
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Stirring by periodic arrays of microswimmers

de Graaf, Joost; Stenhammar, Joakim

Published in:
Journal of Fluid Mechanics

DOI:
10.1017/jfm.2016.797

2017

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
de Graaf, J., & Stenhammar, J. (2017). Stirring by periodic arrays of microswimmers. Journal of Fluid
Mechanics, 811, 487-498. https://doi.org/10.1017/jfm.2016.797

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1017/jfm.2016.797
https://portal.research.lu.se/en/publications/796c9e57-2dc7-41b0-b1a7-bb9d453d79ea
https://doi.org/10.1017/jfm.2016.797


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Stirring by Periodic Arrays of
Microswimmers

Joost de Graaf1† and Joakim Stenhammar2

1SUPA, School of Physics and Astronomy, The University of Edinburgh, King’s Buildings,
Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

2Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden

(Received xx; revised xx; accepted xx)

The interaction between swimming microorganisms or artificial self-propelled colloids
and passive (tracer) particles in a fluid leads to enhanced diffusion of the tracers.
This enhancement has attracted strong interest, as it could lead to new strategies to
tackle the difficult problem of mixing on a microfluidic scale. Most of the theoretical
work on this topic has focused on hydrodynamic interactions between the tracers and
swimmers in a bulk fluid. However, in simulations, periodic boundary conditions (PBCs)
are often imposed on the sample and the fluid. Here, we theoretically analyze the effect
of PBCs on the hydrodynamic interactions between tracer particles and microswimmers.
We formulate an Ewald sum for the leading-order stresslet singularity produced by a
swimmer to probe the effect of PBCs on tracer trajectories. We find that introducing
periodicity into the system has a surprisingly significant effect, even for relatively small
swimmer-tracer separations. We also find that the bulk limit is only reached for very
large system sizes, which are challenging to simulate with most hydrodynamic solvers.

1. Introduction

The physical properties of dense and dilute suspensions of biological as well as artificial
“microswimmers” has attracted significant attention over the last few decades (Marchetti
et al. (2013)). Many of the experimental (Wu & Libchaber (2000); Leptos et al. (2009);
Valeriani et al. (2011); Jepson et al. (2013); Mino et al. (2013); Jeanneret et al. (2016))
and theoretical (Underhill et al. (2008); Dunkel et al. (2010); Thiffeault & Childress
(2010); Ishikawa et al. (2010); Lin et al. (2011); Pushkin & Yeomans (2013); Pushkin
et al. (2013); Morozov & Marenduzzo (2014); Krishnamurthy & Subramanian (2015);
Thiffeault (2015)) studies on biological microswimmer suspensions have focused on the
enhanced diffusion of passive (i.e., non-swimming) tracer particles immersed in bacterial
or algal suspensions. This strongly enhanced tracer diffusion, and especially its linear
dependence on microswimmer density, has been rationalized in terms of the tracers
being advected by a superposition of the hydrodynamic far-fields of the swimming
microorganisms (Pushkin & Yeomans (2013); Pushkin et al. (2013)). Microorganisms
are self-propelled rather than externally forced (provided one neglects the effects of
gravity), and therefore the leading-order flow-field singularity of such an organism is
that of a hydrodynamic dipole (stresslet) (Drescher et al. (2010, 2011)). In the simplest
picture, mainly relevant to swimming bacteria such as E. coli, the stresslet can be seen
as being composed by one propulsive force acting on the fluid, and an equal and opposite
force at the other end, coming from the drag imposed by the fluid on the swimmer.
Depending on the details of the propulsion mechanism, the stresslet can have either
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Figure 1. (color online) The relevant geometric parameters. Sketch of the flow field around (a)
a force-free extended pusher swimmer, the so-called “di-Stokeslet”, and (b) the corresponding
pusher point stresslet. The black dot indicates the center of the particle, the two open circles
the positions where the force F p̂ and counter force −F p̂ are applied to the fluid (red arrows). l
denotes the dipole length, the green arrow shows the orientation p̂ of both swimmers, and the
blue arrows give an impression of the stream lines around the swimmer. For the stresslet, the
stream lines originate and terminate in the origin and are straight. The transition from outward
to inward flow happens at a fixed angle (arccos(1/

√
3)), as indicated by the blue dotted lines.

