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Journal Name

Theoretical predictions of structures in disper-
sions containing charged colloidal particles and non-
adsorbing polymers†

Fei Xie,∗a, Martin Turessona, Clifford E. Woodwardb, Kitty van Gruijthuijsenc, Anna
Stradnerd and Jan Forsman a

We develop a theoretical model to describe structural effects on a
specific system of charged colloidal polystyrene particles, upon
the addition of non-adsorbing PEG polymers. This system has
previously been investigated experimentally, by scattering meth-
ods, so we are able to quantitatively compare predicted structure
factors with corresponding experimental data. Our aim is to con-
struct a model that is coarse-grained enough to be computation-
ally manageable, yet detailed enough to capture the important
physics. To this end, we utilize classical polymer density func-
tional theory, wherein all possible polymer configurations are ac-
counted for, subject to a mean-field Boltzmann weight. We make
efforts to counteract drawbacks with this mean-field approach,
resulting in structural predictions that agree very well with compu-
tationally more demanding simulations. Electrostatic interactions
are handled at the fully non-linear Poisson-Boltzmann level, and
we demonstrate that a linearization leads to less accurate predic-
tions. The particle charge is an experimentally unknown param-
eter. We define the surface charge such that the experimental
and theoretical gel point at equal polymer concentration coincide.
Assuming a fixed surface charge for a certain salt concentration,
we find very good agreement between measured and predicted
structure factors across a wide range of polymer concentrations.
We also present predictions for other structural quantities, such
as radial distribution functions, and cluster size distributions. Fi-
nally, we demonstrate that our model predicts the occurrence of
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equilibrium clusters at high polymer concentrations, but low par-
ticle volume fractions and salt levels.

1 Introduction

Aqueous colloidal dispersions are widely applied in food prod-
ucts and other materials, for example paint, ink and coatings1.
Colloidal particles usually interact with each other via short-
ranged van der Waals (vdW) attractions, and when this attrac-
tion is strong, the system may form a gel2,3. Colloidal gels
find a variety of applications as well4. , where the attractions
can originate from rather different sources, such as vdW inter-
actions, hydrophobic/patchy interactions, the addition of non-
adsorbing polymer, or the addition of adsorbing/bridging poly-
mers. A colloidal dispersion with non-adsorbing polymers form
an especially useful model system. Various theoretical models of
particle-polymer mixtures have been utilized in previous work,
aiming to quantify the various interactions and to establish how
they affect the macroscopic properties5–11. Several experimen-
tal methods are available to elucidate the structure of particle-
polymer mixtures, which can then be compared with the model
predictions12–20. Most of them are based on some form of scat-
tering, with light or neutrons. In this work, we develop a rather
detailed theoretical model to study mixtures of colloidal particles
and polymers. The system contains charged polystyrene particles
that are grafted by a layer of poly(ethylene glycol) (PEG)-based
surfactant, with a thickness wide enough to counteract particle-
particle vdW attractions21. Thus, the steric repulsion between the
polymer shells effectively stabilizes the particles against vdW at-
tractions22,23. Non-adsorbing PEG polymers are added to induce
attractions between the particles, in a controlled way. In the vicin-
ity of particle surfaces, the polymer excess chemical potential will
increase, as a result of configurational restrictions. This means
that, at equilibrium, the ideal chemical potential, i.e. the poly-
mer concentration, will drop. Hence, interparticle regions will
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be depleted of polymers, and are pushed together by the result-
ing differences in osmotic pressure. The strength of this attrac-
tion increases with polymer concentration. In a good solvent, the
range of the depletion interaction is related to polymer size at low
concentrations, and to the correlation length in the semi-dilute
regime (i.e, at higher polymer concentrations). Our theoretical
model to describe this system is relatively detailed, in the sense
that the polymers are explicitly modelled, and all possible con-
figurations of the model polymers are accounted for, subject to a
mean-field Boltzmann weight. We shall then utilize classical poly-
mer density functional theory (DFT). Nevertheless, the solvent
will be treated implicitly. Electrostatic interactions are handled
at the full non-linear Poisson-Boltzmann (PB) level. The combi-
nation of DFT and PB allows us to establish the interaction free
energy between large and flat surfaces. Using the Derjaguin ap-
proximation24, which is expected to be highly accurate for the in-
vestigated systems, we obtain a spherically symmetric potential of
mean force (PMF) acting between the particles. This PMF is then
imported into a simple Metropolis Monte Carlo program, and a
subsequent simulation allows us to obtain theoretical predictions
of structural properties. These predictions are then directly com-
pared with corresponding results, from scattering experiments.

The computational advantages of importing polymer and ion
mediated potential of mean forces (PMF:s), rather than treating
these explicitly, are quite dramatic. Still, the approach naturally
has some limitations. First, we note that the strategy would fail
for systems in which the polymers are larger than, or similar to,
the particles (as measured by the correlation length). The Der-
jaguin Approximation will then no longer be accurate for the pair
PMF, and there will in general be a significant influence from
many-body interactions. Another obvious limitation with our ap-
proach is that the use of standard MC simulations will prevent
any dynamical predictions. One could in principle consider dy-
namical methods, but these would most likely turn out to be very
expensive computationally. Furthermore, as we will show, some
systems display quite large free energy barriers, implying slow dy-
namics. Thus, at least at this stage, we have limited our scope to
structural investigations.

