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If the structure of the uncertainty in a linear model is known,

it is natural to use this information in robustness analysis. In particular, when
the model depends on a number of uncertain parameters one sometimes defines
a “structured stability margin” measuring the smallest parameter deviation giving
instability. There are different definitions of the structured stability margin. They
differ in the way the structure of the uncertainty is prescribed. In this article we
suggest a new definition that use the probabilistic distribution of the parameters.
We will define and calculate a ’structured stability margin’ which is tailor made to
make use of covariance information on parametric uncertainty. Such information is
typically obtained from a parametric identification.

In the calculation of stability margin it is natural to evaluate the characteristic
polynomial along the boundary of the stability region. The ‘finite argument principle’
is a tool, which can be used to reduce the number of such evaluations. The frequencies
will also automatically concentrate to critical regions. We show explicitly, how the
finite argument principle can be used to compute the structured stability margin.

An example from robustness analysis of a mechanical system is presented.

1. Introduction

Different measures of the robustness of a linear
control system design has been suggested in the
literature. Most of these measures concern sta-
bility robustness although some measures of per-
formance robustness exists. Stability robustness
measures how well the controller can maintain
closed loop stability when the open loop system
changes around a nominal case. This change can
be due to either erroneous modeling or to a real
change in the process dynamics, e.g. changed op-
erating conditions.

Different robustness measures differ in the
way the process uncertainty is introduced. For
the classical gain margin the open loop system
G(s) is perturbed to kG(s). The gain margin is
then given by the interval [kmin, kmaz] around
the nominal value ¥ = 1 for which the closed

loop system is stable. For the phase margin
the system is instead perturbed to e™*TG(s).
There are also different robustness measures us-
ing the Ho-norm. These all have in common
that the uncertainty, A(iw), is assumed to be
unstructured. In the complex plane the uncer-
tainty is then restricted to have the form of cir-
cles |A(w)| < p(iw). Very often some structure
of the unmodeled dynamics is known. It is then
conservative to use an unstructured description
of the uncertainty, since that includes cases that

will not occur in reality.
One way to overcome the conservatism is

to use the u-synthesis, see (Doyle 1982, 1984).
In the p-synthesis different structures can be
imposed on the uncertainty. The theory is rather
general and allows for the following structure on
the uncertain dynamics:
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s e i
A = diag(871,...,8%1,61,.. ., 651, Ay, ... AF)
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diagonal diagonal fullblocks

(1)
Here 67 model parametric uncertainty, 65 is used
for uncertainty in the frequency domain and A]

represent unmodeled dynamics.

DEFINITION 1—(Structured Singular Value)
p~YG) = min{5(A) | det(I — GA) = 0}

where A should vary over all matrices of the
form (1). O

A severe drawback with u is that in it’s
general form it is very hard to compute.

The choice of appropriate stability robust-
ness measure is affected by things as:

e The more structure or probabilistic infor-
mation of the uncertainty that is (correctly)
used the more useful the measure will be.

e The measure should be computable with a
reasonable amount of work.

e The measure should answer questions as:
what uncertainty is most critical, what fre-
quency is most critical ?

In section 2 we present a robustness measure
Patab that is based on parameter covariances.
This measure gives very useful information about
robust stability in connection with parametric
identification. In section 3 we present a fast
algorithm for calculating pstap using the ’finite
argument principle’. Explicit formulas in the
frequency domain make the computation time
rather insensitive to the number of uncertain
parameters. In section 4 the theory is illustrated
on an example from mechanics.

2. The Structured Stability Mar-
gin

The most basic performance criteria of a
control system is stability. We will study stability

of a family of characteristic polynomials of the
form

p(s,6) = po(s) + )_ 8k pr(s) (2)

Here po(s) is the nominal polynomial of degree n,
pr(8) are polynomials of degree less or equal

to n and 8 = [01
parameters.

