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Calculation and manipulation of the chirp rates of high-order harmonics
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We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser
pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse
duration. By using a time-frequency representation of the harmonic fields we can identify several different
linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the
time-dependent Schrödinger equation, are in good agreement with the adiabatic predictions of the strong field
approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritssonet al.
fPhys. Rev. A70, 021801sRd s2004dg, we also manipulate the chirp rates of the harmonics by adding a chirp
to the driving pulse. We show that the chirp rate for harmonicq is given by the sum of the intrinsic chirp rate,
which is determined by the new duration and peak intensity of the chirped driving pulse, andq times the
external chirp rate.

DOI: 10.1103/PhysRevA.71.013410 PACS numberssd: 32.80.Rm, 42.65.Ky

I. INTRODUCTION

High-order harmonics, which can be generated in the in-
teraction between an intense ultrashort pulse and a gas of
atomsf1g, represent a unique and versatile source of extreme
ultraviolet sxuvd radiation. Applications of the harmonic ra-
diation range from xuv pump-probe spectroscopyf2,3g and
interferometry f4g to the generation of attosecond pulses,
both in the form of isolated attosecond burstsf5g and in the
form of trains of attosecond pulsesf6–9g. A characteristic
feature of the harmonic pulses is that they are generated with
a time-varying phase and therefore exhibit a time-dependent
frequencyf10,11g.

Much effort has been put into the manipulation and char-
acterization of this time-dependent frequencyf10–13g. Its
manipulation is important for the use of the harmonic radia-
tion as an xuv source since, in addition to its effect on the
spectrum of the individual harmonic, the time-dependent fre-
quency and its variation with harmonic order strongly influ-
ence the time structure of the attosecond pulse trains gener-
ated by superposing a number of harmonicsf14g. The
characterization of the time-dependent frequency is also of
fundamental interest, since the time dependence of the har-
monic phase to a large part is intrinsic to the generation
process, originating in the electron dynamics of each atom
driven by the strong fieldf15g. The time-dependent fre-
quency therefore yields important information about the har-
monic generation process itself. Experimentally, other factors
such as ionization-induced blueshifting and phase matching
also affect the chirp ratesf12g, but these can be kept to a
minimum by keeping the peak intensity below saturation
f13g.

The time-dependent frequencies of the harmonics and
their variation with harmonic order can be understood in the
framework of the semiclassical model of harmonic genera-
tion f16,17g, in which an electron is released into the con-
tinuum via tunnel ionization, accelerated by the laser field,
and on returning to the ion core and recombining can transfer
its kinetic energy to radiation. In this model, the energy and

phase of the emitted light are determined by the electron’s
kinetic energy and its time of return, respectively. The time-
dependent phasefqstd is proportional to the laser intensity
Istd, fqstd=−aq

i Istd, where the phase coefficientaq
i is char-

acteristic of the space-time quantum pathi the electron has
followed f18g. The temporal variation discussed above refers
to theslow variation of the pulse envelope. In this adiabatic
limit, the time-dependent frequencyvqstd=−dfqstd /dt is de-
termined by the cycle to cycle variation of the intensity en-
velope. The time-dependent frequency is approximately lin-
ear close to the peak of the laser pulse, and is often
characterized by its linear chirp ratebq

dip:

bq
dip ~ − aq

i Ipeak/t
2. s1d

Here Ipeak andt are the peak intensity and the full width at
half maximumsFWHMd duration, respectively, of the driv-
ing pulse. The proportionality constant depends on the pulse
shapef19g. In the adiabatic picture, the chirp rate thus scales
linearly with the pulse peak intensity, and quadratically with
the inverse of the pulse duration. The variation of the chirp
rate from harmonic to harmonic originates in the variation of
the return time, and therebyaq

i , with orderf7,8,14g.
In this paper we theoretically explore the time-frequency

sTFd behavior of high-order harmonics, generated in argon
by 810 nm laser pulses with durations ranging from 13T1 to
36T1, whereT1 is the laser period. Using a time-frequency
analysis, we can resolve more than one linear chirp contri-
bution for the harmonics in the plateau. We calculate the
linear chirp rate as a function of the harmonic order and find
results that are in good agreement with the predictions based
on the strong field approximationsSFAd f15,18g and with
recent measurementsf13g. In agreement with previous re-
sults f20g, we find that the most important contributions to
the plateau harmonics come from the firstsshortestd and the
third and longer quantum paths. Finally, as was found experi-
mentally inf13g, we show that the harmonic chirp ratebq can
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be manipulated by adding a linear chirp with rateb1 to the
driving laser pulse according to

bq = qb1 + bq
dip, s2d

when one takes into account the change in the driving pulse
duration and peak intensity caused by its chirping.

