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Abstract

We develop an analytical theory for the many-body potential of mean force (POMF) be-

tween N spheres immersed in a continuum chain fluid. The theory is almost exact for a Θ

polymer solution in the protein limit (small particles, long polymers), where N-body effects are

important. Polydispersity in polymer length according to a Schulz-Flory distribution emerges

naturally from our analysis, as does the transition to the monodisperse limit. The analytical

expression for the POMF allows for computer simulations employing the complete N-body

potential (i.e., without n-body truncation; n < N ). These are compared with simulations of an

explicit particle/polymer mixture. We show that the theory produces fluid structure in excellent

agreement with the explicit model simulations even when the system is strongly fluctuating,

e.g., at or near the spinodal region. We also demonstrate that other commonly used theoretical

approaches, such as truncation of the POMF at the pair level or the Asakura Oosawa model,

are extremely inaccurate for these systems.

∗To whom correspondence should be addressed
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Introduction

The addition of non-adsorbing polymers to particle dispersions can lead to destabilizion.1–4 This

phenomenon is driven by the net attraction that results when polymers are depleted from the re-

gions between particles. While the physics is well understood, a proper theoretical treatment of

such systems is very challenging, due mainly to the multi-dimensional configuration space ex-

plored by the polymer chains in the complex shaped interstitial regions between particle surfaces.

Even for theta (Θ) solvents, where the polymers can be approximated as being ideal, the major part

of the complexity remains. The direct simulation of explicit particle/polymer mixtures is compu-

tationally expensive and other ways of modelling this system are desirable. One such approach

was suggested by Asakura and Oosawa (AO)5 as well as Vrij.6 Here polymer molecules in a Θ

solvent are implicitly treated as mutually penetrable spheres with radius Rg (polymer radius of

gyration). The particles are hard spheres with radius Rs and cross-interactions are also hard-sphere

like.1,2,7–10 As it does not account for polymer deformation, the AO model is limited to cases

where the asymmetry parameter, q(≡ Rg/Rs) is small, which corresponds to the colloidal regime.

The nanoparticle or protein regime is given by q > 1.11,12 Recent work by Lu and Denton13 has

sought to extend the applicability of the AO model to higher q.

An alternative way of treating particle/polymer mixtures is to use an effective Hamiltonian

strategy. Here one defines a potential of mean force (POMF), which is a free energy, obtained

by carrying out a partial trace over polymer degrees of freedom in the field of the fixed particles.

This POMF is an N-body potential (where N is the number of particles in the volume). The

effective Hamiltonian approach has been used in the colloidal limit, where it suffices to truncate the

many-body interactions to just 1- and 2-body terms.14 This has allowed a great deal of theoretical

progress in colloidal systems, as the machinery of fluid state theory (developed primarily for pair-

wise additive potentials) can be brought to bear on the effective particle fluid. Unfortunately, for

large q, polymer molecules may influence many particles simultaneously, giving rise to significant

many-body effects and this has hindered similar progress in the protein regime for decades. There

are two major challenges summarized by the following questions:
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• What is the mathematical structure of the many-body POMF in the protein regime?

• How can thermodynamic properties be efficiently calculated using the many-body POMF?

So far these questions have remained largely unanswered (even for Θ solvents). Chervanyov and

Heinrich,15 recently revisited the effective Hamiltonian approach and presented a 3-body term for

spheres in a polymer fluid under Θ conditions. While a valuable contribution to the field, 3-body

terms are computationally expensive to evaluate in simulations. Furthermore, it is not clear that

truncation at 3-body terms will necessarily provide a good description of the thermodynamics in

any case, especially at large q.

The purpose of this letter is to introduce a new many-body POMF theory for particle/polymer

mixtures, which is valid in the protein regime. This work is based on an earlier approach used by

us to describe many-body interactions in equilibrium polymers.16,17 It generalizes recent work by

us on pair interactions between particles in a polydisperse polymer fluid to many-body interactions

for a collection of spheres.18 Here, we will obtain new compact expressions to describe the full

N-body POMF for a polymer fluid with a general Schulz-Flory polydispersity. We are able to

demonstrate that this N-body interaction is extremely accurate, as the full POMF (i.e., all the

n-body terms; n ≤ N) can be evaluated as easily as for pairwise additive potentials. For the first

time the results of our theory are compared with (computationally intensive) structural information

obtained from simulations of the mixture containing an explicit model for polymer molecules.

