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Calculation and manipulation of the chirp rates of high-order harmonics
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Department of Physics, Lund Institute of Technology, P. O. Box 118, S-22100 Lund, Sweden
(Received 17 September 2004; published 14 January)2005

We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser
pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse
duration. By using a time-frequency representation of the harmonic fields we can identify several different
linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the
time-dependent Schrodinger equation, are in good agreement with the adiabatic predictions of the strong field
approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mawttakon
[Phys. Rev. A70, 021801R) (2004 ], we also manipulate the chirp rates of the harmonics by adding a chirp
to the driving pulse. We show that the chirp rate for harmapig given by the sum of the intrinsic chirp rate,
which is determined by the new duration and peak intensity of the chirped driving pulse} tamés the
external chirp rate.

DOI: 10.1103/PhysRevA.71.013410 PACS nuniber32.80.Rm, 42.65.Ky

I. INTRODUCTION phase of the emitted light are determined by the electron’s

High-order harmonics, which can be generated in the inkinetic energy and its _time of re_turn, respectively. _The ti_me-
teraction between an intense ultrashort pulse and a gas §fpendent phasg(t) is proportional to the laser intensity
atoms[1], represent a unique and versatile source of extremé(t), ¢q(t)=-agl(t), where the phase coefficient, is char-
ultraviolet (xuv) radiation. Applications of the harmonic ra- acteristic of the space-time quantum patthe electron has
diation range from xuv pump-probe spectrosc¢pys] and  followed [18]. The temporal variation discussed above refers
interferometry[4] to the generation of attosecond pulses,to the slow variation of the pulse envelope. In this adiabatic
both in the form of isolated attosecond burdi$ and in the  limit, the time-dependent frequenay,(t)=—-d¢,(t)/dt is de-
form of trains of attosecond puls¢6—9]. A characteristic termined by the cycle to cycle variation of the intensity en-
feature of the harmonic pulses is that they are generated withelope. The time-dependent frequency is approximately lin-
a time-varying phase and therefore exhibit a time-dependemar close to the peak of the laser pulse, and is often
frequency[10,11]. characterized by its linear chirp rapd®:

Much effort has been put into the manipulation and char-
acterization of this time-dependent frequendp-13. Its
manipulation is important for the use of the harmonic radia-
tion as an xuv source since, in addition to its effect on the
spectrum of the individual harmonic, the time-dependent freHerelpeacand 7 are the peak intensity and the full width at
guency and its variation with harmonic order strongly influ- half maximum(FWHM) duration, respectively, of the driv-
ence the time structure of the attosecond pulse trains gendfd pulse. The proportionality constant depends on the pulse
ated by superposing a number of harmon[dsl]. The shapd19]. In the adiabatic picture, the chirp rate thus scales
characterization of the time-dependent frequency is also dinearly with the pulse peak intensity, and quadratically with
fundamental interest, since the time dependence of the hate inverse of the pulse duration. The variation of the chirp
monic phase to a large part is intrinsic to the generatiofate from harmonic to harmonic originates in the variation of
process, originating in the electron dynamics of each atonih€ return time, and therehy,, with order[7,8,14.
driven by the strong field15]. The time-dependent fre- In this paper we theoretically explore the time-frequency
guency therefore yields important information about the har{TF) behavior of high-order harmonics, generated in argon
monic generation process itself. Experimentally, other factorby 810 nm laser pulses with durations ranging fronT1®
such as ionization-induced blueshifting and phase matching6T,, whereT, is the laser period. Using a time-frequency
also affect the chirp ratelsl2], but these can be kept to a analysis, we can resolve more than one linear chirp contri-
minimum by keeping the peak intensity below saturationbution for the harmonics in the plateau. We calculate the
[13]. linear chirp rate as a function of the harmonic order and find

The time-dependent frequencies of the harmonics andesults that are in good agreement with the predictions based
their variation with harmonic order can be understood in theon the strong field approximatio(6FA) [15,18 and with
framework of the semiclassical model of harmonic generarecent measuremend3]. In agreement with previous re-
tion [16,17], in which an electron is released into the con-sults[20], we find that the most important contributions to
tinuum via tunnel ionization, accelerated by the laser fieldthe plateau harmonics come from the figshortest and the
and on returning to the ion core and recombining can transfethird and longer quantum paths. Finally, as was found experi-
its kinetic energy to radiation. In this model, the energy andmentally in[13], we show that the harmonic chirp rdigcan

bP o = el peal - (1)

1050-2947/2005/71)/01341@5)/$23.00 013410-1 ©2005 The American Physical Society



MURAKAMI et al. PHYSICAL REVIEW A 71, 013410(2005

be manipulated by adding a linear chirp with rdteto the Harmonic order

driving laser pulse according to 33 31
- di
bq_ qbl+ bqlpl (2)
when one takes into account the change in the driving pulse
27 25
23 21 19

duration and peak intensity caused by its chirping.
The paper is outlined as follows. In Sec. Il we discuss our

20 0 20 20 0 20 20 0 20

Time (fs)

~

theoretical methods. Sections Ill and IV present the TF re-
sults and the chirp manipulation results, respectively. Section
V summarizes our conclusions.