(c) Two-dimensional (2D) representation of the bulk geometry. The trajectory of the swimmer
(green circle) is along the z-axis from −∞ to ∞, which the swimmer traverses with speed vs.
The tracer (blue circle) is advected along the red trajectory – here we have assumed a puller type
swimmer. The initial position of the tracer (black circle) is given by xix̂. The tracer displacement
due to advection by the swimmer flow field is measured using ∆x and ∆z which are measured
with respect to xi and zi. The final tracer position, as assumed once the swimmer has completed
its trajectory, is given by xf and zf , see the inset.

symmetry: rear-actuated organisms such as E. coli and Salmonella bacteria are usually
referred to as “pushers” (extensile), while front-actuated microswimmers such as the
alga Chlamydomonas are referred to as “pullers” (contractile).

When numerically simulating bulk suspensions and fluids, it is usually necessary to
use periodic boundary conditions (PBCs) in order to emulate an infinite system. While
obviating the need of solid confinement, the introduction of PBCs instead imposes an
artificial periodicity on the system. This periodicity is especially important due to the
slow r−2 decay of the stresslet flow-field, identical to that of the electrostatic potential
outside an electric dipole. For electrostatic systems, the artificial periodicity introduced
by the use of PBCs has been shown to lead to spurious shifts of the thermodynamic and
structural properties of both Coulombic (Hünenberger & McCammon (1999)) and dipolar
(Stenhammar et al. (2011)) fluids. The slow decay of the stresslet flow field furthermore
requires elaborate methods in order to analyze the resulting periodic sums, inspired by
the original Ewald summation technique for charged systems (Ewald (1921); Wells &
Chaffee (2015)). In this contribution, we will therefore analyze the effect of periodic
boundary conditions (PBCs) on the advection of tracer particles caused by the flow field
of microswimmers.

We start by considering the effect of swimmer-tracer separation and the difference be-
tween the extended “di-Stokeslet” and point stresslet descriptions of a microswimmer (see
Fig. 1a,b) in an infinite (non-periodic) system. Here, we confirm that for small swimmer-
tracer separations the tracers exhibit non-closed trajectories, leading to deviations from
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the standard concave triangular trajectories followed by tracers advected in dipolar flow
fields (Pushkin et al. (2013); Pushkin & Yeomans (2013)). Furthermore, in this regime,
we find that the difference between the stresslet and di-Stokeslet descriptions becomes
appreciable. Next, we extend the Ewald-summation method for Stokeslets put forward by
Beenakker (1986) and detailed in Pozrikidis (1996) to properly include the effect of PBCs.
We show that these significantly impact the trajectories of the tracers, even for small
swimmer-tracer separation and relatively large boxes. Finally, we investigate the limit of
large simulation boxes and find that unpractically large sizes – from the perspective of
simulations – are needed for convergence to the bulk system behavior. Our work therefore
raises questions concerning the suitability of common fluid-dynamic solvers to study the
bulk behavior of microswimmers.

2. Theory

The velocity field at a point r due to an extended stresslet (“di-Stokeslet”, see Fig. 1a)
in bulk is given by

u(r) =
F

8πµ

[
S
(
r − l

2
p̂
)
− S

(
r +

l

2
p̂
)]
p̂, (2.1)

where µ is the dynamic viscosity, F the force magnitude, l the point separation, p̂ the
unit vector indicating the swimmer’s orientation, and

S(r) =
1

r
(I + r̂ ⊗ r̂) (2.2)

the bulk Stokeslet, with I the identity matrix, r ≡ |r|, r̂ ≡ r/r, and ⊗ the dyadic
product. The corresponding expression for the (point) stresslet is obtained by taking the
limit l→ 0, see Fig. 1b, yielding a directional derivative and the expression

u(r) = − κ

8πµ
[(p̂ ·∇) S(r)] p̂ =

κ

8πµr2
(3(p̂ · r̂)2 − 1)r̂, (2.3)

with ∇ the gradient with respect to r. In our construction, positive values of the stresslet
strength κ = Fl correspond to pusher swimmers and negative values to puller swimmers.