The paper is outlined as follows. In Sec. II we discuss our
theoretical methods. Sections III and IV present the TF re-
sults and the chirp manipulation results, respectively. Section
V summarizes our conclusions.

II. THEORETICAL METHOD

We solve the time-dependent Schrödinger equation
sTDSEd by numerical integration within the single-active-
electron approximation. We follow exactly the same proce-
dure as outlined in detail inf17,21,22g: the initial state of the
atom sthe ground stated is found as the solution to the field-
free time-independent Schrödinger equation, and the time-
dependent one-electron wave function is then calculated by
direct numerical integration of the TDSE in the combined
atomic and laser potentials. The atom is described by a
pseudopotential, the construction of which is based on
Hartree-Slater calculations and is discussed in detail in
f23–25g. We use a Gaussian pulse shape with a FWHM du-
ration of t and integrate fromt=−2.5t to t=2.5t, evaluating
the time-dependent acceleration formastd of the dipole mo-
ment in each time step. The dipole spectrumdsvd is propor-
tional to the Fourier transform ofastd. We find the time pro-
file Eqstd of harmonicq by multiplying dsvd with a window
function centered around theqth harmonic and inverse Fou-
rier transforming to the time domain. The results presented
below have been obtained with a square window of width
2v1, wherev1 is the driving frequency, but they do not de-
pend on the shape of the window function.

We are interested in the TF behavior ofEqstd
= uEqstduexpfiFqstdg+c.c., whereFqstd is now the full time-
dependent phase of theqth harmonic electric field. The har-
monics in the cutoff region exhibit a simple TF behavior
which can be characterized by the linear chirp ratebq of the
time-dependent frequencyvqstd=−dFqstd /dt. We find the
chirp rate by fitting a straight line tovqstd over approxi-
mately the FWHM duration of the harmonic pulsessince the
harmonic pulses are far from Gaussian in shape, the duration
over which the frequency is fitted varies somewhat from har-
monic to harmonicd. The harmonics in the plateau region
have contributions from several quantum paths each with
their own TF characteristics. We therefore need to simulta-
neously represent the temporal and spectral characteristics of
these harmonics. We choose the following TF representation
sTFRd:

Sqst,vd = UE dt8eivt8Eqst8dEIRst8 − tdU2

, s3d

where the probe pulseEIRst8− td has a center frequency ofv1

and a duration shorter than that ofEqstd. When the delay
between the probe and the harmonic pulses is varied, the
spectrogramSqst ,vd traces how the “instantaneous” spec-

trum of the harmonic field changes during the pulse. IfEqstd
can be characterized by a linear chirp, for instance, then
Sqst ,vd is distributed along a straight line in thet-v plane
whose slope yields the chirp rate when corrected for the fi-
nite duration of the probe pulsef11g. In caseEqstd has mul-
tiple spectral contributions with different chirp rates, its TFR
will split up into several linear structures, from which we can
find the chirp rates one by one. The spectrogram can there-
fore in many cases resolve the different TF behaviors due to
the different quantum path contributionsf19g. We note that
our choice of TFR is very close to the experimental approach
for the TF characterization of harmonics through the genera-
tion of sidebands, discussed in detail inf13g.

III. LINEAR CHIRP RATES OF PLATEAU
AND CUTOFF HARMONICS

The results in this section have been obtained in argon
driven by 810 nm laser pulses with a FWHM duration of
20T1 s54 fsd and a peak intensity of 231014 W/cm2. The
cutoff energy predicted for this system is 36v1 s55 eVd f26g.
To calculate the TFR, we have used a probe pulse with a
FWHM duration of 5T1.

In Fig. 1, we plot the TFR of nine consecutive harmonics
spanning part of the plateau and the cutoff region to make
the following observations. The TFR of the harmonics be-
yond the cutoff is distributed along one direction only, indi-

FIG. 1. sColor onlined The time-frequency representation of
nine consecutive harmonics in argon, driven by a laser pulse with a
peak intensity of 231014 W/cm2, and a pulse duration of 20T1,
starting with the harmonic closest to the cutoff energy and moving
downward in photon energy. The probe pulse duration used in Eq.
s3d is 5T1. The TFR is shown in false colors/gray scale. The scale is
different from harmonic to harmonic due to the large difference in
strength between the plateau and cutoff harmonics.
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cating that these fields have a unique chirp rate. This chirp
rate is independent of order. For the harmonics in the pla-
teau, there are two significant directions for the TFR to
spread, one associated with a small negative chirp, and the
other with a much larger negative chirp. The slopes of both
of these contributions clearly vary from harmonic to har-
monic. We have determined these chirp rates separately and
plot them in Fig. 2.

