�erentiation of the expression (2) alongthe tangent to �(s) givesddz (ux + iuy) = � 12� + 1���� 12� ��� �nnz�0 � �nn	� ; (4)and di�erentiation with respe
t to ar
length in (3) givestx + ity = �n+�n� z�0�n�	�n; (5)where � = �0, 	 = �00, and n = nx + iny is the outward unit normal ve
tor on �. The
omponents of the stress tensor 
an be 
omputed via�xx + �yy = 4<ef�g ; (6)�yy � �xx + 2i�xy = 2(�z�0 +	) ; (7)2



A natural starting point for elastostati
 problems is to represent the potentials � and , or � and 	, in the form of Cau
hy-type integrals�(z) = 12�i Z� !(�)d�(� � z) ; z 2 D ; (8)and  (z) = 12�i Z� �(�)d�(� � z) ; z 2 D ; (9)or �(z) = 12�i Z� 
(�)d�(� � z) ; z 2 D ; (10)and 	(z) = 12�i Z� �(�)d�(� � z) ; z 2 D ; (11)where ! and �, or 
 and �, are unknown layer densities on �. Values of the potentials �, , �, and 	 on � are de�ned as limits of �,  , � and 	 in D as � is approa
hed. Sin
e theequations of elasti
ity now are satis�ed everywhere, it remains only to solve the problemwhi
h 
onsists of enfor
ing the boundary 
ondition of pres
ribed tra
tion (tprx ; tpry ) along �.This 
an be done in various ways, leading to various integral equations.3 The 
lassi
 Sherman-Lauri
ella integral equationAn 
lassi
 
hoi
e for the interior stress problem is to 
hoose the unknown layer density �of (9) in the following way �(z) = !(z)� �z!0(z) : (12)The 
hoi
e (12) makes  of (9) assume the form (z) = 12�i Z� !(�)d��(� � z) + 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 : (13)The requirement of pre
ribed tra
tion on � leads, via (3), to the Lauri
ella integralequation for ! (I +MSL)!(z) = g(z) ; z 2 � ; (14)a

ompanied with the solvability 
onditions that g(z) must be single valued andQ1g = 0 : (15)In (14-15) the notation g(z) has been introdu
ed for the integral of tra
tion along � from apoint z(s0) as g(z) = iZ s(z)s0 tds ; z 2 � ;where t = tprx + itpry , and the operator Q1 is a mapping from � to R, de�ned byQ1g = 1S<e�Z� g(z)d�z� ; (16)3



where S is the perimeter of the body, and MSL is a 
ompa
t integral operator given byMSL!(�) = 12�i "Z� !(�)d�(� � z) � Z� !(�)d��(�� � �z) � Z� !(�)d�(�� � �z) + Z� (� � z)!(�)d��(�� � �z)2 # : (17)Consider now the integral operator B suggested by Sherman (1940) and de�ned byB!(z) = � 1(z � z�) � 1(�z � �z�) + (z � z�)(�z � �z�)2� 1�i<e�Z� !(�)d�(� � z�)2� ; z 2 � ; (18)where z� is an arbitrary point in D. Parton and Perlin (1982) suggest a simpler operator BB!(z) = 1(�z � �z�) 1�i<e�Z� !(�)d�(� � z�)2� ; z 2 � : (19)Addition of the operator B to the left hand side of (14) gives the Sherman-Lauri
ella integralequation (I +MSL +B)!(z) = g(z) ; z 2 � : (20)Uniqueness of the solution to (20), with the 
hoi
e (18) for B, is proven in paragraph 56 ofMikhlin (1957). Uniqueness, with the 
hoi
e (19), is proven in paragraph 19 of Parton andPerlin (1982).On
e equation (20) is solved for !, various quantities of physi
al interest 
an be 
om-puted. The displa
ement on �, for example, 
an be obtained fromux + iuy = 12 � 1� + 1�� (I +M1)!(z)� g(z)2� ; z 2 � ; (21)where M1!(z) = 1�i Z� !(�)d�(� � z) ; z 2 � : (22)From the viewpoint of numeri
al eÆ
ien
y, the 
hoi
e between (18) and (19) for B isperhaps not so important. Greenbaum, Greengard and Mayo (1992) use (20) with (18).Greengard, Kropinski, and Mayo (1996) and Strandberg (1999) use (20) with (19). Noauthor 
omments on the relative merits of the two 
hoi
es. The next se
tion presents yetanother 
hoi
e B. As we shall see in the last se
tion, this new \twist" 
an make a substantialdi�eren
e.4 A new operator BEquation (14) with the solvability 
ondition (15) does not have a unique solution. Theoperator on the left-hand side of (14) is rank-one de�
ient. On the unit disk, for example,a null-ve
tor is !n = iz. We suggest the uniqueness 
onditionQ1(I +M1)! = 0 : (23)
4