2 Model and theory
The experimental particle-polymer mixture consisted of
polystyrene particles that were surface-grafted by Tween 80 (a
PEG-based surfactant) and acrylic acid groups, together with
dissolved PEG polymers. The particles were synthesized using
emulsion polymerization and purified by solvent exchange,
which was also used to create a well-defined salt concentration in
the concentrated stock dispersions. The synthesis and characteri-
zation of the particles, denoted MA3, has been described before,
giving a radius of about 0.06 µm, with a polydispersity below 15
%, and a steric layer thickness of about 40 Å. The latter serves
to counteract attractive dispersion (vdW) interactions. The PEG
polymers, with a reported molecular weight of 13.3 kg/mol and
a polydispersity index of 1.08, were purchased from Polymer
Source. We used a previously established empirical relation to
estimate the polymer radius of gyration: Rg = 47 Å, from the
molecular weight25. The particles and polymers were prepared

by vortex mixing, with salt concentrations in the continuous
phase adjusted to 50 mM or 1.5 mM of monovalent salt (NaCl
and/or NaN3). Hence, the electrostatic particle interactions have
a short (50 mM) or intermediate (1.5 mM) range. The structure
of the particle-polymer mixtures was characterized by small
angle neutron and X-ray scattering (SANS and SAXS), at the Paul
Scherrer Institute, Switzerland. Details of these measurements
have been provided elsewhere21,26. The measured 2D scattering
patterns were corrected for background scattering, and radially
averaged to obtain angle-dependent scattering intensity curves,
I(q). In order to obtain the structure factors, S(q), of concentrated
particle dispersions, the intensity curves measured by SANS or
SAXS were divided by the intensity curve for a non-structured
dilute sample, with corrections for the concentration difference.
SAXS has the advantage over SANS that the angular resolution
is much higher, yielding essentially unsmeared S(q) curves. The
addition of PEG significantly changes the scattering length of the
continuous solvent phase. Though this can be easily corrected for
in SANS, we could not obtain reliable structure factors from the
SAXS data at high polymer concentrations. Therefore, SAXS data
are used to model pure particle dispersions, while SANS data are
used for the particle-polymer mixtures.

In order to address this system theoretically, we shall use the
same polymer model as was adopted in our previous work27,
where we developed a simulation model for PEG in aqueous
solutions, at room temperature. Specifically, it is based on
a pearl-necklace polymer representation, where each monomer
(−CH2−CH2−O−) is represented by a single hard-sphere bead,
of diameter d. These beads are connected by bonds that are ori-
entationally flexible, but have a fixed length b. Thus our model
only contains two adjustable parameters, d and b, which are the
same for all polymer lengths and concentrations. These parame-
ters were adjusted so that experimental values for radii of gyra-
tions and osmotic pressures are reproduced, for a large range of
polymer lengths and concentrations. Further details can be found
in ref.27. Here, we merely state that the final fitted values, for the
simulation model, was d = 2.65 Å and b = 4 Å.

Depletion attractions between the particles can be induced by
adding polymers, and the modest polymer size ensures that the
depletion-induced attractions are short-ranged compared to the
particle radius. The depth of the attractive potential is controlled
by the polymer concentration, and since the attraction is short-
ranged, colloidal gels are formed at some threshold polymer con-
centrations3,28–30.

In this work, predictions of polymer-induced interactions will
be established by classical polymer DFT. Here, the free energy is
minimized, as a function of the polymer density distribution. In
this way, the equilibrium monomer density profile is established,
subject to a mean-field approximation, where the mean field is
provided by the monomer density distribution itself. Details of
polymer DFT, and how to implement it in an efficient manner, can
be found elsewhere31–33. Here we only include a brief summary.

The exact canonical free energy density functional, F id , for an
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ideal and flexible r-mer polymer fluid is given by

βF id =
∫

N(R)(ln[N(R)]−1)dR+ (1)

β

∫
N(R)Φ(b)(R)dR+β

∫
n(r)Vext(r)dr

where β = 1/(kT ) is the inverse thermal energy and n(r) is the
monomer density, at coordinate r. We denote a polymer configu-
ration as R = (r1, ...,rr), i.e. N(R), is proportional to the probabil-
ity of configuration R. The bonding potential, Φ(b)(R), describes
connectivity along the chain:

Φ
(b)(R) =

r−1

∑
i=1

φ
(b)(|ri− ri+1|) (2)

Vext(r) is an external potential acting (equally) on all monomers
(in our case stemming from the particle surfaces). For interact-
ing monomers, there will also be an excess term, F ex. We will
assume that this is a functional of the monomer density, n(r).
Specifically, we will utilize the Generalized Flory Dimer (GFD) ex-
pressions32,34 for the entropic penalty associated with hard core
excluded volume. Following Nordholm and co-workers35, we ac-
count for non-local excluded volume effects via a coarse-grained
(weighted) monomer density:

n̄(r) =
3

4πd3
DFT

∫
|r−r′|<dDFT

n(r′)dr′ (3)

where dDFT is the monomer hard sphere diameter. The polymer
chemical potential, µp, is composed of an ideal (µ id) and an ex-
cess (µex) term:

µp = µ
id +µ

ex (4)

The total grand potential functional, Ω, is given by

Ω = F id [N(R)]+F ex[n(r)]−µp

∫
N(R)dR (5)

This implies the following equilibrium distribution:

Nr(R) = eβ µ id
r−1

∏
i=1

T (|ri− ri+1|)
r

∏
i=1

e−ψ(ri) (6)

where:

ψ(r)≡ δβF ex

δn(r)
+βVext(r)−β µ

ex (7)

With freely rotating bonds of fixed length, bDFT , the bonding ker-
nel reads:

T (|r− r′|) = δ (|r− r′|−bDFT ) (8)

The total monomer density is obtained from:

n(r) =
∫ r

∑
i=1

δ (|r− ri|)N(R)dR (9)

It is convenient to introduce chain propagator functions, c(i;r).
These are related by a recursion formula:

c(i;r) = e−ψ(r)
∫

c(i−1,r′)T (|r′− r|)dr′ (10)

with boundary condition c(0;r) = 1. This allows us to formulate
the density as:

n(r) = eβ µ id
r

∑
i=1

∫
c(r− i;r)T (|r− r′|)c(i;r′)dr′ (11)

In many cases, the theory has proven remarkably accurate, yet
exceptionally fast in comparison with Monte Carlo and Molecu-
lar dynamics simulations, especially in flat (or spherical) geome-
tries.36 The computational benefits, combined with the grand
canonical formulation, means that (for instance) polymer in-
duced surface interactions can be studied in systems with realistic
degrees of polymerizations. In fact, previous studies include sur-
face interactions in the presence of semi-flexible 20 000-mers.33

Such systems are of course impossible to handle by simulation
methods. Nevertheless, polymer DFT is still based on a mean-
field assumption, and it is well-known that such theories are un-
able to properly account for intramolecular interactions. One
consequence of this is an erroneous prediction of how the ra-
dius of gyration scales with polymer length, in a good solvent.
On the other hand, at high polymer concentrations, the mean-
field assumption is quite reasonable. We suggest the following
approach, to counteract the mean-field problems at low concen-
trations, yet retain its advantages and accuracy at high concen-
trations. As already mentioned, we denote the hard-sphere di-
ameter and bond length used in the DFT treatment as dDFT and
bDFT , respectively. We choose bDFT such that the low concen-
tration mean-field prediction agrees with the experimental Rg

value (47 Å), for the given degree of polymerization, r. With a
monomer molecular weight of 44 g/mol, and a polymer weight of
13300 g/mol, we arrive at r ≈ 13300/44≈ 300. Hence, the mean-
field prediction of single polymer radius of gyration, Rg(DFT ),
is Rg(DFT ) = bDFT

√
300/6. Equating this to the experimental

value of 47 Å, we arrive at bDFT ≈ 6.65 Å. This will ensure that
the DFT predicts the correct single polymer radius of gyration.
Keeping this parameter fixed, we adjust dDFT , for each polymer
concentration, so that the corresponding experimental bulk os-
motic pressure, Πexp, is reproduced. The latter is estimated by
a semi-empirical equation of state (EOS), suggested by Cohen et
al.37 The DFT predictions for osmotic pressure, ΠDFT (dDFT ) is
obtained via a Generalized Flory-dimer treatment of the excluded
volume32,38. Our chosen value for dDFT is thus obtained from the
relation ΠDFT (dDFT ) = Πexp (at each investigated polymer con-
centration). Since the DFT fulfills the so-called contact value the-
orem, this approach will ensure that the polymer pressure exerted
against a surface, is given by the “correct” osmotic pressure, i.e.
close to experimental values. We have evaluated our suggested
approach, by comparing DFT predictions of monomer density pro-
files outside a non-adsorbing inert hard surface, with correspond-
ing results from simulations of our previously established PEG
model27 (b = 4 Å, d = 2.65 Å). We find an excellent agreement,
both at low and high polymer concentrations, as shown in Figure
1. Given that the “reference” simulation model has been shown
to reproduce experimental values for osmotic pressure and radius
of gyration with a very high accuracy, across many orders of mag-
nitude in terms of concentration and polymer length, we expect
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Fig. 1 Monomer density profiles outside an inert hard surface, for our 300-mer

PEG models. The dashed lines are from DFT calculations, whereas the solid black

lines are results from MC simulations, using our previously established model for

PEG 27, in aqueous solution at room temperature. Two different bulk polymer

concentrations (cb
p) have been investigated, corresponding to typical “low” and

“high” values in this work.

(a) A high bulk polymer concentration, cb
p = 40.9 g/L

(b) A low bulk polymer concentration, cb
p = 8.3 g/L
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Fig. 2 The same simulated monomer density profiles as in Figure 1, but

normalized by their respective bulk density, thus highlighting how the depletion

layer drops with density.

that our DFT calculations will provide highly accurate measures
of polymer-induced depletion interactions.