Il. THEORETICAL METHOD

Frequency (eV)

We solve the time-dependent Schrédinger equation
(TDSE) by numerical integration within the single-active-
electron approximation. We follow exactly the same proce-
dure as outlined in detail ifL7,21,22: the initial state of the
atom (the ground stajeis found as the solution to the field-
free time-independent Schroédinger equation, and the time- -1
dependent one-electron wave function is then calculated by
direct numerical integration of the TDSE in the combined
atomic and laser potentials. The atom is described by a
pseudopotential, the construction of which is based on gig. 1. (Color onling The time-frequency representation of
Hartree-Slater calculations and is discussed in detail ifyine consecutive harmonics in argon, driven by a laser pulse with a
[23-25. We use a Gaussian pulse shape with a FWHM dupeak intensity of 210" W/cn?, and a pulse duration of 9,
ration of r and integrate fromi=-2.5r to t=2.5r, evaluating  starting with the harmonic closest to the cutoff energy and moving
the time-dependent acceleration foatt) of the dipole mo-  downward in photon energy. The probe pulse duration used in Eq.
ment in each time step. The dipole spectrdéw) is propor-  (3) is 5T;. The TFR is shown in false colors/gray scale. The scale is
tional to the Fourier transform (t). We find the time pro- different from harmonic to harmonic due to the large difference in
file E4(t) of harmonicg by multiplying d(w) with a window strength between the plateau and cutoff harmonics.
function centered around tlggh harmonic and inverse Fou-
rier transforming to the time domain. The results presentedrum of the harmonic field changes during the pulsee|ft)
below have been obtained with a square window of widthcan be characterized by a linear chirp, for instance, then
2wy, Wherew, is the driving frequency, but they do not de- Si(t, ) is distributed along a straight line in thew plane
pend on the shape of the window function. whose slope yields the chirp rate when corrected for the fi-

We are interested in the TF behavior dEq(t) nite duration of the probe pulgdl]. In caseE(t) has mul-
=|Eq(t)|exdidq(t)]+c.c., whered(t) is now the full time- tiple spectral contributions with different chirp rates, its TFR
dependent phase of tlggh harmonic electric field. The har-  will split up into several linear structures, from which we can
monics in the cutoff region exhibit a simple TF behavior find the chirp rates one by one. The spectrogram can there-
which can be characterized by the linear chirp taj®f the  fore in many cases resolve the different TF behaviors due to
time-dependent frequency,(t)=-d®(t)/dt. We find the the different quantum path contributiofis9]. We note that
chirp rate by fitting a straight line ta(t) over approxi- our choice of TFR is very close to the experimental approach
mately the FWHM duration of the harmonic pul@nce the for the TF characterization of harmonics through the genera-
harmonic pulses are far from Gaussian in shape, the duratidion of sidebands, discussed in detaill &8].
over which the frequency is fitted varies somewhat from har-
monic to harmonig The harmonics in the plateau region
have contributions from several quantum paths each with lll. LINEAR CHIRP RATES OF PLATEAU
their own TF characteristics. We therefore need to simulta- AND CUTOFF HARMONICS
neously represent the temporal and spectral characteristics of
these harmonics. We choose the following TF representatioari

-

o

The results in this section have been obtained in argon
ven by 810 nm laser pulses with a FWHM duration of

(TFR): 20T, (54 f9) and a peak intensity of 2 10'* W/cn?. The
- 2 cutoff energy predicted for this system isa36(55 eV) [26].
Syt @) = Udt eUEY()ER(M -1)| (3 To calculate the TFR, we have used a probe pulse with a
FWHM duration of 5.
where the probe puldgr(t’ —t) has a center frequency af In Fig. 1, we plot the TFR of nine consecutive harmonics