We see, from (16) and (21), that the 
ondition (23) has a physi
al interpretation in termsof average tangential displa
ement on �. Two useful relations areQ1(I +MSL)! = 0 ; (24)Q1in = 1 : (25)We are now in the position to propose a new equivalent formulation for (14) and (23),assuming that (15) holds. The new formulation is based on the 
hoi
eB!(z) = in2 Q1(I +M1)!(z) ; z 2 � : (26)This 
hoi
e for B di�ers from the 
hoi
es (18) and (19) in two respe
ts: it has a 
learphysi
al interpretation and, more importantly, it does not involve the arbitrary point z�.The Sherman-Lauri
ella equation now reads�I +MSL + in2 Q1(I +M1)�!(z) = g(z) ; z 2 � : (27)Equation (27) trivially follows from (14) and (23). To prove the 
onverse, we apply Q1 fromthe left in (27) and use the relations (24-25) and (15). This gives (23). Subtra
tion of (23)from (27) gives ba
k (14).Uniqueness of the solution to (27) 
an be proven using the same te
hnique as in para-graph 56 of Mikhlin (1957) and observing the relations�(z) = 12(I +M1)!(z) ; z 2 � ; (28)and Q1iz = 2A=S ; (29)where A is the area of the body.5 A modi�ed Muskhelishvili equationAn interesting extension for the interior stress problem is to let it involve a problem exteriortoD. The exterior problem is one where the pres
ribed tra
tion on � is zero and the stress atin�nity is zero. We shall seek � and 	 su
h that the two problems are solved simultaneously.Clearly, � and 	 are zero outside D. This follows from the uniqueness of the solution tothe se
ond fundamental exterior problem in the plane (Mikhlin 1957), and implies that 
of (10) and � of (11) are boundary values of analyti
 fun
tions in D. Now we 
hoose 
 tobe the value of � on �, and 
hoose � in su
h a way that the tra
tion is zero outside � andjumps a quantity t as � is 
rossed. The jump 
ondition makes 	 of (11) take the form	(z) = � 12�i Z� �(�)d��(� � z) � 12�i Z� ���(�)d�(� � z)2 � 12�i Z� �n�td�(� � z) ; z 2 D : (30)The requirement that the tra
tion outside � is zero leads to the following integral equationfor � on � (I �M3) �(z) = �nt(z)2 + �nn 12�i Z� ntd��(�� � �z) ; z 2 � ; (31)5



a

ompanied with the solvability 
onditionQ2�nt = 0 ; (32)where Q2f = � 12A<e�Z� f(z)�zdz� : (33)In (31) M3 is an integral operator given byM3�(z) = 12�i "Z� �(�)d�(� � z) + �nn Z� �(�)d�(�� � �z) + Z� �(�)d��(�� � �z) + �nn Z� (� � z)�(�)d��(�� � �z)2 # : (34)Equation (31) 
an be viewed as the derivative of the 
onjugate of equation (7) in paragraph54 of Mikhlin (1957). That equation was originally derived by Muskhelishvili.A quantity of physi
al interest, whi
h 
an be 
omputed on
e (31) is solved for �, is the
omplex tangential derivative of the displa
ement on �ddz (ux + iuy) = �1� + 1���(z)� �nt2� ; z 2 � : (35)The following Lemma will be useful for proving equation (39) below.Lemma 5.1 Q2i = 1 ; (36)Q2(I �M3)� = 0 : (37)Proof: Equation (36) is proven by applying Gauss' theorem. Equation (37) is proven byexpressing (I �M3)� expli
itly in terms of analyti
 potentials and then applying Cau
hy'stheorem. 2Equation (31) with the solvability 
ondition (32) does not have a unique solution. Theoperator on the left hand side of (31) is rank-one de�
ient. Imaginary 
onstants are null-solutions. For any solution � we 
an form a new solution as � + i�, where � is a real
onstant. See paragraph 54 of Mikhlin (1957) for a similar result for the null-spa
e of anoperator derived for the potential �. Here we propose the uniqueness 
onditionQ2� = 0 : (38)We see, from (33) and (35), that the 
ondition (38) has the same physi
al interpretation asthe 
ondition (23).We are now in the position to propose a new formulation for (31) and (38), assumingthat (32) holds.Theorem 1 Given the solvability 
ondition (32), equation (31) and the uniqueness 
ondi-tion (38) are equivalent to the the following Fredholm equation of the se
ond kind(I �M3 + iQ2)�(z) = �nt(z)2 + �nn 12�i Z� ntd��(�� � �z) ; z 2 � : (39)6