It is of some interest to compare the investigated polymer con-
centrations with the overlap concentration, c∗p. One problem is
that the latter lacks an unambiguous definition. We will consider
two options, with ρp denoting the number density of polymers:

1. With a simple cubic lattice model, where each polymer oc-
cupies a lattice site, one readily arrives at ρ∗p(2Rg)

3 = 1. This
leads to c∗p ≈ 26 g/L.

2. If we consider each polymer as occupying a spherical vol-
ume, we can instead find an estimate of the overlap concen-
tration by equating the radius of gyration to the radius of the
sphere: ρ∗p4πR3

g/3 = 1. This gives us c∗p ≈ 50 g/L.

These definitions have also been discussed by Ying and Chu39.
Thus, the case of “low” concentration, in Figure 1 (b) is consider-
ably below c∗p, irrespective of definition, whereas the “high” con-
centration (Figure 1 (a)) is perhaps best described as “close to”
the overlap concentration. Scanning the polymer literature, the
second definition seems to be most commonly used, so we shall
henceforth stipulate that c∗p ≈ 50 g/L, although there are reasons
to keep in mind that this is a very approximate measure.

In Figure 2, we demonstrate how the thickness of the depletion
layer, i.e. the range of the depletion attraction, drops as the con-
centration increases. In approximate polymer theories, it is not
uncommon to assume that the polymer correlation length essen-
tially equals the radius of gyration, all the way up to, and beyond
the overlap concentration, c∗p. However, it is clear from Figure 2
that the correlation length starts to drop at concentrations con-
siderably below that value.

As mentioned earlier, the investigated colloidal particles MA3
had a hard-sphere radius, Rc, of about 600 Å. Since this is more
than an order of magnitude larger than Rg, we can safely rely
upon the Derjaguin approximation24 (DA) for these systems, i.e.
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in practice we use DFT to establish the corresponding interaction
free energies per unit area, g(D), between infinite parallel and
flat surfaces, separated by D. According to the DA, the force F(D)

acting between particles at surface separation D, can be written
as:

F(D) = πRcg(D) (12)

The corresponding potential of mean force (PMF), denoted W , is
then obtained by integration:

W (D) =−πRc

∫
∞

D
g(x)dx (13)

As already mentioned, there are two different contributions
to the overall PMF (in addition to the hard core interaction).
The non-adsorbing polymers mediate attractive depletion interac-
tions, which are counteracted by electrostatic double-layer forces.
The latter are obtained at the full non-linear Poisson-Boltzmann
level, although we prefer a DFT formulation (integral equa-
tions)40, rather than the corresponding (equivalent) non-linear
differential equation.

One problem that arises with our approach, is that with the
grand canonical formulation that is inherent to the DFT, we need
an estimate of the polymer concentration in the “free volume” of
the dispersion, i.e. the effective bulk polymer concentration. We
have estimated this concentration in a self-consistent manner. For
each choice of overall average polymer number concentration ρp

in the dispersion ∗, i.e. the number of polymers per unit volume
of colloidal dispersion, we can estimate the bulk polymer concen-
tration, ρb

p (in the “free volume”) as:

ρ
b
p =

ρp

1−Nc
4π(Rc+δ )3

3

(14)

where Nc denotes the number of collodal particles, and δ is a “de-
pletion thickness”. The latter can be calculated from the predicted
(via DFT calculations) equilibrium monomer density distribution,
nm(z), for our flat surface model:

δ =
∫

∞

0
(1−nm(z)/nb

m)dz (15)

where the z direction is perpendicular to the isolated flat sur-
face, and nb

m is the assumed bulk monomer density. These cal-
culations are repeated until self-consistency is obtained, i.e. until
ρb

p = nb
m/r, where r = 300 is the degree of polymerization.

2.1 Comparing with AO theory
A simpler alternative to our suggested polymer DFT + fully non-
linear PB approach, is to estimate the polymer depletion via the
Asakura-Oosawa (AO) model41,42, combined with a linearized PB
level (screened Coulomb interactions) for electrostatics. A signif-
icant advantage is that the expressions for the PMF:s are analytic.

The AO theory offers a simplified treatment of polymers in
theta solvents, where the chains generally are modelled as ideal,

∗Overall polymer number and mass concentrations are denoted by ρp and cp, respec-
tively. The corresponding notation from bulk (“free volume”) concentrations are ρb

p

and cb
p, respectively

i.e. composed of point-like monomers, which are expelled from
particles, but mutually non-interacting. In the AO approach,
coarse-graining is taken one step further, and these ideal polymers
are treated as penetrable spheres, with a radius that matches the
polymer radius of gyration. While simple, the basic physics of
depletion is captured by this model, and studies based on these
concepts have led to a significantly deeper understanding of this
mechanism43–48. Furthermore, mean-field approaches based on
penetrable spheres have provided simple ways to predict gen-
eral phase behaviours in systems where attractions are generated
by depletion49,50. Nevertheless, for our system the AO polymer
model has several drawbacks. Treating polymers as spherical ob-
jects is by itself a crude approximation, as is a neglect of poly-
mer shape fluctuations9–11,51. We also note that water is a good
solvent for PEG, i.e., even the ideal polymer model that the AO
aims to simplify, is inappropriate for our system. For instance, the
AO approach fails to capture the drop in correlation length that
results when the polymer concentration is increased. An added
advantage of the polymer model that we will utilize is that it
has been shown to reproduce experimental osmotic pressure data
of PEG+water solutions quite accurately, across many orders of
magnitude in terms of polymer concentration52.