and a duration shorter than that Bf(t). When the delay spanning part of the plateau and the cutoff region to make
between the probe and the harmonic pulses is varied, thine following observations. The TFR of the harmonics be-
spectrogramSy(t, w) traces how the “instantaneous” spec- yond the cutoff is distributed along one direction only, indi-
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AL cycle which yield the next largest contributip®0]. For the
o8-8 LIPS 1 harmonics in the lower plateau region, the contributions from
[ e, ] the second and the third quantum paths are not distinguish-
L e ] able with our resolutiotisee als§20]). In an experiment it is
: L) ] possible to spatially separate the contribution from the short-
~ | 28 : 2-] est trajectory from other contributions since its spatial diver-
§ 2ol - gence is smaller by approximately an order of magnitude
R | ] [8,27]. In addition, as also seen in Fig. 1, the spectral distri-
Q ol ® .0 1 bution of the contributions from the longer trajectories is
& ] very wide, often making their experimental observation dif-
N ficult.
S sl ° ]
N (o] ]
o0k o ] IV. MANIPULATION OF THE CHIRP RATES
[ © o ] Next, we manipulate the harmonic chirps by adding a
P 5 ] chirp by to the driving pulse. In the adiabatic limit, we then
I ] expect the harmonics to exhibit a chirp given by the sum of

B — the intrinsic chirp and times the fundamental chirp. Recent
T experimental and theoretical resulis3] have supported this
Harmonic Order . . . . L .
expectation. In Fig. 3 we detail our theoretical findings in
FIG. 2. (Color online Chirp rates of the high harmonic fields in [13]. We concentrate on the harmonics in the cutoff region
argon, obtained from the strongest component of TRRed  for which we can directly find the linear chirp rates from the
circles, or by direct differentiatioritriangles. The SFA predictions time-dependent phase, as described above.
for the chirp rates originating in the first two quantum paths are The chirp is added as it would be in an experiment, by
shown with dotted curves. As illustrated in Fig. 1, an additionalstretching the driving pulse to be positively or negatively
contribution to the TFR of harmonics is visible in the upper plateauchirped, in a way that preserves the pulse energy. This means
region, from which we have found another set of chirp rates, shownhat the peak intensity of the chirped pulse decreases as
with open circles. These chirp rates originate in the phase behavior
of the third quantum path; s¢&0]. )
le=lo— 4)
cating that these fields have a unique chirp rate. This chirp Te
rate is independent of order. For the harmonics in the plawhen the pulse is stretched from its original duratigrio a
teau, there are two significant directions for the TFR todurationr.. We use a duration of the unchirped driving pulse
spread, one associated with a small negative chirp, and thef 7,=13T, (35 f9). In Fig. 3a) the driving pulse has been
other with a much larger negative chirp. The slopes of bottpositively chirped to a FWHM duration of,=36T;. This
of these contributions clearly vary from harmonic to har-leads to a linear chirp rate df;=+0.50 meV/fs and a re-
monic. We have determined these chirp rates separately arfliced peak intensity of,=0.72x 10 W/cn?. The linear
plot them in Fig. 2. chirp rate of the odd harmonics 19 through @fe cutoff
The closed circles in Fig. 2 show the chirp rates versus thenergy is 19.m,) found from the time-dependent phase is
harmonic energy, found from the primary contributions toshown with filled circles. The adiabatic prediction for the
the TFR. To calculate them, we find the frequensyat  chirp rate of the cutoff harmonics as given by E(®. and
which Sy(t, w) takes its maximum value for eathand then (1), using =, and |, is shown with open circles. The filled
perform a linear fit to this set of points(t). For harmonics triangles showgb,. The harmonics in Fig. (8) have been
beyond the cutoff, we also plot the rates found by directcalculated with a negatively chirped pulse with rddg=
differentiation of the time-dependent phaseEft) (shown -0.68 meV/fs, a stretched pulse duration ¥ 23T,, and
with triangles. These are in excellent agreement with thereduced peak intensity,=1.13x 10** W/cn? (with a cutoff
rates extracted from the TFR. The open circles in Fig. 2 havenergy of 24.8,). In both calculations, the adiabatic predic-
been found from the secondary linear structures in the TFRion is in very good agreemefiio within 1099 with the full
We interpret our results within the framework of the semi-calculation. In an experiment, one would also expect the
classical mode[14,15,18. The TFR resolves the different measured chirp rates to be influenced by ionization and
guantum path contributions to the time-dependent frequencphase matching although these can be minimized by the
and gives an intuitive measure of the electron dynamics athoice of parametend 3].
the single-atom level. Quantitatively, the chirp rates are in It is worth noting that when the driving pulse is chirped in
good agreement with predictions of the Sffotted curves  this way, which is experimentally the most straightforward
for the two shortest quantum paths. In agreement with resultgpproach, the change in the harmonic chirp rate is twofold.
of our earlier work, and in contrast to the predictions of theln addition to the externally added chirp, the rate of the in-
SFA, we also find thafi) the shortest quantum path is domi- trinsic chirp of the cutoff harmonics decreases with the third
nant for most of the harmonics in argon, afig it is in power of the pulse duratiofsee Eqs(1) and(4)]. In addi-
general the trajectories with return times longer than one ition, the cutoff energy is lowered due to the smaller peak
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s b ] FIG. 4. (Color onling (a) and (c): The TFRs of the 35th and
[ ( ) ] 27th harmonic, respectively, driven by an unchirped pulse as in Fig.
20 [ ] 1 (peak intensity 10 W/cm? and pulse duration 2Q). In (b)