0,,,) are uncertain

ExAMPLE 1—Uncertain Open System
Assume that the linear system

B(s) _ Yi—obes*
= u = T E u
A(s)  Xg=oOke

is controlled with the linear controller

R(s)u = —5(s)y + T(s)uc

Assume that the parameters a; and b are un-
known. After identification their nominal values
are a) and b). The closed loop characteristic
polynomial can then be written in the form (2) :

AR+ BS = AoR+ BoS + 3 _(ax — af)s* R+
Z(b’“ - bg)s"s =po(s) + Zakpk(s)

O

We now exploit the uncertainty information
provided by identification to form a realistic
robustness measure :

DEFINITION 2—Structured Stability Margin
Consider the family of polynomials of the form
(2). Let P be a positive definite matrix. The
robustness measure pgap 18 the largest scalar
such that all polynomials of the form (2) with

oTP—lg < pftab
are stable. a

Relation to other robustness measures

The stability measure we have defined is not
a standard p-measure. It uses an uncertainty
structure which in y can be described by one
nonsquare block
A= [6; &, ]

or alternatively one single full real m x m block
and the restriction that G must have rank one.

During the final preparation of this paper we
noticed that our stability measure can be seen to
be equivalent to a special case of the real stability
radius as defined in (Hinrichsen and Pritchard
1988). Our algorithm however has the advantage
that we have a simple method for optimization
over w and that the discontinuous case need no
separate treatment.

Ellipsoidal uncertainty

The ellipsoidal type of uncertainty is motivated
by some general results from identification the-
ory. For prediction error methods the asymptotic
(in the number of data) uncertainty is given by :



THEOREM 1—Asymptotic Parameter Variance
Consider the Prediction Error Method

v = arg min, Vi (6, Z%)

Z

where ZV is the data set, € is the prediction
errors, and # the parameters. Assume that the
model structure is linear and that there is a
unique value 8* giving perfect model fit such that

Vn(8,2N) = (t,0)

Oy — 6*, with prob. 1 as N — oo

Then, under some technical conditions we have
\/IV(GN - 0*) € As N(O, Pg)

Proof:  See (Ljung 1987, pp. 241). O

The covariance matrix Py will depend on the
data set and different variables in the identifica-
tion algorithm. Py is influenced by e.g. signal ex-
citation, choice of prefilters and choice of control
law. Good estimates of Py can be obtained based
on a finite number of data points. As an example
one can for quadratic criteria use

-1

N
ﬁN =0ON Z (t an)’d) t aN)

1 -~
oN =5 E €(t,6n)
t=1

where 9 are the regressors.

Theorem 1 is based on the hypothesis that
there exists a parameter in the parameter set
giving a perfect model fit. If this is not true,
the model error will contain both a bias term
and a variance term. A preliminary result in
estimating the variance term for this case is given
in (Hjalmarsson 1990).

THEOREM 2—Probabilistic Stability
Assume that the parameters are normally dis-
tributed with

8 € N (6o, P) (3)

and that pgap 18 calculated as in Definition 2.
The closed loop system will then be stable with
probability

Fatab 2
pr°bstab 2 \/5;/ e " /zd (4)

Proof: All parameters in the ellipsoid

(6 60)" P~*(8 ~ 60) < Pliab (5)

will by definition give a stable closed loop system.
Integration over this ellipsoid gives (4). a

Remark. There might be parameters outside
the ellipsoid (5) that also give a stable system
and the value is therefore only a lower bound.

In the rest of the paper we will work in
continuous time and the stability region will be
the left half plane. The generalization to other
stability regions, for instance the unit circle, is
direct and present little difficulty.

3. Calculation of Stability Margin

The structured stability margin can be cal-
culated based on the following result

Proposition.— Imaginary axis sweep

pstab = sup{p : 0 ¢ p(jw, p@) for w € R}
© = {theta: 6T P19 < 1}

Proof: No Hurwitz polynomial has a zero on
the imaginary axis, so 0 & p(jw, pstab®) for
w € R. On the other hand, by continuity any
family that contains both stable and unstable
polynomials, must also contain a polynomial
with a zero on the imaginary axis. This proves
the statement. O

A difficulty in using the proposition is that
an infinite number of frequencies must be con-
sidered. Instead we will use the finite argument
principle below, to reduce the calculation to a
small, finite number of frequencies. In the fol-
lowing we use the principle branch of arguments,
ile.—wr<arg<w

THEOREM 3—Finite Argument Principle

Suppose p is a polynomial of degree n with
complex coefficients. If there are frequencies
—o00=w; < wy < ... <wy = +oo such that
the equality

N .
Zarg M =2rn

" p(juwi-1)

is well defined and true, then p is Hurwita.
Conversely, if p is a Hurwitz polynomial of
degree n, then there are {w;}7"* such that the
equality holds.