Proof: Equation (39) trivially follows from (31) and (38). To prove the 
onverse, we applyQ2 from the left in (39) and use the relations (36-37) and (32). This gives (38). Subtra
tionof (38) from (39) gives ba
k (31). 2Uniqueness of the solution to (39) 
an be proven using the method of paragraph 54 inMikhlin (1957). First one proves that an assumed homogeneous solution, �0, to (39) hasto be an imaginary 
onstant. Then (38), whi
h is implied by (39), gives that this 
onstantis zero.6 Numeri
al 
omparison between formulationsIn this se
tion we undertake a 
omparison between algorithms for the 
lassi
 Sherman-Lauri
ella equation (20) with the 
hoi
e (19) for B, for the modi�ed formulation (27), andfor the modi�ed Muskhelishvili equation (39). The algorithms are of Nystr�om type based on
omposite 16-point Gaussian quadrature and the GMRES iterative solver (Saad and S
hultz1986). The iterations are terminated when the residual is as small as it 
an get, whi
htypi
ally means 2 � 10�15. Compensated summation (Kahan 1965; Higham 1996) is usedfor the 
omputation of matrix-ve
tor multipli
ations and inner produ
ts in the GMRESiterative solver. For details on how to regularize the Cau
hy-type singular operator M1of (22), see Helsing and Jonsson (1999).For setups with smooth boundaries and analyti
al solutions, su
h as loaded 
ir
ular orellipti
 disks, it is hard to say whi
h equation leads to the best algorithm. Algorithmsbased on the three equations all require only a few GMRES iterations for full 
onvergen
e.Non-trivial examples are needed in order to dete
t di�eren
es in performan
e.When 
omparing the performan
e of the algorithms below, we need a referen
e quantityqref to measure a