In a system with PBCs, the velocity experienced at r0 in the central box due to the
array of point forces F p̂ is formally given by

u(r0) =
F

8πµ

(∑
n

S(rn)

)
p̂, (2.4)

where rn = r0 − Xn and Xn = n0a + n1b + n2c, with n ∈ Z3 and a, b, and c
the sides of the box. However, the slow 1/r decay of S leads to the sum in Eq. (2.4)
being conditionally convergent, just as when summing up electrostatic charge and dipole
potentials. Thus, the flow field will depend on the order in which the terms are summed.
From a physical perspective, however, one usually selects a summation over spherical (or,
in the case of a non-cubic box, spheroidal) shells. From a computational viewpoint, the
slow convergence of Eq. (2.4) furthermore makes it necessary to employ more elaborate
methods, inspired by the Ewald summation used in electrostatics, to transform the sum
into a more rapidly (and absolutely) convergent one.

Here, we will use the formalism put forward by Beenakker (1986) and Pozrikidis (1996),
who suggested splitting the Stokeslet according to

S(r) = Θ(r) + Ψ(r), (2.5)
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with

Θ(r) = 8π
(
I∇2 −∇⊗∇

)
B(r)erfc(ξr); (2.6)

Ψ(r) = 8π
(
I∇2 −∇⊗∇

)
B(r)erf(ξr), (2.7)

where ∇2 is the Laplacian, B(r) = r/(8π) the fundamental solution of the biharmonic
equation, erf(z) the error function, erfc(z) = 1 − erf(z) its complement, and ξ > 0 is a
splitting parameter. Θ now yields a rapidly convergent sum in real space (dominant for
ξ � 1), whereas the long-range part Ψ (dominant for ξ � 1) will be handled in Fourier
space, where it will also become absolutely convergent. As shown by Pozrikidis (1996),
this splitting yields

Θ(r) =
1

r
(C(ξr)I +D(ξr)r̂ ⊗ r̂) ; (2.8)

C(z) = erfc(z) +
2z√
π

(
2z2 − 3

)
e−z

2

; (2.9)

D(z) = erfc(z) +
2z√
π

(
1− 2z2

)
e−z

2

. (2.10)

and

Ψ̌(k) =
8π

k2

(
I − k̂ ⊗ k̂

)(
1 +

ω2

4
+
ω4

8

)
e−ω

2/4e−ik·r0 , (2.11)

where Ψ̌ is the Fourier transform of Ψ (the “check” symbol is used throughout to denote
the transform), k is the reciprocal-space wave vector, k ≡ |k|, k̂ ≡ k/k, and ω ≡ k/ξ.
The sum in Eq. (2.4) is now given by the two absolutely convergent sums

SPBC(r) ≡
∑
n

S(rn) =
∑
n

Θ(rn) +
1

V

∑
m 6=0

Ψ̌(km), (2.12)

where V ≡ c · (a× b) is the system volume, km ≡ 2πm0(b× c)/V + 2πm1(c× a)/V +
2πm2(a × b)/V with m ∈ Z3, and it is assumed that the left-hand side sum is carried
out over spherical shells. Note also that the k = 0 term should be excluded from the
right-hand side to eliminate the net force as discussed in Pozrikidis (1996).

The velocity field due to a periodic array of stresslets can now be obtained using a
similar directional derivative as

uPBC(r) = − κ

8πµ
[(p̂ ·∇) SPBC(r)]p̂. (2.13)

The real-space part yields

(p̂ ·∇)Θ(r)p̂ =
1

r2

[
D(ξr)r̂ − E(ξr)(r̂ · p̂)2r̂ − F (ξr)(r̂ · p̂)p̂

]
, (2.14)

where C(z) and D(z) are given by Eqs. (2.9) and (2.10), and we have defined the new
auxiliary functions

E(z) ≡ 3D(z)− zD′(z) = 3erfc(z) +
2z√
π

(
3 + 2z2 − 4z4

)
e−z

2

; (2.15)

F (z) ≡ C(z)− zC ′(z)−D(z) =
2z√
π

(
4z4 − 8z2

)
e−z

2

. (2.16)