Model and theory

We consider N spherical particles immersed in a Θ polymer within a volume V defined by a semi-

permeable membrane, which allows the passage of polymer but not of the particles. The system is

in chemical equilibrium with a large reservoir of polydispersed polymer molecules, whose molec-

ular weight profile is given by the following n-order Schulz-Flory (S-F) distribution,19

F(n)(κ,s) =
κn+1

Γ(n+1)
sn

s̄n+1 exp(−κs/s̄) (1)
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Here, Γ(n) is the Gamma function and κ is treated as an independent variable. When κ = n+1, s̄ is

the average polymer length. The distribution becomes more monodisperse as n increases. The full

POMF between the particles is the free energy of the polymer molecules in the field determined

by the particles with fixed positions {Ri; i = 1,N}. In a Θ solvent, the polymer behaves as an

ideal fluid, hence the POMF is proportional to the excess polymer adsorption within the volume

V . Specifically,

β∆ω
(n)(κ) =−Φp

∫
V

dr{ĝ(n)(r)−1} (2)

where ∆ω(n)(κ) denotes the POMF in the n-order polydisperse polymer, β = 1/kBT , is the inverse

thermal energy and Φp is the average polymer density in the reservoir. The function ĝ(n)(r) is the

total probability distribution of polymer ends (which is normalized to unity in the bulk reservoir).

We shall treat the polymer as a continuous chain, which is described by Edward’s diffusion equa-

tion for the monodisperse polymer fluid. The quantity, ĝ(n)(r), is the density of ends averaged over

the S-F distribution, Eq.(1). This introduces the explicit κ dependence to the POMF. Using the fact

that κ is an independent variable, one obtains the following recursion formula fo the POMF,

∆ω
(n)(κ) =

n

∑
m=0

(−κ)m

m!
∂ m

∂κm ∆ω
(0)(κ) (3)

which follows from the form of the distribution in Eq.(1). Thus, ∆ω(0)(κ) is a generating function

for the family of effective potentials corresponding to the n-order S-F distributions. The actual

POMF is obtained by substituting κ = n+1 on the RHS of Eq.(3).

The solution for ∆ω(0)(κ) is rather long and complex. We also use a limited number of approx-

imations, appropriate to the protein regime, so as to obtain a relatively simple closed expression for

the POMF. These include a spherical approximation, which assumes that the environment about

particles in the liquid is to good approximation spherically symmetric. Consistent with this is

the assumption that the environments are essentially identical, i.e, translationally invariant. The

derivation is presented in the Supporting Information (SI). The final result, after subtracting the
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(uninteresting) 1-particle contribution, is

β∆ω
(0)(κ) =−4πΦpR3

gκ
−3/2

N

∑
i=1

ε2
∑ j 6=i k0(λRi j)

K0(σ)2 +K0(σ)I0(σ)∑ j 6=i k0(λRi j)
(4)

where λ 2 = κ/R2
g, and σ = λRs. The quantities K0(σ) and I0(σ) are analytic functions (see SI)

and k0(x) = e−x/x. The parameter ε measures the depletion region of the polymer proximal to the

particle surfaces and is determined so as to make the continuous chain model more consistent with

the discrete model used in our explicit simulations.

To test our POMF, we carried out Canonical Ensemble Monte Carlo (MC) simulations. We

used both a mixture model and a system of just particles, interacting with our POMF. In the mix-

ture model, the particles were treated as hard spheres with radius Rs and the polymer chains were

modelled as monodispersed discrete chains. The monomers were point particles with freely rotat-

ing bonds of length, b. Four different polymer + particle systems were investigated:

1. 1863 polymers, with 601 monomers/chain (Rg/b = 10), and spheres, with Rs/b = 5, in a

simulation box with side length L/b = 150. This defines our q2 system.

2. 1680 polymers, with 150 monomers/chain (Rg/b = 5), and spheres, with Rs/b = 5, in a sim-

ulation box with L/b = 100. This defines our q1(low) (low polymer concentration) system.

