Recommendation to include methyldibromo glutaronitrile in the European standard patch test series.

Bruze, Magnus; Goossens, An; Gruvberger, Birgitta

Published in:
Contact Dermatitis

Published: 2005-01-01

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Recommendation to include methyldibromo glutaronitrile in the European standard patch test series

Magnus Bruze1, An Goossens2 and Birgitta Gruuberger1 on behalf of the ESCD and EECDRG

1Department of Occupational and Environmental Dermatology, University Hospital, Malmö, Sweden, and
2Department of Dermatology, University Hospital K. U. Leuven, Belgium

The preservative methyldibromo glutaronitrile (MDBGN) is used non-occupationally and occupationally. High contact allergy rates have been reported when tested in consecutive dermatitis patients as well as clinical cases with allergic contact dermatitis. Up till now there has been no agreement on which patch test preparation to use to trace contact allergy to MDBGN. From the year 2005 on, MDBGN at 0.5% w/w in petrolatum is recommended for the European standard patch test series. The choice of 0.5% is based on consideration of rates of contact allergy, doubtful and irritant reactions, as well as on information on clinical relevance represented by results of a repeated open application test, and patch test concentrations to diagnose allergic contact dermatitis from MDBGN in individual cases.

Key words: 1,2-dibromo-2,4-dicyanobutane; allergic contact dermatitis; CAS 35691-65-7; clinical relevance; contact allergy; Euxyl K400; methyldibromo glutaronitrile; preservative; Tektamer 38.

Accepted for publication 22 October 2004

A contact sensitizer should fulfil certain requirements to justify inclusion in a standard patch test series (1). Its exposure should not be confined to small groups or special occupations, and the contact allergy rate in routinely tested dermatitis patients should equal or exceed approximately 1% (1). Furthermore, the contact allergy should be clinically relevant in a substantial number of those with demonstrated contact allergy. Thus, thimerosal and gold are currently not candidates for the standard series, although being sensitizers with high contact allergy rates. On the other hand, the preservative methyldibromo glutaronitrile (MDBGN) is used non-occupationally and occupationally and high allergy rates have been reported, as well as clinical cases with allergic contact dermatitis.

However, there has been no agreement on which patch test preparation to use to trace contact allergy to MDBGN. In Table 1, 22 patch test preparations (2–35) to be used to trace contact allergy to and allergic contact dermatitis from MDBGN are listed. Recent studies within the European and Environmental Contact Dermatitis Research Group (EECDRG) and elsewhere have contributed results that have helped determine which test preparation to use. From the year 2005 on, MDBGN at 0.5% w/w in petrolatum (pet.) is therefore on behalf of the European Contact Dermatitis Society (ESCD) and the EECDRG recommended for the European standard patch test series (Table 2). The reasons for choosing this preparation follow.

For practical and stability reasons, pet. is often the preferable patch test vehicle for most sensitizers. Stability studies have shown that MDBGN in pet. at concentrations in the range 0.1–1.0% w/w is stable over a period of 12 months (36). Furthermore, chemical analysis at the Department of Occupational and Environmental Dermatology in Malmö (unpublished observation) has demonstrated that soya lecithin, recommended for addition to pet. (33), does not require addition to increase an even distribution of MDBGN.

The choice of 0.5% is based on consideration of rates of contact allergy, doubtful and irritant reactions, as well as on information on clinical relevance represented by results of a repeated
open application test (ROAT), and patch test concentrations required to diagnose allergic contact dermatitis from MDBGN in individual cases (37–39). Besides the concentration, the elicitation of a patch test reaction in a given individual depends upon the dose, the patch test technique and the occlusion time (1). The dose is determined by the concentration and the volume/amount of the test preparation applied. Thus, when the same amount/volume of a test preparation is applied with the same test technique, it is appropriate to use concentration as a parameter for the dose. However, with pet. as the vehicle, it is impossible to repeatedly apply an exact volume/amount. An experienced and trained person can, however, keep variation within a limited range (40). For the 2 EECDRG studies on MDBGN (37, 39), the same occlusion time was used and the 2 patch test techniques gave equivalent results. Furthermore, at the participating clinics a major interest is focused on contact allergy, and patch testing is performed by experienced and trained personnel.

With a patch test concentration of 0.1% w/w, and virtually also for 0.3% w/w, no irritant reactions were obtained (37). Above 0.3%, the frequencies of irritant reactions were obtained at 0.9 and 1.5% for patch test concentrations at 0.5 and 1.0%, respectively. However, in a way, reactions with a clearly irritant morphology do not constitute a problem as they need not be confused with and misinterpreted as allergic reactions (1). There might, though, be a problem with these reactions if they hid a simultaneous allergy or if the irritant reaction facilitated sensitization. However, so far, patch test sensitization to MDBGN has not been reported.