The Fourier-space part is similarly obtained from Eq. (2.11) and reads

(p̂ ·∇) Ψ̌(k)p̂ = −i
(
p̂ · k̂

)
kΨ̌(k)p̂. (2.17)
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Thus, we may write for the velocity field due to a periodic array of stresslets with dipole
strength κ and direction p̂

uPBC(r) =
∑
n

uR(rn) +
1

V

∑
m6=0

uF(km), (2.18)

with

uR(r) ≡ κ

8πµr2

[
E(ξr)(r̂ · p̂)2r̂ + F (ξr)(r̂ · p̂)p̂−D(ξr)r̂

]
, (2.19)

and

uF(k) ≡ iκ

µk

(
p̂ · k̂

)(
I − k̂ ⊗ k̂

)(
1 +

ω2

4
+
ω4

8

)
e−ω

2/4e−ik·r0 p̂, (2.20)

with D, E, and F as defined before. We finally note that these expressions are different
from those derived in af Klinteberg & Tornberg (2014), as those results correspond to a
periodic array of singularities that exclude the source term (the second term inside the
bracket of Eq. (2.3)).

3. Comparison between di-Stokeslet and Stresslet Descriptions

Before assessing the effect of periodic boundaries on tracer trajectories, we will inves-
tigate the difference between the extended di-Stokeslet and point stresslet descriptions
in the near-field of an infinite (non-periodic) system. To this end, we follow the strategy
of Pushkin et al. (2013) and perform a numerical calculation of the effect of a swimmer
passing by a tracer particle, with the swimmer moving from −∞ to +∞ along the z-axis
with constant velocity vs, see Fig. 1c. Over the course of its trajectory, the swimmer
interacts with a tracer initially positioned at ri = (xi, 0, 0). Note that, by symmetry, the
tracer motion may be restricted to the xz-plane. The tracer trajectory is parametrized
by ∆x = x(t) − xi and ∆z = z(t) − zi = z(t), and is simply given by the advection it
experiences due to the swimmer flow field. These assumptions result in the differential
equations

ṙt(t) = u(rt(t)− rs(t)); (3.1)

ṙs(t) = vsẑ, (3.2)

where rt and rs denote the tracer and swimmer positions, respectively. The fluid velocity
u(r) in bulk is given either by the stresslet expression of Eq. (2.3), or its di-Stokeslet
equivalent, Eq. (2.1). In the numerics, the swimmer trajectories start at z = −5.0 · 104

and end at z = 5.0 · 104, using a varying time-step size to ensure an accurate integration
when the separation between the swimmer and tracer is small. We further assume µ = 1.0
in our dimension-free units, and the swim-speed is kept constant at vs = 1.0 · 10−3. We
set |κ| = 1.0 in the stresslet model and l = F = 1.0 in the di-Stokeslet model unless
otherwise specified. Finally, we denote the final position of the tracer by rf = (xf , 0, zf ).

Figure 2(a,b) shows the difference between the di-Stokeslet and stresslet descriptions
on the advection of tracer particles. For xi > l the deviation between the trajectories is
minimal. However, for smaller values of the initial separation there is a clear “rounding”
of the di-Stokeslet result with respect to that of the stresslet, which is a manifestation
of the finite separation between the two force points. Clearly, the effect of the swimmer
on the tracer becomes more pronounced as their separation is reduced. Below a certain
value of the separation (xi . 0.5 for our parameters) the tracer will start interacting with
the “naked” singularity at the center of the swimmer – or the front singularity in the
di-Stokeslet approximation – leading to numerical divergences in the tracer trajectories.
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Figure 2. (color online) Near-field trajectories of tracers advected by (a) pusher and (b) puller
swimmers in an infinite (bulk) system. The results for the di-Stokeslet (l = 1) are given by the
solid curves and for the stresslet by the dashed curves. (c) The net tracer displacement by a
stresslet swimmer. The difference between the initial and final positions of the tracer |rf − ri|
after the swimmer has completed its trajectory is given as a function of the initial tracer position
xi. The results for pushers are shown in blue and for pullers in red. For both swimmer types
the sign of the displacement is the same: negative for the z coordinate and positive for the
x coordinate. (d) Comparison between the tracer trajectories caused by a pusher di-Stokeslet
(solid curves) and stresslet (dashed curves) in bulk as a function of the di-Stokeslet length l
(keeping κ = 1.0 constant) for xi = 0.6.