The closed circles in Fig. 2 show the chirp rates versus the
harmonic energy, found from the primary contributions to
the TFR. To calculate them, we find the frequencyv at
which Sqst ,vd takes its maximum value for eacht, and then
perform a linear fit to this set of pointsvstd. For harmonics
beyond the cutoff, we also plot the rates found by direct
differentiation of the time-dependent phase ofEqstd sshown
with trianglesd. These are in excellent agreement with the
rates extracted from the TFR. The open circles in Fig. 2 have
been found from the secondary linear structures in the TFR.

We interpret our results within the framework of the semi-
classical modelf14,15,18g. The TFR resolves the different
quantum path contributions to the time-dependent frequency,
and gives an intuitive measure of the electron dynamics at
the single-atom level. Quantitatively, the chirp rates are in
good agreement with predictions of the SFAsdotted curvesd
for the two shortest quantum paths. In agreement with results
of our earlier work, and in contrast to the predictions of the
SFA, we also find thatsid the shortest quantum path is domi-
nant for most of the harmonics in argon, andsii d it is in
general the trajectories with return times longer than one ir

cycle which yield the next largest contributionf20g. For the
harmonics in the lower plateau region, the contributions from
the second and the third quantum paths are not distinguish-
able with our resolutionssee alsof20gd. In an experiment it is
possible to spatially separate the contribution from the short-
est trajectory from other contributions since its spatial diver-
gence is smaller by approximately an order of magnitude
f8,27g. In addition, as also seen in Fig. 1, the spectral distri-
bution of the contributions from the longer trajectories is
very wide, often making their experimental observation dif-
ficult.

IV. MANIPULATION OF THE CHIRP RATES

Next, we manipulate the harmonic chirps by adding a
chirp b1 to the driving pulse. In the adiabatic limit, we then
expect the harmonics to exhibit a chirp given by the sum of
the intrinsic chirp andq times the fundamental chirp. Recent
experimental and theoretical resultsf13g have supported this
expectation. In Fig. 3 we detail our theoretical findings in
f13g. We concentrate on the harmonics in the cutoff region
for which we can directly find the linear chirp rates from the
time-dependent phase, as described above.

The chirp is added as it would be in an experiment, by
stretching the driving pulse to be positively or negatively
chirped, in a way that preserves the pulse energy. This means
that the peak intensity of the chirped pulse decreases as

Ic = I0
t0

tc
s4d

when the pulse is stretched from its original durationt0 to a
durationtc. We use a duration of the unchirped driving pulse
of t0=13T1 s35 fsd. In Fig. 3sad the driving pulse has been
positively chirped to a FWHM duration oftc=36T1. This
leads to a linear chirp rate ofb1= +0.50 meV/fs and a re-
duced peak intensity ofIc=0.7231014 W/cm2. The linear
chirp rate of the odd harmonics 19 through 27sthe cutoff
energy is 19.5v1d found from the time-dependent phase is
shown with filled circles. The adiabatic prediction for the
chirp rate of the cutoff harmonics as given by Eqs.s2d and
s1d, using tc and Ic, is shown with open circles. The filled
triangles showqb1. The harmonics in Fig. 3sbd have been
calculated with a negatively chirped pulse with rateb1=
−0.68 meV/fs, a stretched pulse duration oftc=23T1, and
reduced peak intensityIc=1.1331014 W/cm2 swith a cutoff
energy of 24.8v1d. In both calculations, the adiabatic predic-
tion is in very good agreementsto within 10%d with the full
calculation. In an experiment, one would also expect the
measured chirp rates to be influenced by ionization and
phase matching although these can be minimized by the
choice of parametersf13g.

It is worth noting that when the driving pulse is chirped in
this way, which is experimentally the most straightforward
approach, the change in the harmonic chirp rate is twofold.
In addition to the externally added chirp, the rate of the in-
trinsic chirp of the cutoff harmonics decreases with the third
power of the pulse durationfsee Eqs.s1d and s4dg. In addi-
tion, the cutoff energy is lowered due to the smaller peak

FIG. 2. sColor onlined Chirp rates of the high harmonic fields in
argon, obtained from the strongest component of TFRssfilled
circlesd, or by direct differentiationstrianglesd. The SFA predictions
for the chirp rates originating in the first two quantum paths are
shown with dotted curves. As illustrated in Fig. 1, an additional
contribution to the TFR of harmonics is visible in the upper plateau
region, from which we have found another set of chirp rates, shown
with open circles. These chirp rates originate in the phase behavior
of the third quantum path; seef20g.
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intensity. Controlling the chirp of particular harmonics is
thus a balance between several factors.