On the other hand, doubtful reactions constitute a different problem as they can represent either weak allergic or irritant reactions and should hence not be routinely registered as irritant reactions. Doubtful reactions will appear for any MDBGN patch test concentration but, at least from 0.1% and higher, not only the absolute percentages will increase but also the relative percentages, i.e. the higher the patch test concentration the larger proportion of all test reactions will be doubtful reactions. Individually, this means that a doubtful reaction to a low test concentration, e.g. 0.1 and 0.3%, more likely represents an allergic and clinically relevant reaction than a doubtful reaction to a higher concentration, e.g. 0.5 and 1.0% (37, 38). Therefore, in the case that there is a doubtful reaction, re-testing with the same test preparation and preferably, if possible, with MDBGN at a higher test concentration is recommended. For some sensitizers, intracutaneous testing and/or in vitro methods may help establish contact allergy. However, currently, neither intracutaneous testing nor any in vitro methods that can be used for establishing of contact allergy to MDBGN have been reported.

In individuals with doubtful patch test reactions to MDBGN, a use test with a leave-on product preserved with MDBGN at a high but realistic concentration could also be performed, although a positive use test rather gives information on the clinical relevance rather than on the nature of the test reactivity. In individual cases, a patch test concentration of 0.5% has been required to enable a diagnosis of allergic contact dermatitis from MDBGN in leave-on products (39). Furthermore, a randomized and controlled ROAT with MDBGN at 0.03% w/w in a moisturizer applied 2x daily for 2 weeks elicited a statistically significant positive response in MDBGN-hypersensitive persons testing positively to 0.5% and lower on patch testing (38). Therefore, convincing reasons favour a patch test concentration for MDBGN of 0.5% in order not to miss clinically relevant allergy.

Considering the facts that MDBGN has been allowed at 0.1% in leave-on products and still

Table 1. Test preparations used to diagnose allergic contact dermatitis and trace contact allergy to methyldibromo glutaronitrile (MDBGN)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Vehicle</th>
<th>Concentration (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektamer 38®</td>
<td>Petrolatum (pet.)</td>
<td>0.1</td>
<td>(2)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>2.5</td>
<td>(3–5)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>1</td>
<td>(3, 6, 7–10)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>1–0.5</td>
<td>(11)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>0.5</td>
<td>(6, 12–18)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>0.2</td>
<td>(16)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Pet.</td>
<td>0.1</td>
<td>(19, 20)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Propylene glycol</td>
<td>2</td>
<td>(21)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Propylene glycol</td>
<td>0.15</td>
<td>(21)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Ethanol</td>
<td>2.5</td>
<td>(5)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Water</td>
<td>1</td>
<td>(22, 23)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Water</td>
<td>0.5</td>
<td>(4)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Water/ethanol</td>
<td>0.2</td>
<td>(24)</td>
</tr>
<tr>
<td>Euxyl K400</td>
<td>Water/propylene glycol</td>
<td>1.5</td>
<td>(4)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.5</td>
<td>(4, 25)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.3</td>
<td>(9, 12, 25, 26, 34, 35)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.3–0.1</td>
<td>(11)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.1</td>
<td>(15, 16, 22, 25, 27–30)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.05</td>
<td>(31, 32)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet.</td>
<td>0.04</td>
<td>(16)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Pet./soya lecithin</td>
<td>0.3</td>
<td>(33)</td>
</tr>
<tr>
<td>MDBGN</td>
<td>Water</td>
<td>0.1</td>
<td>(10)</td>
</tr>
</tbody>
</table>
Table 2. The European standard series with the addition of methyldibromo glutaronitrile