These clearly require regularization, and could be prevented using additional swimmer-
tracer interactions accounting for near-field lubrication effects and non-hydrodynamic
interaction potentials; this is not considered here.

It is also clear from Fig. 2(a,b) that the trajectory due to the stresslet swimmer becomes
increasingly asymmetric with decreasing xi. This can be explained by the tracer being
increasingly subjected to the near-field flow of the swimmer. Both in the near and far field,
the Darwin drift (Darwin (1953); Pushkin et al. (2013)) leads to the tracer trajectories not
being closed, yielding finite values of ∆x and ∆z after the swimmer has moved along its
full trajectory. The effect is illustrated in Fig. 2c, where the difference |rf−ri| between the
initial and final position of the tracer is given as a function of xi. As has been pointed out
by Pushkin et al. (2013), this difference will approach zero in the limit where the tracer
advection is negligible compared to the swimmer movement, i.e., |ṙt|/|ṙs| → 0, which
corresponds to the limit xi → ∞. However, for the short swimmer-tracer separations
studied in Fig. 2, this displacement is significantly different from zero. Furthermore, we
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note that the difference in the net displacement between the stresslet and di-Stokeslet
descriptions is surprisingly small, even though the overall near-field trajectories of these
two objects differ significantly.

Finally, we demonstrate that the di-Stokeslet results reduce to those of the point
stresslet in the limit l → 0, as expected. Figure 2d shows this effect for xi = 0.6 and
various values of l in the case of a pusher swimmer. For this small swimmer-tracer
separation, a value of l ≈ 0.1 has to be chosen for reasonable convergence to the stresslet
result.

4. The Effect of Periodicity on Tracer Trajectories

We now assess the effect of periodic boundary conditions on the interaction between
swimmers and tracers. The geometry in which we perform the calculation is sketched
in Fig. 3a. Our simulation box is cubic with edge length L, centered on the origin. The
general numerical procedure is thus the same as that described in Section 3, apart from
that the swimmer now moves from −L/2 to L/2 along the z-axis. When integrating
Eqs. (3.1) and (3.2), the fluid flow velocity u(r) is now given by the PBC stresslet
expression of Eq. (2.18). We furthermore used the value ξ = π1/2/L suggested by
Beenakker (1986) for cubic boxes, and (cubic) real- and Fourier-space cutoffs of |nmax|,
|mmax| 6 10, which gave convergence to within the numerical rounding error with respect
to a cutoff of 9.

Figure 3b shows tracer trajectories induced by a periodic array of pusher swimmers
with identical properties to those discussed in Section 3, for several values of xi in a box
of length L = 100. We start by noticing that our Ewald expressions are in accordance
with results of an explicit summation of stresslets in spherical shells (dashed lines in
Fig. 3b). It should be noted, however, that these sums are extremely slowly convergent,
and that even for 40 layers of images (corresponding to ≈ 85 minutes of CPU time), the
curves are not fully converged to the Ewald results, where the latter require only ≈ 10
seconds of CPU time.

Furthermore, it is clear that even for relatively small swimmer-tracer separations (xi =
5), the observed trajectories are significantly perturbed by the use of PBCs. For long
separations (xi > 20), the trajectories are qualitatively wrong compared to the bulk
results (Fig. 3c). Moreover, the PBC results underestimate the maximum value of ∆z
by about 25%, even for the shortest swimmer-tracer separations considered. While the
overall PBC trajectories are still approximately closed (i.e., |rf−ri| ≈ 0, when rs = L/2),
the observed discrepancy would have a large effect on tracer displacements for tumbling
swimmers, where tracer trajectories are not closed.

As a different manifestation of this effect, we consider the convergence towards the
bulk behavior when increasing the box size while keeping xi constant at a value of 10
(Fig. 4a). We note that, to obtain a reasonable correspondence with the bulk curve
(≈ 10% error), a box length of L = 1000 is needed, corresponding to L/xi = 100.
This is a rather surprising and potentially worrying result, as this is far beyond the
system sizes accessible in typical computer simulations. It is furthermore a much more
long-ranged effect than what is observed in corresponding simulations of electric dipoles
under PBCs, where the periodicity artifacts usually become negligible at length scales
6 L/2 (Stenhammar et al. (2011)).