3. 3360 polymers, with 150 monomers/chain, and spheres, with Rs/b = 5, in a simulation box

with L/b = 100. This defines our q1(high) system.

4. 1104 polymers, with 601 monomers/chain, and spheres, with Rs/b = 2.5, in a simulation

box with L/b = 100. This defines our q4 system.

For all of the systems above, a number of different particle concentrations were investigated, span-

ning from (particle) dilute to concentrated, across a demixing regime. Standard cubic periodic

boundary conditions were applied in all cases. In the POMF simulations the particles were treated

as hard spheres. The addition of the POMF then modelled the effect of the polymers. We note

that the POMF only requires summations over particle pairs in order to evaluate the free energy
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of a particular particle configuration, see Eq.(4). Thus, implementing our POMF in a simulation

is as straightforward (and efficient) as for pair-additive potentials. In the POMF simulations the

polymers are assumed polydisperse, while those of the mixture are monodisperse. Using Eq(3) we

are able to generate the POMF for progressively more monodisperse polymer, though the monodis-

perse limit is clearly unobtainable via this method. However, previous work20 suggests, that for

polymers in Θ solvents and in a depleting environment, surface forces do not appear to be particu-

larly sensitive to the degree of polydispersity for n≥ 1, especially if the average radius of gyration

(Rg) is large, which is consistent with the protein regime. Hence we used the n= 1, S-F distribution

to generate the POMF. That is, the many-body potential ∆ω(1), was used in our simulations.

When determining the value of ε , we noted that the depletion region around spheres occurs

at a scale where the discrete chain model will lead to results slightly different to a continuous

chain model. This will affect the ability of the many-body POMF to mimic the effects of the

discrete chain model. By considering the exact interaction between just two particles immersed

in a discrete chain fluid, we are able to determine an optimal value for ε , by matching the 2-

body component of the many-body POMF with the exact discrete chain system. Essentially exact

agreement can be obtained by this process, which validates the functional form of the POMF and

guarantees its accuracy at the 2-particle level. This is described in the SI. However, as we shall

show below, accuracy at the 2-particle level is far from sufficient to give a good description of the

full many-body system. In the explicit model, Canonical Ensemble simulations were used. On the

other hand, our POMF model is developed in a semi-Grand Ensemble (polymer chemical potential

fixed). Hence, we need to estimate an appropriate value for the reservoir polymer density, Φp. We

used two different approaches, depending upon the total particle concentration, N/V . These are

also outlined in the SI.
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Results

A range of particle concentrations were investigated in each of the systems for both the explicit

mixture and the POMF (implicit) simulations. At each particle concentration, the particle-particle

radial distribution function, g(r), was evaluated. This function is a good indicator of the accuracy

of our POMF, as g(r) is sensitive to both strength and range of interactions, and will also reflect

many-body effects, if they are present. In Figure 1 we compare the distributions obtained from

explicit and implicit simulations of the q2 system. There is quantitative agreement over the full
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Figure 1: Particle-particle radial distribution functions at q = 2, obtained from simulations of particles and explicit
polymers and simulations utilizing the many-body potential. The simulation volume is constant, while the particle
volume fraction, φs, is varied by two orders of magnitude (φs ≈ 0.3% - 20%). At intermediate concentrations, the
average concentration lies within a demixing regime (see main text).
(a) Dilute phase => demixing regime
(b) Demixing regime => concentrated phase

range of particle densities. We should note that the explicit mixture simulations use several hundred

thousand monomers, making them computationally extremely expensive. On the other hand, the

corresponding implicit simulations are finished within a minute or two on a standard laptop.

It is interesting to determine the significance of many-body effects in this system. To test this,

we performed an implicit simulation of the q2 at φs ≈ 1.2%, but using only the 2-body interaction

term as the POMF. The results are shown in Figure 2. It is clear that the 2-body potential severely

overestimates the depletion attraction. We also used the AO model to treat the q2 system with

Ns = 6. The AO theory also overestimates the depletion forces considerably (at least for this case),
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Figure 2: Structural comparisons between the explicit polymer system, with φs ≈ 1.24% and q = 2 and predictions
resulting from the pair interaction part of the many-body Hamiltonian.

as shown in Figure 3.
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Figure 3: Structural comparison between the explicit polymer system, with φs ≈ 0.3%, q = 2, and the corresponding
system using the AO model.