ura
y against. We have de
ided to use the L2 norm of the hydrostati
stress on �, that is qref = �Z� (�xx(z) + �yy(z))2 ds�12 ; (40)as su
h a referen
e quantity.Example 1: A symmetri
 star�sh. We �rst 
onsider a body in the shape of anine-armed star�sh parameterized byz(t) = (1 + 0:36 
os 9t)eit ; 0 � t < 2� : (41)The load is 
hosen as g(z) = z2 : (42)We start out with testing the algorithm for the 
lassi
 equation (20) with B as in (19).The star�sh of (41) is symmetri
 with respe
t to the origin. A natural 
hoi
e for the arbitrarypoint is therefore z� = 0. With this 
hoi
e for z� the algorithm for the 
lassi
 equation (20)requires 2000 dis
retization points to rea
h a relative error in qref of 10�12. Upon in
reasedresolution the quality of the solution slowly gets worse. See Figure 1. The number ofGMRES iterations required is 25. The sensitivity to the pla
ement of the arbitrary point z�turns out to be quite large in this example. When the position of z� = 0 is 
hanged a tinydistan
e to z� = 0:01i, whi
h still is far away from the boundary of the star�sh 
ontour,the number of GMRES iterations needed for 
onvergen
e more than doubles, see Figure 2.7
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Figure 1: Example 1. Convergen
e of the referen
e quantity qref of (40), de�ned as theEu
lidean norm of the hydrostati
 stress on the boundary, for algorithms based on the 
lassi
equation (20) with z� = 0, the modi�ed formulation (27), and the modi�ed equation (39). The
orre
t value, qref = 71:79088302407723 was 
omputed using quadruple pre
ision arithmeti
.
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Figure 3: Example 2. Convergen
e of the referen
e quantity qref of (40) for algorithms based onthe 
lassi
 equation (20) with z� pla
ed at the 
enter of gravity, the modi�ed formulation (27),and the modi�ed equation (39). The 
orre
t value, qref = 73:451300874308?? was 
omputedusing quadruple pre
ision arithmeti
.The algorithm for the modi�ed formulation (27) gives results whi
h are almost identi
alto those of (20) with the optimal 
hoi
e z� = 0. See Figure 1. The algorithm for the modi�edformulation requires also about 2000 dis
retization points for a relative error in result qrefof about 10�12. Solving the system of linear equations takes 24 GMRES iterations, whi
his one iteration less than for (20) with the optimal 
hoi
e z� = 0. See Figure 2.The algorithm for the modi�ed equation (39) has, by far, the best stability properties inthis example. Like the previous formulations it gives a relative error in qref of about 10�12for 2000 dis
retization points, but as the resolution is in
reased the relative error in qrefde
reases further and stabilizes on about 2 � 10�15. Equation (39) also gives the best resultsfor underresolved 
al
ulations. See Figure 1.Example 2: An irregular star�sh. The star�sh of (41) has an obvious symmetrypoint z = 0 whi
h, as we have seen, is the optimal 
hoi
e for the arbitrary point z�. Toinvestigate the properties of the three algorithms under more general 
onditions we perturbthe geometry in the previous example so that all arms of the star�sh have di�erent shapesz(t) = (1 + 0:1 sin t+ 0:36 
os 9t)eit ; 0 � t < 2� : (43)The load is 
hanged to g(z) = z2 � izSQ1z22A ; (44)so that the solvability 
onditions (15) and (32) still are satis�ed.The 
onvergen
e properties for the three algorithms in this example turn out to besimilar to those in Example 1. See Figure 3. The main di�eren
e is that GMRES now9



requires 105 iterations for full 
onvergen
e instead of the 25 iterations in Example 1. Anin
rease in the number of iterations 
ould be expe
ted sin
e the irregular star�sh of (43)
onstitutes a more diÆ
ult geometry than the symmetri
 star�sh of (41).The modi�ed equation (39) still gives the most stable 
onvergen
e and still performsbest for underresolved 
al
ulations. The algorithm for the the 
lassi
 equation (20), withreasonable pla
ements of the arbitrary point z�, still gives results whi
h are similar to,or only slightly worse than, those of the modi�ed formulation (27). See Figure 3. Onedi�eren
e is worth pointing out: The number of GMRES iterations needed for 
onvergen
ewith the 
lassi
 equation (20), and for fully resolved 
al
ulations, is less sensitive to thepla
ement of z� in Example 2 than in Example 1. There seems to be no interior point thatis obviously optimal.7 Con
lusions and outlookWe 
on
lude that an algorithm based on the modi�ed formulation (27) has shown to beequally or more eÆ
ient for interior stress problems than an algorithm based on the 
lassi
Sherman-Lauri
ella equation (20). The 
hief advantage with (27) over (20) is that (27)omits the need for the arbitrary point z�. A non-optimal 
hoi
e for z� 
an in 
ertainsituations greatly deteriorate the performan
e of iterative algorithms based on the 
lassi
equation (20). In addition, removal of the arbitrary point z� is an advantage from a 
odingviewpoint.We, further, 
on
lude that an algorithm based on the modi�ed Muskhelishvili equa-tion (39) shows superior stability properties 
ompared to both the 
lassi
 (20) and themodi�ed (27) Sherman-Lauri
ella equations and that (39) is best for underresolved 
al
ula-tions. This is so, sin
e in (39) we solve for the stress potential � on � dire
tly, while in (27)we solve for the density !. The density ! is related to � on � via a transform 
ontainingdi�erentiation. Di�erentiation is in itself an ill-
onditioned operation.In a forth
oming paper we intend to apply (39) to the problem of 
omputing so 
allednot
h intensity fa
tors of loaded re
tangular spe
imens.A
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