This is highlighted in Figure 3, where we compare AO and DFT
predictions of depletion interactions, at two different polymer
concentrations. As we shall see, these concentrations are strong
enough (experimentally) to generate gelation at high (50 mM)
and low (1.5 mM) salt concentrations, respectively. We see that
the AO and DFT generate similar predictions at the low polymer
concentration, although the latter has a slightly longer range. At
the high concentration, the DFT predicts a significantly dimin-
ished range of the depletion interaction, as a result of a reduced
correlation length. On the other hand, excluded volume effects
lead to a higher osmotic pressure than generated by ideal chains
at the same concentration. Neither of these effects are captured
by the AO theory, which explains why the corresponding PMF:s
cross, i.e.the DFT predicts a stronger, but more short-ranged de-
pletion interaction than the AO theory. In passing, we mention
that the DA is expected to be accurate for the depletion interac-
tions, as demonstrated in an earlier study51.

2.2 Comparing with a linearized Poisson-Boltzmann treat-
ment

Now we switch focus to the electrostatic PMF:s. In what fol-
lows, we shall treat the particles as being positively charged, even
though experiments clearly have shown that they are negative.
The reason is that positive charges simplify the discussion, avoid-
ing tedious formulations, such as an “increased absolute valency”.
Given that the particles are weakly charged, we anticipate that
the linearized PB generates an electrostatic potential decay that
well matches predictions by the full PB. This is indeed the case,
as we shall demonstrate below. However, this does not mean that
the corresponding electrostatic PMF:s also agree. Specifically, as
two charged surfaces, or large particles approach, the intersur-
face region will eventually be almost completely dominated by
counterions. This alters the overall screening, and a linearized
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(a) cs = 50 mM. The valency, Zc = 1100, matches the value used in our studies of

gelation (see below), at this salt concentration.

(b) cs = 1.5 mM. The valency, Zc = 275, matches the value used in our studies of

gelation (see below), at this salt concentration.

screened Coulomb (SC) approach will be less accurate. The sepa-
ration regime across which these effects are significant increases
with the screening length, so we anticipate stronger deviations
at low ionic strengths. This is corroborated in Figure 4, where
we compare predictions from SC and PB approaches. The full
PB option generates PMF:s that are considerably steeper than SC
predictions at close separations, despite the agreement observed
for single surface potential profiles (see below). The particle va-
lencies used in Figure 4 match our optimized values (see below)
at the two salt concentrations, namely Zc = 275 (at cs = 1.5 mM)
and Zc = 1100 (at cs = 50 mM). Corresponding electrostatic free
energies per unit area for flat surfaces (gs) are presented in te ESI.

The SC provides analytical expressions for the interaction be-
tween two charged planar surfaces, as well as between two
charged spherical particles. Specifically, the PMF (WSC) between
two spheres with a common valency, Zc, and radius, Rc, is given
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by:

βWSC(D) = lBZ2
c

e−κD

(D+2Rc)(1+κRc)2 (16)

where lB is the Bjerrum length, and D (as before) is the surface
separation. The corresponding interaction free energy per unit
area for planar surfaces, gSC(D), can be written as:

βgSC(D) = 8lBπσ
2
s κ
−1e−κD (17)

where σs is the surface charge density. The SC force between the
particles is naturally obtained from the derivative of WSC, and in
the limit of large Rc, the same force is obtained by multiplying gSC

with πRc, in accordance with the DA. Using SC approximations,
we can compare the calculated WSC (eq.(16)) with the integrated
force, as obtained from gSC (eq.(17)) via the DA (eq. (12)). The
former (WSC) are represented by dashed lines in the graphs. The
agreement is excellent at high ionic strengths. However, some-
what surprisingly, there is a significant deviation at a salt concen-
tration of 1.5 mM, even though the corresponding Debye screen-
ing length (about 78 Å) is almost an order of magnitude smaller
than the particle radius. It should be noted that since we are com-
paring two approximate SC expressions, we cannot conclude that
the observed discrepancy is due to the DA being inaccurate. At
any rate, the shape of the two SC predictions is very similar, with
a difference that in principle could be handled by an adjustment
of the particle charge. In other words, the 2-particle SC expres-
sion will agree well with that obtained from applying the DA to
flat surface predictions, provided that we use a somewhat higher
surface charge density in the former case. We have not performed
full PB calculations of the PMF between two explicit spheres, as
these would be computationally rather demanding. Calculations
at flat surfaces or with a single spherical particle, on the other
hand, run fast. We will therefore make some further compar-
isons between SC and full PB with these geometries, in order to
scrutinize the observed discrepancies between PB and SC at short
separations.