Figure 4 summarizes structural comparisons for the q1(low) system. Again, there is almost

quantitative agreement throughout the entire range of particle concentrations, as was observed

with longer chains.

For both the q1(low) and q2 systems, there is an intermediate particle concentration regime

wherein g(r) displays a slowly decaying tail. This behaviour is indicative of the spinodal region

wherein long-wavelength correlations are manifested in g(r). In the SI, we demonstrate that the

phase sparation is accommodated by a divergence of the structure factor in the low-k regime, as

expected. Spinodal fluctuations in particle/polymer mixtures have been experimentally observed

8



2 4 6 8 10
r / Rs

0

2

4

g(
r)

q = 1, low φp, dilute => demixing
solid: explicit polymers ; dashed: many−body

φS = 0.314 %
1.05 %
4.19 %
0.314 %
1.05 %
4.19 %

(a)

2 4 6 8 10
r / Rs

0

2

4

6

g(
r)

q = 1, low φp, demixing => concentrated
solid: explicit polymers ; dashed: many−body

φS = 10.5%
20.9 %
31.4 %
10.5 %
20.9%
31.4 %

(b)

Figure 4: Particle-particle radial distribution functions, as obtained from simulations of particles with explicit
polymers, with q = 1, as well as those provided by simulations utlizing the many-body potential. The polymer con-
centration is “low” (see main text).
(a) Dilute phase => demixing regime
(b) Demixing regime => concentrated phase

under microgravity.21 They are more likely to be seen within the protein regime, whereas crys-

talline, rather than liquid-like, condensed phases tend to form in the colloid regime.22 Remarkably,

the many-body POMF also predicts this behaviour. Large wavelength fluctuations in the particle

density, characteristic of spinodal decomposition, would be accompanied by anti-correlated long-

wavelength fluctuations in the polymer concentration. Such an effect is captured by the many-body

POMF, but is completely absent in the simple 2-body approximation. We note that predictions for

g(r) by the many-body POMF model is least accurate in these strongly fluctuating systems, where

the simple cell model that we used to estimate the polymer reservoir chemical potential, becomes

inaccurate.

As mentioned earlier, the polymer concentration is increased in the q1(high) system, relaitve

to q1(low), and we therefore anticipate phase separation across a broader range of particle concen-

tration. This is confirmed by the data displayed in Figure 5, where we again observe an essentially

quantitative agreement between the many-body simulations and those with explicit polymers.

Finally, we extend our comparisons further into the protein limit. In principle, we expect that

the many-body potential itself becomes more accurate in this regime. On the other hand, this might

be offset by an increasing difficulty for accurate estimates of the free volume fraction. Still, the
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Figure 5: Particle-particle radial distribution functions, as obtained from simulations of particles with explicit
polymers, with q = 1, as well as those provided by simulations utlizing the many-body potential.
(a) Dilute phase => demixing regime
(b) Demixing regime => concentrated phase
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Figure 6: Particle-particle radial distribution functions, as obtained from simulations of particles with explicit
polymers, with q = 4, as well as those provided by simulations utlizing the many-body potential.
(a) Dilute phase => demixing regime
(b) Demixing regime => concentrated phase

comparisons shown in Figure 6 suggest that the structural predictions are satisfactory also for such

high q-values.

Conclusions

In summary, we have evaluated structural properties using a many-body potential for particle/polymers

mixtures under theta solvent conditions. This potential is particularly useful in the protein regime,
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wherein the polymer radius of gyration is large compared to the particles. Comparisons with sim-

ulations of a mixture model, in which the polymers are treated explicitly, show the theory to give

remarkably accurate results, which are far superior to approaches that use a 2-particle approxima-

tion or the AO model. The present approach should admit a more extensive exploration of parti-

cle/polymer mixtures in the protein regime. In future work, we plan to use a similar methodology

to treat good solvent systems, as well as those with adsorbing particles, or grafted chains.
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