[ and (d) we show the 35th and 27th harmonics, respectively, gener-
ated by chirped pulses with the same peak intensity and pulse du-

25 L ] ration, with positive chirp rateb;=0.77 andb;=0.31 meV/fs.

i ] means that we add bandwidth to the driving pulse. Experi-
80 - ] mentally, this could be achieved by positive stretching of a

: ] shorter pulsg12.6T,) to the 20r; duration used here. The
3L i resulting TF behavior, which is now flat, is shown ().

L L L L Since the intrinsic chirp of the harmonic has been compen-
22 24 % 2 80 82 sated, the bandwidth of the harmonic is smaller thaan
Harmonic Order even though the bandwidth of the driving pulse is lafdeé).

FIG. 3. (Color onling The chirp rates of cutoff harmonics con- The plat_eau har_monlcs have Severf'il Cont_rlbutlons_ with
trolled by a driving pulse which has been chirped by stretchingd'ﬁere,m chirps, which means that adding a smgle chirp to
from an initial duration of 13, (see also text In (a) the driving  the driving pulse does not compensate the entire TF depen-
pulse is positively chirped with a rate df,=0.50 meV/fs to a dence. Here we manipulate the chirp of the strongest contri-
duration of 3@,. This reduces the peak intensity to 0.72 bution to the plateau harmonics, from the short quantum
X 1014 W/cn?. The driving pulse infb) has a negative linear chirp Path. The TFR of the 27th harmonic calculated as in Fig). 4
rate of b;=-0.68 meV/fs, a pulse duration of 23 and a peak IS shown in 4c). In 4(d) we have added a positive chirp of
intensity of 1.13< 10 W/cn?. Filled circles show the calculated b;=0.31 meV/fs to the driving pulse, again keeping the
chirp rates; open circles show the adiabatic SFA prediction for thesame pulse duration and peak intensity. This essentially
chirp rates. The external chig; is shown with triangles. eliminates the chirp of the dominant contribution, but does

little (relatively) to the larger chirp.
intensity. Controlling the chirp of particular harmonics is  While eliminating the chirp of the 27th harmonic for part
thus a balance between several factors. in Fig. 4(d), the manipulation also affects its neighboring

In Fig. 4 we use this manipulation to eliminate the chirp harmonics. In Fig. 5 we show the chirp rates of harmonics 23
of a cutoff and a plateau harmonic. (@) we show the TFR through 31 generated by the chirped driving pulse of Fig.
of the 35th harmonic calculated with the same parameters a&d). The chirps of all the harmonics have been significantly
in Fig. 1, a pulse duration of 2Q and a peak intensity of reduced, except for the 31st harmonic. This can be under-
2 X 10" W/cn. Its linear chirp rate is —27 meV/{see Fig.  stood by looking at the order dependence of the chirp rate for
2). To compensate its chirp, we simply add a positive lineathese harmonics shown in Fig. 2. The chirp rate due to the
chirp with rate b;=by5/35=0.77 meV/fs to the driving first quantum path increases almost linearly in magnitude
pulse, keeping the same intensity and pulse duration. Thisetween harmonics 23 and 29. This is nearly compensated by

23 25
0.5
0
-0.5
20 0 20 -20 0 20 -20

Chirp Rate [meV/fs]

27 29 31

FIG. 5. (Color online The
TFRs of the odd harmonics 23
through 31, generated by the posi-
tively chirped driving pulse in Fig.
4(d). This chirp rate compensates
the intrinsic chirp of the 27th
harmonic.

Frequency (eV)

0 20 20 0 20 20 0 20
Time (fs)
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the increase in the external chirp rate with or@igx b;). The  rates and showed that, at least in the adiabatic regime as in
31st harmonic has both a larger intrinsic chirp rate from thehis study, the harmonic chirp rates are the sum of their in-
first quantum path and a larger contribution from the longettrinsic and external chirp rates. When the driving pulse is
guantum pathgsee Fig. 1L The manipulated 31st harmonic chirped by stretching, the increase in the pulse duration rap-
shown in Fig. 5 certainly exhibits two different TF behaviors. idly decreases the intrinsic chirp. Controlling the chirp of
any particular harmonic is thus a balance between pulse du-

ration, intensity, and external chirp rate.
V. SUMMARY
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