2.2.1 Electrostatic potentials outside an isolated charged
particle

Here we will highlight some theoretical predictions for the elec-
trostatic potential, ψ, in the vicinity of an isolated spherical
charged particle, of radius Rc = 600 Å. Specifically, we shall
compare results from calculations using non-linear (PB) and lin-
earized (SC) versions of Poisson-Boltzmann theory. The results
are presented in Figure 5. We see that, even with a particle
valency of Zc = 1000, there is an excellent agreement between
electrostatic profile data from SC and PB calculations. This is de-
spite the fact that eβψ (where e is the elementary charge) exceeds
unity close to the surface, i.e. the validity of a linearization is far
from obvious. Naturally, for Zc = 275 (our “optimized” value), the
agreement is even better.

2.2.2 Electrostatic potentials between charged flat surfaces

Here we will try to provide an explanation to the fact that even
though the potential profile outside an isolated particle (or a sur-
face) is accurately reproduced by the linearized PB, the SC ap-
proach may still fail to accurately capture the interaction between
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Fig. 5 Comparing theoretical predictions of radially (r) dependent electrostatic

potentials outside a spherical particle, of valence Zc. The salt concentration is

cs = 1.5 mM.

(a) Zc = 275 (our “optimized” valency).

(b) Zc = 1000.
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(a) cs = 50 mM. Surface charge density: σs = 1100e/(4πR2
c), where e is the

elementary charge.

(b) cs = 1.5 mM. Surface charge density: σs = 275e/(4πR2
c).

two such objects. It should be noted that in the latter case, we
have used a superposition approximation, adding contributions
from two isolated (opposing) surfaces. The results are collected
in Figure 6. At both salt concentrations, we find that, in anal-
ogy with an isolated charged sphere, the potential profiles from
full PB calculations are well captured by an SC model when the
surface separation is large. However, as the surfaces are brought
close together, the SC becomes highly inaccurate † This is most
likely connected to the fact that the inter-surface region becomes
almost totally dominated by counterions, which tends to reduce
the relevance of the (bulk solution) Debye screening length, κ−1.
These effects diminish for small particles, and we have admit-
tedly not made full PB calculations for the interaction between
two explicit spherical particles (of radius 600 Å). Such calcula-
tions would be computationally demanding (especially in terms
of computer memory requirement). Instead, we rely on the valid-
ity of the DA approximation, which at least should be very accu-
rate at high salt concentrations.

2.3 Simulations of structure factors
The PMF:s that are established via classical DFT (polymer and
PB versions), as outlined above, are imported as tabulated inter-
action vectors in a canonical Metropolis Monte Carlo code. The
simulated particles naturally also have a hard-sphere radius of
600 Å, and the resulting radial distribution functions, g(r), are
then Fourier transformed so as to obtain the corresponding “un-
smeared” structure factors, S(q), where q is the magnitude of the
scattering vector. In order to reduce termination effects, caused
by the finite size of our simulation box, we have utilized a stan-
dard damping function53, resulting in:

S(q) = 1+
4πNsR

8R3

∫ R

o
r2(g(r)−1)

sin(qr)sin( πr
R )

πqr2 dr (18)

where R is half the side length of the cubic simulation box.
The theoretically predicted structure factors can be directly

compared with the experimental SAXS data, for particle disper-
sions without polymer. For a comparison with the SANS data
of the particle-polymer mixtures, the calculated structure factors
were convoluted with the resolution function, R(q,Q), which ac-
counts for instrument smearing:

Ssm(q) =
∫

S(Q)R(q,Q)dQ∫
R(q,Q)dQ

(19)

The resolution function is specified in the ESI12,54.

3 Results and Discussion
3.1 The particle surface charge
Unfortunately, there is no simple and reliable way to experimen-
tally quantify the particle charge, Zc. We have therefore chosen
to use this as a single variable in the model, with a value adjusted

† It is known that the full PB is very accurate under these circumstances (for the given
model), i.e. with monovalent salt and low surface charge densities. This has been
demonstrated numerous comparisons with corresponding simulation data, where
the latter of course are exact, within noise, for the given model.
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Fig. 7 Comparing experimental data for the structure factor, with cs =1.5 mM, and

cp =28.2 g/L, with theoretical predictions, for various choices of particle charge, Zc.

such that gelation is induced at approximately the same polymer
concentration as in the corresponding experiments. This value is
then kept constant, for all investigated polymer concentrations, at
a given value of cs. For instance, a salt concentration of cs = 1.5
mM, and an overall polymer concentration (cp) of 28.2 g/L, will
bring the system close to the gel point, i.e. the low q regime of
S(q) has started to increase rapidly, although not to the point of
divergence. In Figure 7, we see that under these conditions S(q)
responds rather dramatically to changes of Zc. Since S(q) mod-
elled with Zc = 275 is closest to the experimental data, we have
fixed the particle valency at 1.5 mM salt to 275. In a similar fash-
ion, we have determined Zc = 1100 at 50 mM salt‡. In line with
our previous study of MA3 particles under purely repulsive con-
ditions21, we thus find that the particle charge increases with salt
concentration. This is also expected from physical considerations,
given that the repulsion between charged groups on the particles
will diminish at high levels of salt.