Proof: Suppose p(s) = po(s — B1)--- (8 — Bn)-
Since arg(ui---un) < |argui| + -+ + |argun|
with strict inequality if argux < 0 for some k,
the equality implies that

p(jwi)
27rn—2ar lel1)
iuIIJW
I—2 (Jwt—l - ﬁk
N n 2
(jwi — B)
< g; - (Jwi-1 — Bx)
n N y
_ (Jwt Be) | _

Strict inequality is impossible, so all factors in
the products must have positive argument and p
is Hurwitz.

To prove the second part note that if p is
Hurwitz, we can choose {w;}?", as the zeros of
Re p(iw, 0) and Im p(iw, 0).

il |

The stability margin at a fixed frequency

Suppose p(s,6) is a polynomial of degree n in s
depending linearly on 6. Let © C R™ be convex
and bounded. Define for any complex number s

0 & Re [p(s, p©)/a]}
0 & p(s,p0)}

Pa(s) =sup{p:
p(s) =sup{p:

See Figures 1 and 2.
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Figure 1. pa(s) is the size of the smallest
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Figure 2. p(s) is the size of the smallest

ellipsoid touching the origin

It is easy to find explicit formulae for p,(s)
and p(s) in the ellipsoid case. To each complex
vector u € €™}, assign a real m x 2-matrix
% = [Re u Im u]. We then have the following
result, which motivates the new notation.

THEOREM 4—Ellipsoidal ©
Suppose

p(s,6) = po(s) + 6" px (s)
o={0: TP 9< 1}

If px (s) has full rank, then

pals) = Re (po(s)/a)
(Re (PK(3)/Q)T P Re (pK(S)/a))uz

= po(s)[Px (s)T PPk (s)]~!. Then

p(8) = sup pa(s) = pa(s)(s)
azl

Let a(s)

Proof: First note that Re (u/a) = Re (ua)/|a|?

= &7 /|a|?. Let P = LTL and use Cauchy-
Schwarz inequality :
(6T (s)aT)? = (6T L~ Lk (s)a")? <

< 0T(LTL) %6 apk(s)T LT Lk (s)aT

with equality when the vector 7 L~ is parallel
to apx(s)T LT. The definition of p,(s) now gives

pip o) _
0e6 Re (07 px(s)/a)
_ Re (pofs)/)

(Re (px (s)/)7 P Re (px(s)/a))"/?
Next, let fx(s)T Phx = MTM, M € R**?. An-
other application of Cauchy-Schwarz inequality
gives

po(s)aT =po(s)M "1 Ma&T

< (po(s) [Pk ()T Pk (s)] ™
T) 1/2

Pa(s)

1/2

Bo(s))
(apx(s)TPpK(s)a

with equality when fo(s)M ~! is parallel to aMT
and in particular when a = a(s). O



Minimization over w

The following theorem gives both lower and
upper bounds on the stability margin and is the
basis for the algorithm to calculate p,¢qp:

THEOREM 5—Lower and Upper Bounds
Let © be an arbitrary convex parameter set, then

p(jw) = sup pa(jw) (6)
a0

Furthermore, if

N
) "arglpo(jwn)/poliwi-1)] = 2nx  (7)
2

then

minsup min{pa(jwi-1), pa(jw1)} <

e (8)

< Patab < rn‘inp(jwl)‘

Proof:  Suppose that p < p(jw). Then 0 ¢
p(jw, pO). Convexity of p(jw, p®) implies that
0 ¢ Re [p(jw, p©)/a] for some complex a # 0,
80 p < pa(jw). Hence pa(jw) < supguo pa(w)
and since the converse inequality is obvious from
definitions, the desired equality follows.
Suppose for the second statement that

p < minsup min{pa (jwi-1), pa(iwi)}
! a0

Then 0 ¢ conv{p(jwi-1, pO), p(jwi, p©)} for all
j, so the function

le 1, )
OH,Z;M p{jw:,)

is continuous in p©. It takes only integer values,
so it must be constant and by our assumption
the value is 2xn. Hence p(:, pO) is Hurwitz and
P < Pstab- This proves the lower bound on ggtap-
The upper bound is obvious from definitions so
the proof is complete. O

Discontinuities of p(jw)

In (Barmish et.al 1990) it was observed that
the stability margin can be a discontinuous
function of the problem data. The example in
the next section is one example where p(jw) is
discontinuous w.