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration % (w/w) in petrolatum*</th>
<th>Concentration in mg/cm² in hydrophilic dried-in vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium dichromate</td>
<td>0.5</td>
<td>0.023</td>
</tr>
<tr>
<td>4-Phenylenediamine base</td>
<td>1.0</td>
<td>0.090</td>
</tr>
<tr>
<td>Thiuram mix</td>
<td>1.0</td>
<td>0.025§</td>
</tr>
<tr>
<td>Tetramethylthiuram monosulfide (TMTM)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Tetramethylthiuram disulfide (TMTD)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Tetraethylthiuram disulfide (TETD)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Dipentamethylenethiuram disulfide (PTD)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Neomycin sulfate</td>
<td>20.0</td>
<td>0.23</td>
</tr>
<tr>
<td>Cobalt chloride</td>
<td>1.0</td>
<td>0.020</td>
</tr>
<tr>
<td>Benzocaine</td>
<td>5.0</td>
<td>0.63†</td>
</tr>
<tr>
<td>Nickel sulfate</td>
<td>5.0</td>
<td>0.20</td>
</tr>
<tr>
<td>Clioquinol (Chinoform and Vioform)</td>
<td>5.0</td>
<td>0.19**</td>
</tr>
<tr>
<td>Colophonium</td>
<td>20.0</td>
<td>0.85</td>
</tr>
<tr>
<td>Parabens</td>
<td>16.0</td>
<td>1.00‡‡</td>
</tr>
<tr>
<td>Methyl-4-hydroxybenzoate</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Ethyl-4-hydroxybenzoate</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Propyl-4-hydroxybenzoate</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Butyl-4-hydroxybenzoate</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>N-Isopropyl-N-phenyl-4-phenylenediamine</td>
<td>0.1</td>
<td>0.075††</td>
</tr>
<tr>
<td>Lanolin alcohol</td>
<td>30.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Mercapto mix</td>
<td>2.0</td>
<td>0.075§§</td>
</tr>
<tr>
<td>N-Cyclohexylbenzothiazyl sulfenamide</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Mercaptobenzothiazole</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Dibenzothiazyl disulfide</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Morpholinylmercaptobenzothiazole</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Epoxy resin</td>
<td>1.0</td>
<td>0.050</td>
</tr>
<tr>
<td>Myroxylon pereirae resin</td>
<td>25.0</td>
<td>0.80</td>
</tr>
<tr>
<td>4-tert-Butylphenol formaldehyde resin</td>
<td>1.0</td>
<td>0.040</td>
</tr>
<tr>
<td>Mercaptobenzothiazole (MBT)</td>
<td>2.0</td>
<td>0.075</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1.0††</td>
<td>0.18</td>
</tr>
<tr>
<td>Fragrance mix</td>
<td>8.0††</td>
<td>0.43¶¶</td>
</tr>
<tr>
<td>Cinnamic alcohol</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cinnamic aldehyde</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Hydroxycitronellal</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>α-Amylcinnamic aldehyde</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Geraniol</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Eugenol</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Isoeugenol</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Oakmoss absolute</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sesquiterpene lactone mix</td>
<td>0.1</td>
<td>NA</td>
</tr>
<tr>
<td>Alantolactone</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>Dehydrocostus lactone + Costunolide</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>Quaternium-15 (Dowicil 200)</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Primin</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td>CI + Me-isothiazolinone (Kathon CG, 100 p.p.m.)</td>
<td>0.01††</td>
<td>0.004</td>
</tr>
<tr>
<td>Budesonide</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td>Tixocortol pivalate</td>
<td>0.1</td>
<td>NA</td>
</tr>
<tr>
<td>Methyldibromo glutaronitrile</td>
<td>0.5</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA, not available.

*Concentration is not given in mg/cm² as different patch test systems (different size chambers, different volumes, etc.) may be used.
†In water.
‡Equal parts of TMTM, TMTD, TETD and PTD.
§Emulsifier: Sorbitan sesquioleate 5%.
**Clioquinol, chlorquininaldol (1:1).
††Methyl-4-hydroxybenzoate, ethyl-4-hydroxybenzoate, propyl-4-hydroxybenzoate, butyl-4-hydroxybenzoate, benzyl-4-hydroxybenzoate (1:1:1:1:1).
†‡N-Isopropyl-N-phenyl-4-phenylenediamine, N-cyclohexyl-N-phenyl-phenylenediamine, N,N-diphenyl-4-phenylenediamine (2:5:5).
§§N-Cyclohexylbenzothiazyl sulfenamide, dibenzothiazyl disulfide, morpholinylmercaptobenzothiazole (1:1:1).
may be used at this concentration (0.025% in sunscreen products), the enhanced significance of the use of leave-on products over longer periods than 2 weeks (41, 42) and, possibly on damaged skin, make it highly likely that the patch testing with MDBGN at 0.5% will still miss some clinically relevant contact allergy to MDBGN. Therefore, in the case that there is a strong suspicion of contact allergy to MDBGN and the patient tests negatively or with a doubtful reaction to 0.5%, patch testing with MDBGN at the same and at a higher concentration, e.g. 1.0%, is recommended. Again, in this situation a use test may help determine the clinical relevance.

Results
With regard to previously used patch test concentrations to trace contact allergy to and allergic contact dermatitis from MDBGN, the recommended concentration of 0.5% may seem high. However, in comparison with patch test concentrations of other preservatives included in the European standard test series (Table 3), 0.5% is not a high test concentration. The recommended MDBGN test concentration is 5× higher than the previous highest allowed MDBGN concentration in leave-on products. For the other preservatives, the corresponding ratio between patch test concentration and highest allowed concentration in leave-on products varies between 5 and 20 (Table 3).

Discussion
The authors are concerned about the high number of reactions to MDBGN at 0.5%. These reactions might even be read as positive and the patient be instructed to avoid any products containing MDBGN. In some patients, this may not be necessary. However, based on the data obtained by the studies, the authors conclude that the risk of missing clinically relevant cases of sensitization by testing only with MDBGN at 0.3% is unacceptably high. MDBGN seems to be a very special sensitizer where the eliciting concentration for a clinically relevant allergic reaction shows definite overlap with irritancy. Further quantitative studies on proven cases of allergic contact dermatitis caused by MDBGN are needed to determine the optimal patch test concentration.

Conclusion
In conclusion, MDBGN in pet. at 0.5% w/w is recommended for inclusion in the European standard patch test series. As for other standard test preparations, this MDBGN preparation should be subjected to constant considerations with regard to modifications needed and justified by new information, such as changes in rates of contact allergy, allergic contact dermatitis and adverse reactions, particularly patch test sensitization.

References

Address:
Magnus Bruze
Department of Occupational and Environmental Dermatology
University Hospital
S-20502 Malmö
Sweden
Tel: +46 40 336516
Fax: +46 40 336213
e-mail: magnus.bruze@derm.mas.lu.se