To put this result in perspective, we should note that the near-field flow field around
the swimmer converges more rapidly, as shown in Fig. 4b, which shows the convergence
of the fluid flow in PBCs onto that of the bulk stresslet. We computed the relative error
E in this flow-field reproduction as follows: a stresslet with our standard parameters was
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Figure 3. (color online) The effect of periodic boundary conditions on the advection of tracers
by microswimmers. (a) 2D representation of a cubic simulation box with PBCs (dashed black
lines). The swimmer (green circle) moves at speed vs along the z-axis from −L/2 to L/2, with
L the edge length of the box. The initial position xix̂ of the tracer is given by the black circle.
One of the periodic duplicates of the system is shown using desaturated colors on the right-hand
side. (b) Tracer trajectories in a cubic system with PBCs of edge length L = 100, for which the
initial tracer-swimmer separation xi is varied. The three insets show the result for xi = 20, 25,
and 40 (from left to right) magnified by a factor of 2.5 and shifted with respect to the origin for
clarity; the shifted origin is indicated using the × symbol. Solid lines show data obtained using
the stresslet Ewald expressions, while dashed lines show the corresponding (partially converged)
results from a direct summation in spherical shells. (c) Data corresponding to (b), but using the
bulk stresslet expression. (d) The convergence towards the bulk tracer trajectory (dashed black
curve) for a cubic system with PBCs (solid curves) for various values of the box length L. The
initial separation is kept constant at xi = 10.

placed in the center of a cubic box with PBCs (or equivalently in bulk). We denote the
stresslet-induced flow field in the cubic system with PBCs by uL and the bulk flow field
by u∞. The error E is then given by

E =

√∫
|u2

L − u2
∞|dr∫

u2
∞dr

, (4.1)

where we integrate over the region 2 6 r 6 10 to capture the region close to the swimmer.
This definition has the advantage of being a relative error, weighted with the expected
bulk local speed. That is, it gives an averaged “per point” error for the annular domain
on which E is evaluated. Convergence to E = 0.1 (≈ 10% error) is reached for L <
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Figure 4. (color online) Finite size scaling for the swimmer-tracer advection and convergence
of the flow field. (a) The convergence towards the bulk tracer trajectory (dashed black curve)
for a cubic system with PBCs (solid curves) for various values of the box length L. The initial
separation is kept constant at xi = 10. (b) The near-field difference E (red dots) between the
bulk and PBCs flow field as a function of the box length, see Eq. 4.1. The solid red line is
an extrapolation for the power-law decay in the error, while the blue dashed curve indicates
the value of the error below which the difference becomes unreliable due to numerical rounding
errors, as also evidenced by the kink in the graph.

100, according to our definition; a different definition would yield more or less rapid
convergence.

By comparison our tracer trajectories are particularly sensitive to periodicity, since
the swimmer traverses the length of the box, thereby always exposing the tracer to the
strongly perturbed far field. However, if the physics of the system is partially governed
by long-ranged interactions, as is the case for this specific example, then such slow
convergence must be accounted for.

5. Conclusions

The results shown here strongly highlight the effect of using periodic boundary con-
ditions (PBCs) in hydrodynamic simulations (such as Stokesian dynamics (Evans et al.
(2011)), dissipative particle dynamics (Lugli et al. (2012)), and lattice Boltzmann simu-
lations (Nash et al. (2008); de Graaf et al. (2016))) of microswimmers. Specifically, they
show that even on relatively small length-scales, the effect of using PBCs rather than a
bulk solvent can be dramatic. Tracer advection for these swimmer-tracer separations is
expected to contribute strongly to measureable properties such as the mean-square tracer
displacement, which one should therefore expect to be significantly underestimated by
the use of PBCs. Furthermore, the boundary effects highlighted here will also affect the
interaction between swimmers, thus having an impact on the modelling of collective
behaviors in biofluids (Krishnamurthy & Subramanian (2015)). On the other hand,
our results show that the difference between using extended or point stresslet dipoles
is small for other than very short swimmer-tracer separations. In experiments, higher
order singularities, thermal noise, lubrication effects, time-dependent motion (in the
case of mechanical swimming), and non-hydrodynamic interactions are, however, likely
to dominate at such small separations. In a broader context, this work highlights the
importance of boundary and finite-size effects when studying systems with long-range
fluid flows.
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