The discontinuity can however only arise
when the polynomials py all have equal argu-
ment. We have the following result,

Corollary. If Pk (jw) has full rank, then p,(jw),
p(jw) and a(jw) are all continuous at w.

Proof:  This follows from the expressions in
Theorem 4. O

Algorithm

We are now ready to formulate the algorithm for
computing pstab

e Choose as initial frequencies wa,...wy_1
the zeros of Re po(jw) and Impo(jw). Then
po satisfies (7).

e At each iteration step, add the frequency
(wi+wi—1)/2 obtained from the minimizing!
of the lower bound.

e Stop when lower and upper bounds are
sufficiently close.

The algorithm has been implemented in
Matlab. A typical calculation time on Sun 3/50
is ten seconds. The calculation time is relative
insensitive to the number of uncertain parame-
ters.

4. Example
As an example we will study the robustness of

an inverted pendulum with uncertain length and
mass, see figure 4.

\
“— -

Figure 8. The inverted pendulum with uncer-
tain mass and length.

If the system is linearized around the up-
right position the transfer function from force to
pendulum angle is

b b=1/ml

y= u, a:g/l

82 —a

The control objective is to stabilize the pendu-
lum around the upright position. The following
regulator gives good nominal performance :

B s+ 0.7
(s +2"

The nominal values after identification are ag =
1 and by = 8. The covariance of the estimates are

aao) fa-a0 )" 0.2 0.2
e () ()= (o )
b—bo b—bo 0.2 10
p(jw) is shown in Fig. 4. Note that because of

the discontinuity the lower and upper bounds in
theorem 5 will be unequal.



Figure 4. p(jw) for Example 2. Note that
the function is discontinuous at the critical
frequency. The lower and upper bounds from
theorem b are also shown

The Matlab algorithm gives
Petab = 0.21,
the critical frequency is
we = 1.10,

For clarity this example only had two uncer-
tain parameters. The computation time increases
relatively slowly with the number of parameters,
around 100 parameters are well within the limits
of the existing software.

5. Conclusions

We have defined and calculated a structured sta-
bility margin that gives interesting information
in connection with parameter identification. This
stability margin uses information on parameter
covariances.

It is not always necessary to be able to max-
imize a robustness measure over all controllers.
It is very seldom that stability robustness is the
only design criteria. A robustness measure is
mostly helpful as a piece of information to judge
a controller design. A good robustness measure
can signal a potentially bad design but should
not be used as the only design criteria. We have
not studied how to minimize our robustness mea-
sure over all controllers. This is an area for future
research.

We believe that identification based struc-
tured stability margins has a great potential as
robustness measures for adaptive robust control.
This is another area for future research.

The matlab code to calculate the structured
stability margin is available by Email from the
authors.

6. References

BarMmise, B.R., P.P. KHARGONEKAR, Z.C.
Sui, and R. TeEmpo (1990): “Robustness
Margin need not be a continuous function
of the problem data,” System and Control
Letters, 91-98.

DoYLE, J.C. (1982): “Analysis of Feedback Sys-
tems with Structured Uncertainties,” IEE-D,
242-250.

DovLe, J.C. (1984): “Lecture Notes for
ONR/Honeywell Workshop on Advances in
Multivariable Control,” Minneapolis, Min-
nesota.

HINRICHSEN, D., and A.J. PRITCEARD (1988):
“New Robustness Results for Linear Sys-
tems under Real Perturbations,” 27th CDC,
Austin, Texas, pp. 1375-1378.

HiaLMARSSON (1990): “On estimation of model
quality in system identification,” Licentiate
Thesis, Linképing, Sweden.

Liung (1987): System Identification: Theory for
the User, Prentice-Hall, Englewood Cliffs, NJ..