In Fig. 4 we use this manipulation to eliminate the chirp
of a cutoff and a plateau harmonic. Insad we show the TFR
of the 35th harmonic calculated with the same parameters as
in Fig. 1, a pulse duration of 20T1 and a peak intensity of
231014 W/cm2. Its linear chirp rate is −27 meV/fsssee Fig.
2d. To compensate its chirp, we simply add a positive linear
chirp with rate b1=b35/35=0.77 meV/fs to the driving
pulse, keeping the same intensity and pulse duration. This

means that we add bandwidth to the driving pulse. Experi-
mentally, this could be achieved by positive stretching of a
shorter pulses12.6T1d to the 20T1 duration used here. The
resulting TF behavior, which is now flat, is shown insbd.
Since the intrinsic chirp of the harmonic has been compen-
sated, the bandwidth of the harmonic is smaller than insad
even though the bandwidth of the driving pulse is largerf10g.

The plateau harmonics have several contributions with
different chirps, which means that adding a single chirp to
the driving pulse does not compensate the entire TF depen-
dence. Here we manipulate the chirp of the strongest contri-
bution to the plateau harmonics, from the short quantum
path. The TFR of the 27th harmonic calculated as in Fig. 4sad
is shown in 4scd. In 4sdd we have added a positive chirp of
b1=0.31 meV/fs to the driving pulse, again keeping the
same pulse duration and peak intensity. This essentially
eliminates the chirp of the dominant contribution, but does
little srelativelyd to the larger chirp.

While eliminating the chirp of the 27th harmonic for part
in Fig. 4sdd, the manipulation also affects its neighboring
harmonics. In Fig. 5 we show the chirp rates of harmonics 23
through 31 generated by the chirped driving pulse of Fig.
4sdd. The chirps of all the harmonics have been significantly
reduced, except for the 31st harmonic. This can be under-
stood by looking at the order dependence of the chirp rate for
these harmonics shown in Fig. 2. The chirp rate due to the
first quantum path increases almost linearly in magnitude
between harmonics 23 and 29. This is nearly compensated by

FIG. 3. sColor onlined The chirp rates of cutoff harmonics con-
trolled by a driving pulse which has been chirped by stretching
from an initial duration of 13T1 ssee also textd. In sad the driving
pulse is positively chirped with a rate ofb1=0.50 meV/fs to a
duration of 36T1. This reduces the peak intensity to 0.72
31014 W/cm2. The driving pulse insbd has a negative linear chirp
rate of b1=−0.68 meV/fs, a pulse duration of 23T1, and a peak
intensity of 1.1331014 W/cm2. Filled circles show the calculated
chirp rates; open circles show the adiabatic SFA prediction for the
chirp rates. The external chirpqb1 is shown with triangles.

FIG. 4. sColor onlined sad and scd: The TFRs of the 35th and
27th harmonic, respectively, driven by an unchirped pulse as in Fig.
1 speak intensity 231014 W/cm2 and pulse duration 20T1d. In sbd
and sdd we show the 35th and 27th harmonics, respectively, gener-
ated by chirped pulses with the same peak intensity and pulse du-
ration, with positive chirp ratesb1=0.77 andb1=0.31 meV/fs.

FIG. 5. sColor onlined The
TFRs of the odd harmonics 23
through 31, generated by the posi-
tively chirped driving pulse in Fig.
4sdd. This chirp rate compensates
the intrinsic chirp of the 27th
harmonic.
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the increase in the external chirp rate with ordersq3b1d. The
31st harmonic has both a larger intrinsic chirp rate from the
first quantum path and a larger contribution from the longer
quantum pathsssee Fig. 1d. The manipulated 31st harmonic
shown in Fig. 5 certainly exhibits two different TF behaviors.

V. SUMMARY

We have analyzed the TF behavior of many high-order
harmonics in argon. Using a TF analysis we could identify
several contributions with different linear chirps to the har-
monic time profiles. Our results, which are based on numeri-
cal integration of the TDSE using a realistic pseudopotential
for the one-electron argon atom, are in good agreement with
SFA predictions for the harmonic chirp rates. By adding a
chirp to the driving pulse we manipulated the harmonic chirp

rates and showed that, at least in the adiabatic regime as in
this study, the harmonic chirp rates are the sum of their in-
trinsic and external chirp rates. When the driving pulse is
chirped by stretching, the increase in the pulse duration rap-
idly decreases the intrinsic chirp. Controlling the chirp of
any particular harmonic is thus a balance between pulse du-
ration, intensity, and external chirp rate.
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