3.2 Structure factors without added polymer
In Figure 8, we compare theoretical predictions and experimen-
tal measurements of structure factors, in dispersions containing
colloidal particles at various volume fractions, but with no added
polymer. In the absence of polymers we can directly compare the
model calculations with SAXS data, which display almost no in-
strumental smearing. The SAXS data agrees quite well with theo-
retically calculated structure factors, especially for the q-values at
which the first structure peak appear. These results contrast with
earlier findings for MA3 particles, where an adjustment of the par-
ticle charge was required to capture the experimental results21 at
different particle volume fractions (with Zc varying between 230
and 550). That model was based on a linear PB treatment of
electrostatics, and as we have demonstrated above, that leads to
a much flatter PMF than predictions from a fully non-linear treat-
ment. Furthermore, a semi-analytical integral equation scheme

‡ We estimate that this value also is optimized to within about ±10 %
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Fig. 8 Structure factors of colloid MA3 in different salt concentrations. Different

colors indicate different colloidal particle concentrations cc. Black: cc = 102 g/L

(φc = 0.11). Red: cc = 2 ·102 g/L (φc = 0.215). Blue: cc = 3 ·102 g/L (φc = 0.3). Solid

lines represent the theoretical predictions, while dashed lines are SAXS

measurements, in a 84/16 H2O/D2O solvent mixture. 21
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Fig. 9 Theoretical and SANS data for structure factors of colloidal particles MA3,

cc = 2 ·102 g/L and PEG mixtures. Different colors indicate different polymer

concentrations. Solid lines represent the theoretical results, whereas the dashed

lines indicate SANS (cp >0) or SAXS (cp =0) measurements. Smeared structure

factors (Ssm) are shown for finite polymer concentrations, since we then compare

with SANS data.

was adopted in ref.21, rather than simulations. It should also be
noted that in the absence of attractions, the structure factor be-
comes less susceptible to (small) changes to the particle charge.
It is possible that we would obtain slightly better agreements
for these structure factors if we had allowed a varying particle
charge, but we have chosen to keep this as a fixed parameter,
once it has been optimized with respect to gelation, as described
above. Although we cannot fully exclude a volume fraction de-
pendent particle charge, we find that a fixed value gives satisfac-
tory agreement between experimental and theoretical data.

3.3 Structure factors with added polymers
Here we shall test the predictive ability of our theoretical ap-
proach, naturally keeping in mind that the particle charge was fit-
ted so as to approximately reproduce the polymer concentrations
required to generate gelation. The results in Figure 9 clearly illus-
trate that the theoretical model reproduces experimental struc-
tures for a rather wide range of polymer concentrations. The
peaks observed in the regime 0.004 Å−1 < q < 0.007 Å−1 reflect
nearest neighbour separations. We note how these peaks move
to higher values as polymers are added, indicating how neigh-
bouring particles pack closer together. The peaks not only drift
towards higher q values, their amplitudes also varies in a non-
monotonic manner. In fact, these peaks almost vanish at inter-

mediate concentrations. This effect is particularly pronounced at
low salt concentrations. On the other hand, upon adding large
amounts of polymer, the amplitudes of the nearest-neighbour
peaks grow quite large. We then also observe a dramatic increase
of the structure factor in the low q regime, which signifies a phase
transition - in our case gelation. All of these experimentally ob-
served behaviours are semi-quantitatively captured by the theo-
retical model.

3.4 Radial distribution functions

An obvious advantage with a theoretical model, is that we not
only have access to structural information in Fourier space. Ra-
dial distribution functions, g(r), are also available. These offer
more direct and intuitive structural information. Examples are
provided in Figures 10 and 11, at low and high salt, respec-
tively. We see the nearest-neighbour (primary) peak is quite pro-
nounced, even at concentrations significantly below the gelation
threshold. At and above this threshold, density peaks of “higher
order” (next-nearest neighbour, and so on) develop, and the pri-
mary peak becomes extremely strong. These higher-order peaks
appear at more well-defined positions when the salt concentra-
tion is low, presumably because the electrostatic repulsion favours
chain-like structures, rather than random clusters.

3.5 Cluster size distributions

Another way to illustrate the formation of a gel, is to monitor
how clusters are formed, and grow as polymers are added.17 We
define a cluster as a collection of particles, where no particle is
separated from its nearest neighbour by more than 1250 Å, a dis-
tance just beyond the nearest-neighbour peaks in g(r) (see Figures
10 and 11). In Figure 12, we illustrate how the probability P(kc)

for clusters containing kc colloidal particles, changes as polymers
are added to the dispersion. We emphasize that these are only
very crude estimates of the true canonically averaged P(kc), since
each cluster distribution is calculated from a single set of coor-
dinates (a simulation snapshot). Nevertheless, while crude, it
does serve the purpose of demonstrating that the cluster growth
is very dramatic close to the point of gelation, at low as well as at
high salt concentrations. Monomers are clearly prevalent at low
polymer concentrations, but at and beyond gelation, the average
cluster size diverges. This divergence is naturally suppressed in
our microscopic system. Specifically, with Nc = 652 a cluster can
of course at most contain 652 particles. In a macroscopic system,
the clusters would essentially grow indefinitely, as expected for a
gel.

3.6 Clusters at dilute conditions

We end this work by venturing outside the limits of previously
performed experiments, instead providing some as yet untested
theoretical predictions. Specifically, we will consider structural
effects resulting from a reduction of the particle concentration,
in a system with a high polymer concentration. We have simu-
lated a dilute particle system, utilizing the same PMF:s as was
established for the previously investigated system with an overall
polymer concentration of cp = 37.6 g/l (free volume concentra-
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simulated system contained 978 particles, and the threshold cluster radius was set

to 1250 (same as in Figure 12).

tion: cb
p ≈ 48.9 g/l), and cs = 1.5mM. In our previous simulations,

the simulation box contained Nc = 652 particles, with a cubic box
side length of 14000 Å. Here, we have instead simulated 978 par-
ticles, in a box with side length 40383 Å. This corresponds to a
16-fold particle dilution, at a constant salt and bulk polymer con-
centration.

According to these simulations, a rather interesting phe-
nomenon occurs, in such dilute systems. The system will then
not be able to form a space-filling network. Since the interactions
are short-ranged compared to the particle size, cluster growth is
expected to be an isodesmic process55 akin to “equilibrium poly-
merization”, although our aggregates are not necessarily linear.
In other words, the interaction between two particles is similar to
that between a particle and a cluster. At equilibrium, one would
then anticipate an exponentially decaying cluster size distribu-
tion, P(kc). §. In Figure 13, we have tried to estimate the cluster
probability distribution, P(kc), for this system. In contrast to our
previous rather crude description, using a single “snapshot con-
figuration”, we have in this case calculated P(kc) from 70 such
snapshots, separated by at least 10 million attempted configura-
tions along the Markov chain. It is nevertheless somewhat noisy.
However, the main conclusion is clear, namely that in this system
we end up with a range of finite-sized clusters, which, at least
in the absence of gravitational effects, will resist complete phase
separation into separate dilute and concentrated phases. Unfortu-
nately, we have not been able to simulate long enough, and with
a sufficiently large system size, to verify the expected exponential
decay of P(kc).

In Figure 14 we display a configuration snapshot, illustrating
how a range of isolated clusters, of various sizes typically exist.

§ This is in contrast to the scenario in systems with long-ranged interactions (com-
pared to the particle size), in which case a liquid-gas equilibrium will be established.
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Fig. 14 A snapshot of our simulated dilute system (see text, and captions to

Figure 13).
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Fig. 15 Predicted structure factor, for our simulated dilute system (see text, and

captions to Figure 13).

Interestingly, the structure factor itself seems unable to distin-
guish between these structures, and the ones obtained for a space-
spanning gel network, at higher particle volume fractions. This is
highlighted in Figure 15.

4 Conclusions
In this work, we have attempted to quantify the interactions
that govern the structural behaviour of a particle/polymer mix-
ture. The specific system, containing charged polystyrene parti-
cles, and added PEG polymers, has been investigated experimen-
tally, via scattering analyses, in an earlier study27. We have made
efforts to construct a model that contains the relevant physics,
yet is coarse-grained enough to be rather easily evaluated using
simple theoretical methods. Specifically, we have used classical
polymer density functional theory (DFT) to calculate the deple-
tion interactions that the non-adsorbing PEG molecules mediate.
This approach has the advantage that all configurations are ac-
counted for, subject to a mean-field Boltzmann weight. We have
implemented ways to correct for inaccuracies resulting from the
mean-field assumption, and utilize a PEG model that has been
shown to accurately reproduce bulk osmotic pressures as well
as the isolated chain radius of gyration. We have demonstrated
that the DFT is able to accurately capture the drop in correla-
tion length that results from an increase of the polymer con-
centration. Importantly, the reduced correlation length also re-
sults in a decreased range of the depletion interaction. Further-
more, the electrostatic interactions are calculated at the fully non-
linear Poisson-Boltzmann level, rather than its commonly used
linearized version. We have shown that the latter approach re-
sults in a significant loss of accuracy, especially for close particle-
particle encounters, which is a regime that is crucial to the de-
velopment of a gel. The theoretical particle charges are adjusted
such that gelation in the model occurs for similar polymer concen-
trations as is found experimentally. Our theoretical predictions for
the structure factors agree with corresponding experimental data,
for a range of polymer concentrations, and at low as well as high
salt levels. We furthermore explore other structural aspects of the
gelation process, such as radial distribution functions, and cluster
size distributions.

Finally, we use our model to make predictions for the behaviour
of similar dispersions, but at much lower particle concentrations.
We find that gelation then is suppressed (at least in absence of
gravitational effects), and that a polydisperse distribution of equi-
librium clusters are formed. Interestingly, the structure factor of
such a dispersion is very similar to that found in a gel system,
at much higher particle concentrations, but at low salt. It would
be interesting to test these predictions experimentally, with the
caveat that such highly polydisperse equilibrium clusters may be
difficult to verify and analyze.19
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